
Locomotion Concepts

- Concepts
- Legged Locomotion
- Wheeled Locomotion

© R. Siegwart, I. Nourbakhsl

Autonomous Mobile Robots, Chapter 2

2.1

Locomotion Concepts: Principles Found in Nature

Type of motion		Resistance to motion	Basic kinematics of motion
Flow in a Channel		Hydrodynamic forces	Eddies
Crawl		Friction forces	Longitudinal vibration
Sliding	AN PO	Friction forces	Transverse vibration
Running	SE	Loss of kinetic energy	Oscillatory movement of a multi-link pendulum
Jumping		Loss of kinetic energy	Oscillatory movement of a multi-link pendulum
Walking	A	Gravitational forces	Rolling of a polygon (see figure 2.2)

Locomotion Concepts

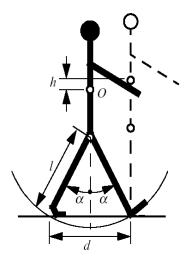
- Concepts found in nature
 - > difficult to imitate technically
 - Increasing interest in snake robots
- Most technical systems use:
 - > wheels or
 - >caterpillars
- Rolling is most efficient, but not found in nature
 - ➤ Nature never invented the wheel!
 - At least not in this reality; see "The Amber Spyglass"
- However, the movement of a walking biped is
 - >close to rolling

© R. Siegwart, I. Nourbakhsl

(S5)

Autonomous Mobile Robots, Chapter 2

Snake Robots (Bekey)


- Snakes have 4 gaits:
 - > Lateral undulation (most common)
 - Concertina
 - > Sidewinding
 - > Rectilinear
- Even without snake-like movement, snake robots are useful

Walking of a Biped

(WM_pw, Steve_angle)

- Biped walking mechanism
 - not too far from real rolling.
 - rolling of a polygon with side length equal to the length of the step.
 - the smaller the step gets, the more the polygon tends to a circle (wheel).
- However, fully rotating joint was not developed in nature.

© R. Siegwart, I. Nourbakhsl

2.1

Autonomous Mobile Robots, Chapter 2

Walking or rolling?

- number of actuators
- structural complexity
- control expense
- energy efficient
 - terrain (flat ground, soft ground, climbing..)
- movement of the masses involved
 - walking / running includes up and down movement of COG
 - > some extra losses

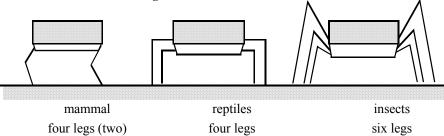
100

(uo) 10

chained statute to the constant of the constant

Characterization of locomotion concept

- Locomotion
 - > physical interaction between the vehicle and its environment.
- Locomotion is concerned with *interaction forces*, and the *mechanisms* and *actuators* that generate them.
- The most important issues in locomotion are:
- stability
 - > number of contact points
 - > center of gravity
 - > static/dynamic stabilization
 - inclination of terrain
- characteristics of contact
 - contact point or contact area
 - > angle of contact
 - > friction
- type of environment
 - > structure
 - medium (water, air, soft or hard ground)


© R. Siegwart, I. Nourbakhsl

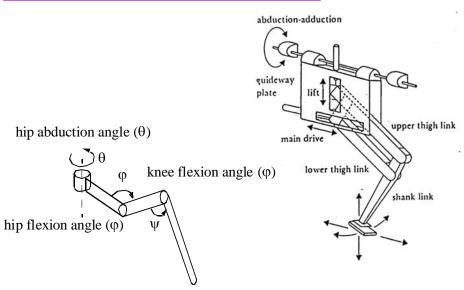
Autonomous Mobile Robots, Chapter 2

2.2.1

Mobile Robots with legs (walking machines)

- The fewer legs the more complicated locomotion becomes
 - stability, at least three legs are required for static stability
- During walking some legs are lifted
 - thus losing stability?
- For static walking at least 6 legs are required
 - babies have to learn for quite a while until they are able to stand or even walk on their two legs.

Number of Joints of Each Leg (DOF: degrees of freedom)


- A minimum of two DOF is required to move a leg forward
 - a lift and a swing motion.
 - > sliding free motion in more than one direction not possible
- Three DOF for each leg in most cases
- Fourth DOF for the ankle joint
 - > might improve walking
 - however, additional joint (DOF) increase the complexity of the design and especially of the locomotion control.

© R. Siegwart, I. Nourbakhsl

Autonomous Mobile Robots, Chapter 2

2.2.1

Examples of Legs with 3 DOF

The number of possible gaits

- The gait is characterized as the sequence of lift and release events of the individual legs
 - it depends on the number of legs.
 - the number of possible events N for a walking machine with k legs is:

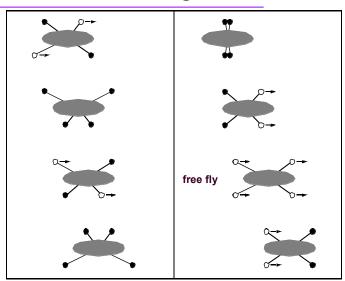
$$N = (2k-1)!$$

• For a biped walker (k=2) the number of possible events N is:

$$N = (2k-1)! = 3! = 3 \cdot 2 \cdot 1 = 6$$

- The 6 different events are:

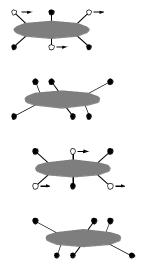
 lift right leg / lift left leg / release right leg / release left leg / lift both
 legs together / release both legs together
- For a robot with 6 legs (hexapod) N is already


$$N = 11! = 39,916,800$$

© R. Siegwart, I. Nourbakhsl

Autonomous Mobile Robots, Chapter 2

2.2.1


Most Obvious Gaits with 4 legs

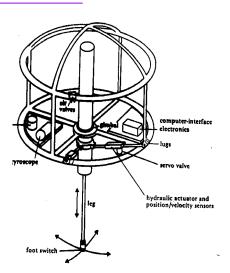
Changeover Walking

Galloping ... organic, ... roundukhsk

Most Obvious Gait with 6 legs (static)

© R. Siegwart, I. Nourbakhsl

Autonomous Mobile Robots, Chapter 2


2.2.2

Examples of Walking Machines

- No industrial applications up to date,
 - but a popular research field
- For an excellent overview please see:

http://www.uwe.ac.uk/clawar/

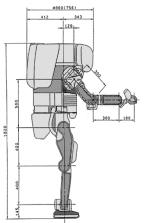
(MIT Hopper3D, MIT Hopping Ring)

The Hopping Machine

Humanoid Robots

(hondap_3_1,hondap_3_2)

- P2 from Honda, Japan
 - Maximum Speed: 2 km/h


> Autonomy: 15 min

Weight: 210 kg ➤ Height: 1.82 m ➤ Leg DOF: 2*6

> Arm DOF: 2*7

© R. Siegwart, I. Nourbakhsl

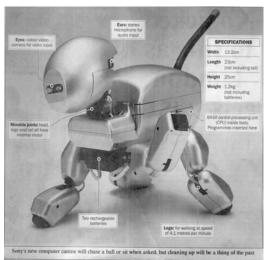
Autonomous Mobile Robots, Chapter 2

2.2.2

Bipedal Robots

- Leg Laboratory from MIT
 - > Spring Flamingo the bipedal running machine
 - "Troody" Dinosaur like robot
 - "M2" Humanoid robot

(flam_human, troodyclips, m2real)


more infos: http://www.ai.mit.edu/projects/leglab/

Walking Robots with Four Legs (Quadruped)

• Artificial Dog Aibo from Sony, Japan

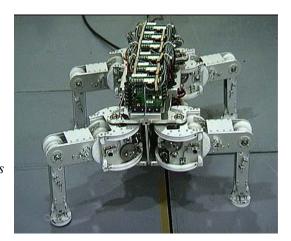
CMPack '03 vs. Yellow Jackets American Open 2003

© R. Siegwart, I. Nourbakhsl

Autonomous Mobile Robots, Chapter 2

Walking Robots with Four Legs

- Most recent AIBO is the ERS-7
 - More powerful processor (576 MHz)
 - > Higher resolution camera
 - > Stronger actuators
- Also improved sensors
 - Nose range-finder
 - Chest range-finder (edge detector)
 - > Chin sensor



Walking Robots with Four Legs (Quadruped)

- Titan VIII, a quadruped robot, Tokyo Institute of Technolog
 - ➤ Weight: 19 kg
 - ➤ Height: 0.25 m
 - > DOF: 4*3

(Titan_walk)

- Family of 9 robot
 - Explore different gaits
 - ➤ Work started in 1976 (Bekey)

© R. Siegwart, I. Nourbakhsl

Autonomous Mobile Robots, Chapter 2

2.2.2

Walking Robots with Four Legs (Quadruped)

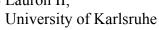
- Some very unconventional machines
- Scout moves by bounding
 - Has fewer DOF, needs fewer acutators
- The Beast rolls.

(beast)

(McGill Walker)

Walking Robots with Six Legs (Hexapod)

- Most popular because static stable walking possible
- The human guided hexapod of Ohio State University
 - ➤ Maximum Speed: 2.3 m/s
 - Weight: 3.2 t
 - > Height: 3 m
 - Length: 5.2 m
 - No. of legs: 6
 - > DOF in total: 6*3

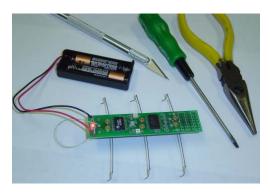

© R. Siegwart, I. Nourbakhsl

Autonomous Mobile Robots, Chapter 2

2.2.2

Walking Robots with Six Legs (Hexapod)

Lauron II,


- Maximum Speed: 0.5 m/s
 - Weight: 6 kg
 - ➤ Height: 0.3 m
 - ➤ Length: 0.7 m
 - No. of legs: 6
 - ▶ DOF in total: 6*3
 - ➤ Power Consumption: 10 W

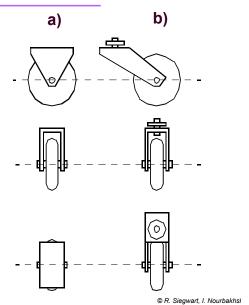
Walking robots with Six legs

- Stiquito
 - Low cost hexapod robot
 - > \$34.99
 - Clever use of shape memory alloy (SMA) for legs

(Bekey)

© R. Siegwart, I. Nourbakhsl

Autonomous Mobile Robots, Chapter 2

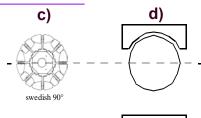

2.3

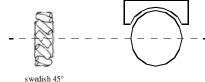
Mobile Robots with Wheels

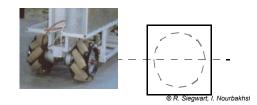
- Wheels are the most appropriate solution for many applications
 - Avoid the complexity of controlling legs
- Basic wheel layouts limited to easy terrain
 - Motivation for work on legged robots
 - Much work on adapting wheeled robots to hard terrain.
- Three wheels are sufficient to guarantee stability
 - With more than three wheels a flexible suspension is required
- Selection of wheels depends on the application

The Four Basic Wheels Types

- a) Standard wheel: Two degrees of freedom; rotation around the (motorized) wheel axle and the contact point
- b) Castor wheel: Three degrees of freedom; rotation around the wheel axle, the contact point and the castor axle



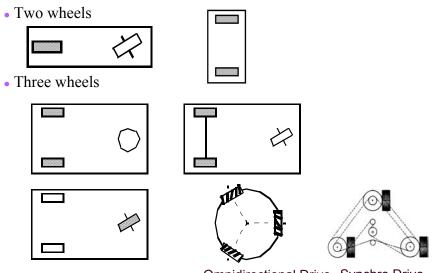

Autonomous Mobile Robots, Chapter 2


2.3.1

The Four Basic Wheels Types

- c) Swedish wheel: Three degrees of freedom; rotation around the (motorized) wheel axle, around the rollers and around the contact point
- d) Ball or spherical wheel: Suspension technically not solved

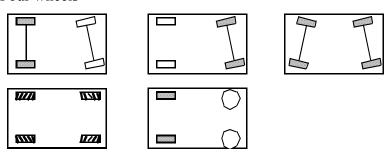
Characteristics of Wheeled Robots and Vehicles

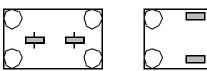

- Stability of a vehicle is be guaranteed with 3 wheels
 - center of gravity is within the triangle with is formed by the ground contact point of the wheels.
- Stability is improved by 4 and more wheel
 - however, this arrangements are hyperstatic and require a flexible suspension system.
- Bigger wheels allow to overcome higher obstacles
 - but they require higher torque or reductions in the gear box.
- Most arrangements are non-holonomic (see lecture 4)
 - require high control effort
- Combining actuation and steering on one wheel makes the design complex and adds additional errors for odometry.

© R. Siegwart, I. Nourbakhsl

Autonomous Mobile Robots, Chapter 2

2.3.1


Different Arrangements of Wheels I


Omnidirectional Drive Synchro Drive

Different Arrangements of Wheels II

• Four wheels

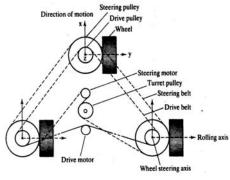
• Six wheels

© R. Siegwart, I. Nourbakhsl

Autonomous Mobile Robots, Chapter 2

2.3.2

Cye, a Two Wheel Differential Drive Robot

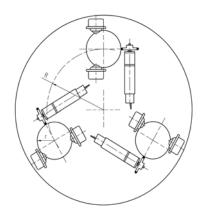


• Cye, a commercially available domestic robot that can vacuum and make deliveries in the home, is built by Probotics, Inc.

Synchro Drive

- · All wheels are actuated synchronously by one motor
 - defines the speed of the vehicle
- · All wheels steered synchronously by a second motor
 - > sets the heading of the vehicle
- The orientation in space of the robot frame will always remain the same
 - It is therefore not possible to control the orientation of the robot frame.

(Borenstein)

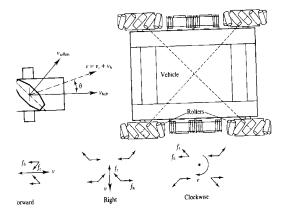

© R. Siegwart, I. Nourbakhsl

Autonomous Mobile Robots, Chapter 2

2.3.2

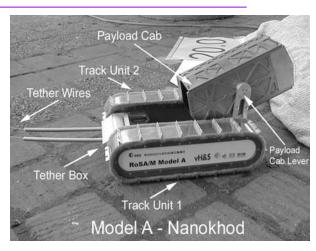
Tribolo, Omnidirectional Drive with 3 Spherical Wheels

(Tribolo)



Uranus, CMU: Omnidirectional Drive with 4 Wheels

- Movement in the plane has 3 DOF
 - thus only three wheels can be independently controlled
 - It might be better to arrange three Swedish wheels in a triangle



© R. Siegwart, I. Nourbakhsl

Autonomous Mobile Robots, Chapter 2

2.3.2

Caterpillar

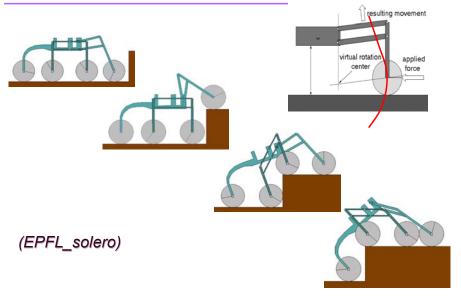
 The NANOKHOD II, developed by von Hoerner & Sulger GmbH and Max Planck Institute, Mainz for European Space Agency (ESA) will probably go to Mars

Stepping / Walking with Wheels

 SpaceCat, and microrover for Mars, developed by Mecanex Sa and EPFL for the European Space Agency (ESA)

(EPFL_Space)

Autonomous Mobile Robots, Chapter 2


2.3.2

SHRIMP, a Mobile Robot with Excellent Climbing Abilities

- Objective
 - Passive locomotion concept for rough terrain
- Results: The Shrimp
 - > 6 wheels
 - o one fixed wheel in the rear
 - o two boogies on each side
 - o one front wheel with spring suspension
 - robot size is around 60 cm in length and 20 cm in height
 - highly stable in rough terrain
 - overcomes obstacles up to 2 times its wheel diameter

The SHRIMP Adapts Optimally to Rough Terrain

© R. Siegwart, I. Nourbakhsl

Autonomous Mobile Robots, Chapter 2

2.3.2

The Personal Rover

(Developed by Nourbakhsh at CMU)

Summary

- This lecture has looked looked at locomotion
 - one of the most fundamental aspects of robot design.
- Main distinction
 - ➤ Wheeled or legged.
- Within each class there are a number of options
 - Number of legs/wheels.
 - Types of legs (ie number of DOF) and types of wheel.

© R. Siegwart, I. Nourbakhsl

0/6/2005