
1058 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS, VOL. 20, NO. 5, SEPTEMBER /OCTOBER 1990

Incorporating Range Sensing in the Robot
Navigation Function

Abstract -A model of mobile robot navigation is considered whereby
the robot is a point automaton operating in an environment with
unknown obstacles of arbitrary shapes. The robot’s input information
includes its own and the target point coordinates, as well as local
sensing information such as from stereo vision or a range finder. These
algorithmic issues are addressed 1) Is it possible to combine sensing
and planning functions, thus producing, similar to the way it is done in
nature, “active sensing” guided by the needs of planning? (The answer
is “yes”). 2) Can richer sensing (e.g., stereo vision versus tactile)
guarantee better performance, that is, resulting in shorter paths? (The
general answer is “no.”) A paradigm for combining range data with
motion planning is presented. It turns out that extensive modifications
of simpler “tactile” algorithms are needed to take full advantage of
additional sensing capabilities. Two algorithms that guarantee conver-
gence and exhibit different “styles” of behavior are described, and their
performance is demonstrated in simulated examples.

I. INTRODUCTION

FFICIENT UTILIZATION of available information E for the navigation purposes presents an important
problem in robotics. It is assumed in the sequel that the
robot is a point automaton operating in a two-dimen-
sional (2-D) surface with unknown obstacles of arbitrary
shape; its task is to produce a collision-free path between
known start and target locations. The robot is equipped
with a sensor that provides information on obstacles with
some “radius of vision.” Although the instantaneous navi-
gation decisions in such a system are necessarily of local
character, they must guarantee acceptable global perfor-
mance. Our emphasis here is on global characteristics of
underlying algorithms such as global convergence and the
relationship between sensing media and the motion plan-
ning function.

More specifically, we pose the following questions.
Compared, for example, with tactile sensing, does vision
or range data really help in motion planning, and if so, in
what way and under what conditions? Can this question
be put in a formal way? What is the relationship, if any,
between the type and basic characteristics of the sensors

Manuscript received March 23, 1989; revised April 13, 1990. This
work was supported in part by the National Science Foundation grants
DMC-8519542 and DMC-8712357; in part by Unimation Inc.; and in
part by Transitions Research Corporation. This paper was partially
presented at the IEEE International Conference on Robotics and Au-
tomation, Philadelphia, PA, April 1988.

The authors are with the Department of Electrical Engineering, Yale
University, New Haven, CT 06520.

IEEE Log Number 9036585.

used and the convergence of the motion planning algo-
rithms? Can sensing be algorithmically incorporated into
the planning function, so as to result in active sensing
guided by the needs of motion planning-the way it is
done in nature, which is quite different from the way it is
currently done in robotics?

Interestingly, although these questions are far from
simple and are quite important for both theory and engi-
neering practice, there have been no attempts, to our
knowledge, of addressing them. It is partly for this reason,
we believe, that today’s experimental mobile robots, even
when equipped with powerful computers and all kinds of
sophisticated sensors, look so helpless when dealing with
nontrivial obstacles-e.g., in a large room with partitions,
where the robot may have to backtrack and visit some
segments of its path more than once.

Current research on robot motion (path) planning re-
volves around two models that are based on different
assumptions about the information available for planning.
In the first model, called “path planning with complete
information” (or the “piano movers problem”), perfect
information about the robot and the obstacles is assumed.
The obstacle boundary must be algebraic (in many works,
polygonal). Under this model, the whole process of mo-
tion planning is a one-time off-line operation (see, e.g.,
D1).

This paper is concerned with the second model, called
“path planning with incomplete information,” or “path
planning with uncertainty.” In this model, an element of
uncertainty is present, and the missing data are typically
provided by some source of local information, such as
from a laser range finder or a vision sensor. The attrac-
tiveness of this model for robotics lies in the possibility to
naturally introduce a notion of sensor feedback, and thus
transform the operation of motion planning into a contin-
uous dynamic on-line process. Also, the requirement of
analytic representation of obstacle boundaries becomes
unnecessary and can be dropped. Because little informa-
tion is being processed at each step, the main difficulty is
not in computational efficiency, as is the case in the piano
mover problem, but rather in guaranteeing convergence.

One important issue in motion planning with incom-
plete information is the way the sensory data are incorpo-
rated into the planning function. A more traditional ap-
proach in this area is to separate the functions of scene

0018-9472/90/0900-1058$01.00 01990 IEEE

LUMELSKY A N D SKEWIS: INCORPORATING RANGE SENSING IN THE ROBOT NAVIGATION FUNCTION 1059

reconstruction and motion planning. In such a system, the
environment, or a part of it, is first reconstructed based
on the sensor data, independent of how the produced
information is going to be used later. Then an algorithm
that operates under an assumption of complete informa-
tion is used for motion planning. This approach gives rise
to various techniques of scene reconstruction that are
either weakly tied to the task of path planning [2]-[5], or
are completely independent of it [6], [7].

Another approach to sensor-based motion planning,
also considered in this paper, calls for an intimate inte-
gration of the sensory capability and the planning func-
tion. Under this approach, sensing becomes an active
process: the robot is deciding at each point of its path
what sensory information is required for generating its
next step. A natural question that appears in this context
is whether richer on-line sensory data, such as from a
range finder or vision, can guarantee better path length
performance, that is, result in shorter paths.

Our objective is to design algorithms capable of guiding
a mobile robot in a nontrivial scene with arbitrary obsta-
cles, given the simplest distance information that one can
expect from a range finder or stereo vision. We introduce
a simplified model of a “vision sensor,” which mimics a
typical range finder in that it provides the robot with
coordinates of those points of obstacle boundaries that lie
within a limited radius of vision around the robot. A
paradigm is then considered for incorporating range data,
into the robot motion-planning function. By making use
of theory developed in [8], motion-planning algorithms
utilizing active range sensing are built next. It turns out
that extensive modifications of “tactile” algorithms are
needed to fully utilize additional sensing capabilities. Two
principles for designing strategies with proven conver-
gence are considered; the resulting algorithms exhibit
different “styles” of behavior and are not, in general,
superior to each other.

The first procedure is more conservative in that it
simply uses range data to “cut corners” that would have
been produced by a “tactile” algorithm. The difference
between the two can be exemplified by comparing the
behavior of two people-one sightful and the other blind-
folded-who attempt to walk around the perimeter of a
building of complex shape. The second procedure is more
opportunistic in that it simply attempts to choose its
intermediate goals closer to the target.

Since our emphasis is on global algorithmic issues of
active sensing, numerous questions of local control that
would arise in actual implementation-such as handling
robot dynamics-are ignored here. In principle, any tech-
niques of local control can be used on conjunction with
our algorithms (see, e.g., [lo]). Some results of an attempt
to implement these algorithms can be found in [l l] .

The accepted model and required definitions are pre-
sented in section 11. The basic idea of the algorithms is
discussed in section 111, followed, in sections IV and V, by
relevant analysis, description of two algorithms, and ex-
amples demonstrating the algorithm performance.

11. MODEL

The environment (the scene) is a plane with a set of
static obstacles and two points, start (S) and target (TI , in
it. Each obstacle is a simple closed curve of arbitrary
shape and of finite length, such that a straight line will
cross it only in a finite number of points; a case when the
straight line coincides with a finite segment of the obsta-
cle boundary is not a crossing. Obstacles do not touch
each other. The environment can contain only a locally
finite number of obstacles; this means that any disc of
finite radius intersects a finite set of obstacles. Note that
the model does not require that the set of obstacles is
finite.

The robot is a point. Its input information includes
coordinates of its current location, C, as well as the target
T. The robot is capable of moving along a straight line
and along obstacle boundaries. It also has a capability,
referred to as vision, that allows it to detect an obstacle
and the distance to it along any direction from point C
within its field of vision. The field of vision presents a disc
of radius rr (radius of vision) centered at C. A point Q is
visible if, first, it is located within the field of vision, and
second, the straight-line segment CQ does not cross any
obstacles.

The robot is capable of using its vision in a scanning
operation, during which it identifies obstacles, or the lack
thereof, that intersect the whole field of vision or appear
in a specific direction. As will become clear in the follow-
ing, the robot usually has no need to scan the entire 360”
circumference every time; instead it scans only specific
directions requested by the path planning algorithms.
Thus the robot can, for example, identify some intermedi-
ate target point that lies within its field of vision and walk
toward that point along a straight line. On the other
hand, the robot can use its capability for walking along
the obstacle boundary to maneuver around a convex ob-
stacle when the visibility of the obstacle boundary shrinks
to zero.

The robot has limited memory that allows it to store a
few “interesting” points, but is not sufficient, for exam-
ple, for storing incremental maps. (Recall that those might
be very large, given obstacles of arbitrary shape.) Thus the
robot is not able to recognize an obstacle that it passed
before.

A desirable path to T , called the main line or M-line, is
introduced as a straight-line segment that connects S and
T. An elementary operation of defining the next interme-
diate target point, T,, is executed by the robot at every
moment i, given its current position C, and the range
data within the current field of vision. Then the robot
makes a little step in the direction of T,, and the process
repeats. In the algorithms described in the following,
every T, lies either on the M-line or on an obstacle
boundary. For a segment of the path where T, moves
along the M-line, the first defined T, that lies at the
intersection between the M-line and an obstacle is a
special point called the hit point, H . For a segment of the

1060 IEEE TRANSACTIONS ON S j

_ - - -

/
/

S
Fig. 1. Shaded areas represent obstacles. At its current location C,

robot will see obstacles within its radius of vision r,. such as segments
of obstacle boundaries ulu2u3,u4u5u6u7u~,u9u,~u~l~ It will also con-
clude that segments b,bz and b3b4 of M-line are “visible.”

path where T, moves along an obstacle boundary, the first
defined T, that lies at the M-line is a special point called
the leave point, L. The main difference between the two
algorithms considered here is in how they define T,.
Naturally the current T, is always at a distance from the
robot not more than rl .

While scanning the field of vision, the robot may be
detecting some contiguous sets of visible points-for ex-
ample, a segment of the obstacle boundary. A point Q is
contiguous to another point S over the set {PI, if
1) S E { P) , 2) Q and { P) are visible, and 3) Q can be
continuously connected with S using only points of {PI. A
set is contiguous if any pair of its points are contiguous to
each other over the set. As one will see, no memorization
of contiguous sets will be needed-while “watching” a
contiguous set, the robot’s only concern will be whether
two points are contiguous to each other.

A local direction is a once-and-for-all determined di-
rection for passing around an obstacle; facing the obsta-
cle, it can be either left or right (or clockwise and coun-
terclockwise). For the sake of clarity, assume that the
local direction is always left.’

‘Although locally one direction may seem preferable to the other, it is
known that from the global performance standpoint, as long as no
complete information is available, neither local direction can be judged
better than the other [8].

‘STEMS, MAN, AND CYBERNETICS, VOL. 20, NO. 5, SEPTEMBER /OCTOBER 1990

*
S

Fig. 2. Environment 1: path generated by algorithm Bug2.

The M-line divides the environment into two half-
planes. The half-plane that lies to the local direction side
of the M-line is called the main semiplane, and the other
half-plane is called the secondary semiplane. Thus if the
local direction is “left,” then the left half-plane, looking
from S toward T , is the main semiplane.

The defined terms are exemplified in Fig. 1. The shaded
areas represent obstacles. The straight-line segment ST is
the M-line; the current location of the robot, C , is in the
secondary (right) semiplane; its field of vision is of radius
rc. If, while standing at C , the robot performs the com-
plete scanning operation, it will identify contiguous seg-
ments of the obstacle boundaries, u1u2u3, u4u5u6u7u8,
and a,ul,ul,, and contiguous segments of the M-line,
b1b2 and b,b4.

111. BASIC SCHEMES

In principle, planning algorithms with range sensing
can be based on different maze-searching procedures.
Our algorithms (in the following) make use of a proce-
dure called Bug2 [SI, which we briefly sketch first. The
algorithm is based on the preceding model, except its
sensing capability is limited to tactile sensing; this can be
interpreted as zero vision, rc = 0. Under the algorithm
Bug2, the robot can meet the same obstacle more than
once, and it has no way of distinguishing between differ-
ent obstacles. The subscript j will indicate the jth occur-
rence of the hit or leave points on the same or on a

1061 LUMELSKY AND SKEWIS: INCORPORATING RANGE SENSING IN THE ROBOT NAVIGATION FUNCTION

different obstacle. Initially, j = 1; Lo = start. The algo-
rithm Bug2 consists of the following steps (follow Fig. 2).

1) From point L,-.l, move along the straight-line seg-
ment ST until one of the following occurs:
a) T is reached. The procedure stops.
b) An obstacle is encountered and a hit point, H,, is

2) Using the accepted local direction, follow the obsta-
defined. Go to Step 2.

cle boundary until one of the following occurs:
a) T is reached. The procedure stops.
b) The line segment ST is met at a point Q such

that the distance from Q to T is less than that
from H, to T, and the line segment QT does not
cross the current obstacle at the point Q. Define
the leave point L, = Q. Set j = j + 1. Go to Step
1.

c) The robot returns to H, and thus completes a
closed curve (the obstacle boundary) without hav-
ing defined the next hit point, H,+,. The target
cannot be reached. The procedure stops.

Because we want to preserve convergence of the path
planning procedures, introducing vision in an algorithm,
such as Bug2, cannot be done in a direct way. For
example, it can be shown that simply walking to the
farthest visible “corner” of an obstacle that lies in the
“right” direction can ruin convergence.

Since the procedure Bug2 is known to converge, one
way of using vision is to organize the algorithm such that
at each step of its path the robot “mentally” reconstructs
in its current field of vision the segment of the path that
would be produced by Bug2 (it is called below the Bug2
path), makes the farthest point of that segment its inter-
mediate target, and makes a step directly toward that
target. Notice that the only essential thing during such an
operation is the continuity of the considered segment of
the Bug2 path-the segment itself does not have to be
remembered. As it turns out, deciding whether a given
point lies on the path that would be generated by Bug2
(or, for short, whether a given point is a Bug2 point) is not
a trivial task. The resulting algorithm is called below
VisBug-21 (where the first numeral, “2,” refers to Bug21,
and the path it generates is referred to as the VisBug-21
path.

A different procedure, also based on the Bug2 mecha-
nism but with a more opportunistic behavior pattern than
in VisBug-21, can be designed. Instead of using the Bug2
path for generating its own path, the robot can deviate
from what is dictated by the Bug2 path to take advantage
of opportunities that look more promising (as long as
convergence is preserved). This procedure is called Vis-
Bug-22. As one will see in the following sections, given
the same initial conditions, both procedures, VisBug-21
and VisBug-22, can produce quite different paths. Fur-
thermore, depending on the environment, one procedure
may be more efficient (that is, produce a shorter path)
than the other, and so both present viable options. Both
algorithms include a test for target reachability that is

S

Fig. 3. Environment 1: path generated by algorithms VisBug-21 or
VisBug-22; radius of vision is r, .

based on the following necessary and sufficient condition:
if, after having defined the last hit point as its intermedi-
ate target, the robot returns to it before it defines the
next hit point, then either the robot or the target point is
trapped, and hence the target is not reachable (for more
details, see [SI).

The following notation will be used.

C, and T, are the position and the intermediate
target of the robot at the ith step.
I AB1 is the straight-line segment whose endpoints are
A and B; it may also designate the length of this
segment.
(AB) is the obstacle boundary segment whose end-
points are A and B, or the length of this segment.
[A B] is the path segment between the points A and
B that would be generated by algorithm Bug2, or the
length of this path segment.
{AB] is the path segment between the points A and
B that would be generated by VisBug-21 or VisBug-
22, or the length of this path segment.

It will be evident from the context whether a given
notation refers to a segment or its length. Also, when
more than one segment appears between points A and B,
the context will resolve the ambiguity.

Iv . ALGORITHM VISBUG-~I

A. Algorithm

The algorithm consists of the main body, which does
the proper motion planning along the path, and a proce-
dure called Compute q-21, which generates the next
intermediate target T,. and performs the test for target

1062 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS, VOL. 20, NO. 5, SEPTEMBER /OCTOBER 1990

reachability. As will be seen in the following, in most
cases the operation of the main body is confined to step
S1. Step S2 is executed only in those cases when the robot
is moving along a (locally) convex boundary of an obsta-
cle, and so it cannot use its vision for defining the next
intermediate target T,. For reasons that will become clear
later, the algorithm distinguishes the case when point T,
lies in the main semiplane from the case when T, lies in
the secondary semiplane. Initially, C = T, = S.

I) Main Body: This procedure is executed at each point
of the continuous path. It consists of the following steps:

Step 1: Move towards T, while executing Compute
T,-21 and performing the following test:
If C = T the procedure stops.
Else if the target is unreachable the procedure stops.
Else if C = T, go to step S2.
Step 2: Move along the obstacle boundary while
executing Compute T,-21 and performing the follow-
ing test:
If C = T the procedure stops.
Else if the target is unreachable the procedure stops.
Else if C # T, go to step S1.

2) Procedure Compute T,-21: The procedure consists of

Step 1: If T is visible then define T, = T ; procedure
stops.
Else if T, is on an obstacle boundary go to Step 3.
Else go to Step 2.
Step 2: Define point Q as the endpoint of the maxi-
mum length contiguous segment of the M-line, IT,Ql,
extending from T, in the direction of T.
If an obstacle has been identified crossing the M-line
at point Q then define a hit point, H = Q ; assign
X = Q, define T, = Q; go to Step 3.
Else define T, = Q ; go to Step 4.
Step 3: Define point Q as the endpoint of the maxi-
mum length contiguous segment of the obstacle
boundary, (T,Q), extending from T, in the local direc-
tion.
If the obstacle has been identified crossing the M-line
at a point P E (T,Q>, IPTJ < IHTI, then assign X = P
and if, in addition, IPTl does not cross the obstacle at
P then define a leave point, L = P ; define T, = P ;
and go to Step 2.
If the lastly defined hit point, H, is again identified
and H E(T,Q) then the target is not reachable; pro-
cedure stops.
Else define T, = Q ; go to Step 4.
Step 4: If T, is on the M-line define Q = T,, otherwise
define Q = X .
If points { P } on the M-line are identified such that
IS’TI < IQTI, S’ E {PI, and C is in the main semiplane
then find the point S’ E {PI that produces the short-
est distance IS’TI; define T, = S’; go to Step 2.
Else procedure stops.

the following steps.

In simpler terms, the procedure Compute T,-21 oper-
ates as follows. Step 1 is executed at the (last) stage when

a......!
.’..., . .t..

S
Fig. 4. Environment 1: path generated by VisBug-21; radius of vision

r, is larger than that in Fig. 3.

target T becomes visible (e.g., at point A, Fig. 4). A
special case, in which points of the M-line noncontiguous
to the previously considered sets of points are tested as
candidates for the next intermediate target T,, is handled
in Step 4. All the remaining situations relate to choosing
the next T, among the points of the Bug2 path contiguous
to the previously defined T,; these are treated in Steps 2
and 3. Specifically, in Step 2 candidate points along the
M-line are processed, and hit points are defined. In Step
3, candidate points along obstacle boundaries are pro-
cessed, and leave points are defined. The test for target
reachability is also performed in Step 3. It is conceivable
that, given a current location C, of the robot, the proce-
dure will execute, perhaps even more than once, some
combination of Steps 2, 3, and 4. While doing that,
contiguous and noncontiguous segments of the Bug2 path
along the M-line and along obstacle boundaries are con-
sidered before the next intermediate target T, is defined
and the robot makes a physical step towards T,.

B. Analysis

Examples shown in Figs. 3 and 4 demonstrate the effect
of radius of vision rl. on the performance of algorithm
VisBug-21 (compare with Bug2 algorithm in the same
environment, Fig. 2). In the following analysis, we first
look at the global performance of the algorithm, and then
address the issue of convergence. Since the path gener-
ated by VisBug-21 can diverge significantly from the path
that would be produced under the same conditions by
algorithm Bug2, it is to be shown that the path length
performance of VisBug-21 is never worse than that of
Bug2. One would expect such a behavior, and it is indeed
assured by the following lemma.

1063 LUMELSKY A N D SKEWIS: INCORPORATING RANGE SENSING IN THE ROBOT NAVIGATION FUNCTION

Lemma 1: For a given environment and a given set of
start and target points, the path produced by algorithm
VisBug-21 is never longer than that produced by algo-
rithm Bug2.

Proofi Assume that the environment and the start
and target points, S and T , are fixed. Consider the
position of the robot, C,, and its corresponding intermedi-
ate target, T,, at the step i of the path, i = 0,1, * . We
wish to show that the lemma holds not only for the whole
path from S to T , but also for an arbitrary step i of the
path. This amounts to showing that the inequality,

{SC,) + IC,T,I < [ST,] (1)
holds for any i. The proof is by induction. Consider first
the initial stage when i = O . This corresponds to C O = S.
Clearly, ISTO[<[ST ,] . This can be written as {SCo)+
ICoToI Q [ST,] , which corresponds to (1) when i = 0. To
proceed by induction, assume that (1) holds for the step
(i - 1) of the path, i > 1:

(S C , - ,) +IC,-1T,-,I<[ST,-,I. (2)
Each step of the robot’s motion takes place in one of two
ways: either C, - , # T, - ,, or C, - , = T, - ,. The latter case
takes place when the robot moves along the boundary of a
(locally) convex obstacle, whereas the former case com-
prises all the remaining situations. Consider the first case,
C,- , # T,-,. Here the robot will take a step of length
IC,-,C,l along a straight line towards T-,; thus (2) can be
rewritten as

(S C , _ ,) + IC,-,C,I+ l~ ,T , - l lQ [ST, - l I . (3)

(4)

In (31, the first two terms form {SC,}, and so

(S C , } + lC1T,-1l Q [S T , - ,] .
At point C,, the robot will define the next intermediate
target, T,. Now, add the obvious inequality, IT,-,T,l <
[T , - I T , I , to (4):

(S C , } + IC,T,-,I+ lT,-lT,l < [ST,-,I+[T,-,T,I = [ST,].
(5)

IC,T,I < IC,T,-,I+ lT,-,T,l (6)

(7)

By the triangle inequality,

Therefore it follows from (5) and (6) that

(SC,) + IC,T,I Q [ST,]
which proves (1).

Now, consider the second case, C , - , = T,-,. Here the
robot takes a step of length (C , - l C l) along the obstacle
boundary (the Bug2 path, [C,- ,C,]) . Then (2) becomes

~ ~ ~ , - , ~ + ~ ~ , - , ~ , 1 Q ~ ~ ~ , - , I + ~ ~ , - , ~ , l (8)
where the left side amounts to {SC,} and the right side to
[SC,]. At point C,, the robot will define the next interme-
diate target, T,. Since IC,T,I <[C,T,], (8) can be written as

{SC,) + IC,T,I < [SC,I+[C,T,l= [ST,] (9)
which, again, produces (1). Since, by the algorithm’s de-

sign, at some finite i, C, = T , then

(S T) Q [ST] (10)

which completes the proof.

One can also see from Fig. 4 that when r, goes to
infinity, algorithm VisBug-21 will generate locally optimal
paths, in the following sense. Take two obstacles or parts
of the same obstacle, k and k + 1, that are visited by the
robot, in this order. During the robot’s interaction with
(i.e., passing around) the obstacle k , once the obstacle
k + 1 is identified as the next intermediate target, the area
between k and k + 1 will be traversed along the straight
line-which presents the locally shortest path.

To define its next intermediate target, T,, the algorithm
VisBug-21, as presented previously, sometimes uses points
on the M-line that are not necessarily contiguous to the
previous intermediate targets. Such operation results in a
more efficient use of the robot’s vision; by “cutting cor-
ners,” the robot can often skip some obstacles that inter-
est the M-line and that it would otherwise have to pass.
But, from the convergence standpoint, it is important to
assure that in such cases the considered candidate points
on the M-line do indeed lie on the Bug2 path. Note that
in Step 4 of the procedure Compute T,-21 a noncontigu-
ous point Q on the M-line is considered a possible
candidate for an intermediate target only if the current
location C of the robot is in the main semiplane. We want
to show that this arrangement always produces intermedi-
ate targets that lie on the Bug2 path.

Consider a current location C of the robot along the
VisBug-21 path, a current intermediate target T,, and
some visible point Q on the M-line that is being consid-
ered as a candidate for the next intermediate target, T,,,.
Apparently, Q can be accepted as the intermediate target
T, + , only if it lies further along the Bug2 path than T,.

To assure convergence, algorithm Bug2 organizes the
set of hit and leave points, HI and L,, along the M-line so
as to form a sequence of segments

ISTI> IH,TI > IL,TI > IH,TI > IL,TI > . . . (11)

that shrinks to T [8]. This inequality dictates two condi-
tions that the candidate points Q must satisfy in order for
algorithm VisBug-21 to converge: i) when the current
intermediate target T, lies on the M-line, then only those
points Q should be considered for which lQTl< IT,TI;
ii) when T, is not on the M-line, it lies on the obstacle
boundary, in which case there must be the latest crossing
point X between the M-line and the boundary, such that
the boundary segment (X T ,) is a part of the Bug2 path; in
this case, only those points Q should be considered for
which lQTl< IXTI. Since points Q, T,, and X are already
known, both of these conditions can be easily checked.
We assume that these conditions are satisfied. Note that
the crossing point X does not necessarily correspond to a
hit point for both the Bug2 and the VisBug-21 algorithms.
The following statement holds.

1064 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS, VOL. 20, NO. 5, SEPTEMBER /OCTOBER 1990

7 ‘1

I I

I I

I S
I
I

J S

(a) (b)
Fig. 5. Illustration for Lemma 2. (a) Case 1. (b) Case 2.

Lemma 2: For the point Q to be further along the
Bug2 path than the intermediate target T,, it is sufficient
that the current robot position C lies in the main semi-
plane.

Proof: Assume that C lies in the main semiplane;
this includes a special case when C lies on the M-line.
Then all possible situations can be classified into three
cases:

1) Both T, and C lie on the M-line.
2) T, lies on the M-line, whereas C does not.
3) T, does not lie on the M-line.

Now each of these cases will be considered separately.

1) Here the robot is moving along the M-line towards
T ; thus T, is between C and T (Fig. %a)). Since T, is
by definition on the Bug2 path and both T, and Q
are visible from C , then Q must be on the Bug2
path; and because of the condition 1) already given,
Q must be further along the Bug2 path than T,.

2) This case is shown in Fig. 5(b). If there are no
obstacles crossing the M-line between points T, and
Q, then the lemma obviously holds. If, however,
there is at least one such obstacle, then a hit point,
HI, would appear. By design of the Bug2 algorithm,
the line segment T, HI is a segment of the Bug2 path.
At H, the Bug2 path would turn left and proceed
along the obstacle boundary as shown. For each hit
point, there must be a matching leave point. Where
does the corresponding leave point, L,, lie?

Consider the triangle T,CQ. Because of the visibil-
ity condition, the obstacle cannot cross the line
segments CT, or CQ. Also, the obstacle cannot cross
the line segment T, HI, because otherwise some other
hit point would have been defined between T, and
H,. Therefore the obstacle boundary, and the corre-
sponding segment of the Bug2 path, must cross the
M-line somewhere between HI and Q. This pro-
duces the leave point L,. Thereafter, because of the

I
I I

& S
Illustration for Lemma 2: Observation 2. Fig. 6.

condition 1) already given, the Bug2 path either goes
directly to Q or meets another obstacle, in which
case the same argument applies. Thus Q is on the
Bug2 path, and it is further along this path than T,.

3) Before considering this case in detail, we make two
observations.

Observation 1: Within the assumptions of the lemma, if
T, is not on the M-line, then the current position C of the
robot is not on the M-line either. Indeed, if T, is not on
the M-line, then there must exist an obstacle that pro-
duced the latest hit point, HI, and then the intermediate
target T,; this obstacle prevents the robot from seeing any
point Q on the M-line that would satisfy the requirement
2) already given.

Obseruation 2: If C is not on the M-line, then the
segment ICT,I will never cross the open-line segment
IH,TI (“open” here means that the endpoints of the
segment are not included). Here HI is the lastly defined
hit point. Indeed, for such a crossing to take place, T,
must lie in the secondary semiplane (Fig. 6). For this to
happen, the Bug2 path would have to proceed from HI
first into the main semiplane and then enter the sec-
ondary semiplane somewhere outside of the line segment
JH,TJ (otherwise, the leave point, L,, would be established
and the Bug2 path would stay in the main semiplane at
least until the next hit point, is defined). Note,
however, that any such way of entering the secondary
semiplane would produce segments of the Bug2 path that
are not contiguous (because of the visibility condition) to
the rest of the Bug2 path. By the algorithm, no points on
such segments can be chosen as intermediate targets
T,-which means that if the point C is in the main
semiplane, then the line segments ICT,I and IH,TI never
intersect.

Situations that fall into the case in question can in turn
be divided into three groups.

3a) Point C is located on the obstacle boundary and
C = T,. This happens when the robot walks along a

LUMELSKY AND SKEWIS: INCORPORATING RANGE SENSING IN THE ROBOT NAVIGATION FUNCTION

* T
I

I

I I

i s

c

(a) (b)
Fig. 7. Illustration for Lemma 2. (a) Case 3a. (b) Case 3b.

C

XJ

1065

(a) (b)
Fig. 8. Illustration for Lemma 2: case 3c.

locally convex obstacle boundary (point C’, Fig. 7).
Consider the curvilinear triangle XjC’Q. Continu-
ing the boundary segment (XjC’) after the point
C‘, the obstacle (and the corresponding segment of
the Bug2 path) will either curve inside the triangle,
with IQTI lying outside the triangle (Fig. 7(a)), or it
will curve outside the triangle, leaving IQTl inside
(Fig. 7(b)). Since the obstacle can cross neither the
line IC’QI nor the boundary segment (XjC’), it (and
the corresponding segment of the Bug2 path) must
eventually intersect the M-line somewhere between
X j and Q before intersecting IQTI. The rest of the
argument is identical to case 2.

3b) Point C is on the obstacle boundary and C Z T ,
(Fig. 7). Consider the curvilinear triangle X J Q .

3c)

Again, the obstacle can cross neither the line of
visibility ICQl nor the boundary segment (X,C),
and so the obstacle (and the corresponding seg-
ment of the Bug2 path) will either curve inside the
triangle, with IQTl left outside of it, or curve out-
side the triangle, with IQTl lying inside. The rest is
identical to case 2.
Point C is not on the obstacle boundary. Then a
curvilinear quadrangle is formed, XjT,CQ (Fig. 8).
Again, the obstacle will either curve inside the
quadrangle, with IQTl outside of it, or curve out-
side the quadrangle, with lQTl lying inside. Since
neither the lines of visibility lC7;,1 and ICQI nor the
boundary segment (Xj7;,) can be crossed, the obsta-
cle (and the corresponding segment of the Bug2

1066 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS, VOL. 20, NO. 5, SEPTEMBER /OCTOBER 1990

path) will eventually cross lXjQl before intersecting
IQTl and form the leave point Lj . The rest of the
argument is identical to case 2.

If the robot is currently located in the secondary semi-
plane, then it is indeed possible that a point that lies on
the M-line and seems otherwise a good candidate for the
next intermediate target T, does not lie on the Bug2 path.
Thus such a point should not even be considered. Such an
example is shown in Fig. 4 where, while at the location C ,
the robot will reject the seemingly attractive point Q
(Step 2 of the algorithm) because it does not lie on the
Bug2 path. At this point, the convergence of the algo-
rithm can be established.

Theorem: The algorithm VisBug-21 converges.

Proofi To generate the next intermediate target point
T,, the robot uses either its vision or its capability to move
along the obstacle boundary (such as on a convex obsta-
cle, where vision is of no help). By the very definition of
the intermediate target point T,, for any T, defined at the
given location C of the robot, T, is reachable from C .
According to the algorithm, the next step of the robot is
always in the direction of the current T,. This means that
if the locus of points T, is converging to T , so will the
locus of points C. In turn, we know that if the locus of
points T, presents the path generated by the algorithm
Bug2, then it indeed converges to T [81. The main ques-
tion then is whether all the points T, generated by
VisBug-21 lie on the Bug2 path.

All the steps of the procedure Compute T,-21, except
Step 4, explicitly test each candidate for the next T, for
being contiguous to the previous T, and belonging to the
Bug2 path. The only questionable points are the interme-
diate targets T, on the M-line that are not required to be
contiguous to the previous T,; these are produced in Step
4 of the procedure. In such cases, the points T, in ques-
tion are chosen only if the robot’s location C lies in the
main semiplane, in which case the conditions of Lemma 2
apply. Therefore all the intermediate targets T, generated
by the algorithm VisBug-21 path lie on the Bug2 path.

V. ALGORITHM VisBu~-22

A. Algorithm

The structure of this algorithm is quite similar to
VisBug-21, except the robot does not try to ensure that all
the intermediate targets T, lie on the Bug2 path. Instead,
it attempts to choose those of its intermediate targets that
lie on the M-line as close to the target T as possible. This
results in a different mechanism of convergence and in a
behavior different from algorithm VisBug-21.

Consider an environment with given points S and T ,
and consider a third point, S‘, that lies on the M-line
somewhere between S and T . As before, the term Bug2
path refers to the path produced by algorithm Bug2

between S and T. A quasi-Bug2 path segment is a con-
tiguous path segment that starts at S‘ and produces a part
of the path that algorithm Bug2 would have generated if
points S‘ and T were its starting and target points,
respectively. As point S’ needs not be on the Bug2 path, a
quasi-Bug2 path segment needs not be a segment of the
Bug2 path.

The algorithm VisBug-22 will keep identifying points
along the Bug2 path or a quasi-Bug2 path segment, until
a better point (in terms of its proximity to T) , S’, is
identified on the M-line. Then S’ becomes the starting
point of another quasi-Bug2 path segment, and the pro-
cess repeats. As a result, unlike algorithms Bug2 and
VisBug-21, where each defined hit point has its matching
leave point, in VisBug-22 no such matching necessarily
occurs. To be chosen as the starting point of the next
quasi-Bug2 path segment, point S’ must satisfy certain
requirements that assure convergence (see subsection B,
to follow).

The algorithm consists of the Main Body, which is
identical to the main body of algorithm VisBug-21, and a
procedure called Compute T,-22, which produces the next
intermediate target T, for a given current position of the
robot C, and also performs the test for target reachability.
Initially, C = S = T,.

of algorithm VisBug-22. The
procedure consists of the following steps.

Procedure Compute T, -22:

Step 1: If T is visible then define T, = T ; procedure
stops.
Else if T, is on an obstacle boundary go to Step 3.
Else go to Step 2.
Step 2: Define point Q as the endpoint of the maxi-
mum length contiguous segment of the M-line, IT,Ql,
extending from T, in the direction of T.
If an obstacle has been identified crossing the M-line
at point Q then define a hit point, H = Q; define
T, = Q; go to Step 3.
Else define T, = Q; go to Step 4.
Step 3: Define point Q as the endpoint of the maxi-
mum length contiguous segment of the obstacle
boundary, (T,Q), extending from T, in the local direc-
tion.
If the obstacle has been identified crossing the M-line
at a point P E(T,Q), J P , T J < JHTI and the line IPTI
does not cross the obstacle at P then define a leave
point, L = P, define T, = P, and go to Step 2.
If the lastly defined hit point, H , is again identified
and H € (T i e) then the target is not reachable; pro-
cedure stops.
Else define T, = Q; go to Step 4.
Step 4: If T, is on the M-line define Q = T,, otherwise
define Q = H.
If points, (P) , on the M-line are identified such that
IS’TI < IQTI, S’ E {PI then find the point S’ E (P } that
produces the shortest distance IS’TI; define T, = S’;
go to Step 2.
Else procedure stops.

1067 LUMELSKY A N D SKEWIS: INCORPORATING RANGE SENSING IN THE ROBOT NAVIGATION FUNCTION

! T"

...... *.. L....

...... I I
* - a I!

S
Fig. 9. Environment 1: path generated by VisBug-22; radius of vision

rl . is larger than that in Fig. 3 (and equal to that in Fig. 4).

.... I i
I

!!
S

Fig. 10. Environment 2: path generated by VisBug-21.

B. Analysis

The performance of algorithm VisBug-22 is demon-
strated in Figs. 3 and 9, where the same values of radius
of vision rl. as for VisBug-21 in Figs. 3 and 4 are used.
Compare this with the performance of algorithm Bug2 in
the same environment (Fig. 2). Note that VisBug-21 and
VisBug-22 can sometimes perform identically, (Fig. 3).
Observe that, in general, neither algorithm is superior to
the other. For example, in Figs. 4 and 9, VisBug-21 does
better than VisBug-22, whereas the opposite is true in the
examples shown in Figs. 10 and 11.

S
Fig. 11. Environment 2: path generated by VisBug-22.

The convergence of algorithm VisBug-22 follows from
the fact that all the starting points, S', of the successive
quasi-Bug2 path segments lie on the M-line, and they are
organized in such a way as to produce a finite sequence of
distances shrinking to T :

ISiTI > I S y - > 1S;Z-I > . . * (12)

where points S' are numbered in the order of their
appearance.

VI. CONCLUSION

A paradigm has been presented for incorporating sen-
sory range data into the robot motion-planning operation.
The key issues that we address are, first, the design of
provable motion planning algorithms based on local range
data, and second, interaction between the subsystems
responsible for gathering sensor data and path planning.
Along these lines, two algorithms are described that not
only use on-line sensory data for motion planning, but
also actively prescribe directions at which range data
should be gathered at each step. Our robot will usually
define its intermediate target by scanning a limited sector,
which includes an obstacle boundary that it tries to fol-
low, instead of scanning the whole 360" circumference. As
experimentalists know, the latter feature is quite impor-
tant for real-time operation: for example, a typical laser
range finder is a relatively slow sequential scanning de-
vice.

The described algorithms, ad hoc as they might look at
first glance, do guarantee convergence and use the input
information quite effectively. In fact, the rather natural
assumptions of our model-that input information is only
of local character and that obstacles can be of arbitrary
shapes-seem to limit a number of options for designing

1068 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS, VOL. 20, NO. 5, SEPTEMBER /OCTOBER 1990

T

Fig. 12. Performance of algorithm VisBug-21 with smaller radius
of vision.

algorithms (an interesting discussion on the effect of the
former assumption can be found in [9]). For example, a
popular technique that makes use of “visibility graphs”
based on common tangent lines to obstacles would not
work here. On the other hand, because of the latter
assumption, memorizing incremental maps would require
prohibitive amounts of memory.

This work indicates that the relationship between the
amount of sensor information and the efficiency of mo-
tion-planning algorithms is quite complex. Although no
worst-case or average-case bounds can be given at this
time, our general conclusion is that, as long as the robot
sensors provide only partial information-which all exist-
ing sensors do-the quality of the generated paths cannot
be guaranteed to improve via better algorithms or better
sensors. This indirect relationship is common to the gen-
eral problem of motion planning with uncertainty, rather
than is a consequence of a restricted model, of specific
algorithms, or specific sensing media. Besides theoretical
interest, the realization of this fact may have a major
effect on how one chooses sensing media for a real
mobile robot.

We show, for example, that although algorithm VisBug-
21 is never inferior to the “tactile” algorithm Bug2 (see
Lemma 11, surprisingly, a larger radius of vision does not
necessarily result in a shorter path (compare Figs. 12 and
13). The situation becomes even more complex in the case
of algorithm VisBug-22. Although the paths it generates
are typically significantly shorter than those produced by
algorithm Bug2, this cannot be guaranteed (compare Figs.
2 and 9). And again, a larger radius of vision does not
guarantee shorter paths (compare Figs. 3 and 9). Note
also that, in general, neither algorithm is superior to the
other. For example, in the scene shown in Figs. 4 and 9,

7‘

Fig. 13. Performance of algorithm VisBug-21 with larger radius of
vision (compare with Fig. 12).

algorithm VisBug-21 outperforms algorithm VisBug-22,
whereas the opposite is true in the scene shown in Figs.
10 and 11.

REFERENCES

(11 C. Yap, “Algorithmic motion planning,” in Advances in Robotics,
Vol. I : Algorithmic and Geometric Aspects, J. Schwartz and C.
Yap, Eds. Hillsdale, NJ: Erlbaum, 1987, pp. 95-143.

[2] M. Hebert, “Outdoor Scene Analysis Using Range Data,” in h o c .
1986 IEEE Int. Con$ on Robotics and Automation, San Francisco,
CA, Apr. 1986, pp. 1426-1432.

[3] L. Matthies and S. Shafer, “Error modeling in stereo navigation,”
IEEE Trans. Robot. Autqmat., June 1987.

[4] A. Elfes, “Sonar based real-world mapping and navigation,” IEEE
Trans. Robot. Automat., vol. RA-3, no. 3, pp. 249-265, June 1987.

[5] D. Kriegman, E. Triendl, and T. Binford, “A mobile robot: Sens-
ing, planning and locomotion,” in Proc. 1987 IEEE Int. Con$ on
Robotics and Automation, Raleigh, NC, Apr. 1987, pp. 402-408.

161 N. Rao, S. Iyengar, C. Jorgensen, and C. Weisbin, “On terrain
acquisition by a finite-sized mobile robot in plane,” in Proc. 1987
IEEE Int. Con5 on Robotics and Automation, Raleigh, NC, Apr.

[7] R. Cole and C. Yap, “Shape from probing,” New York University,
Courant Institute, Tech. Rep. 104, Dec. 1983.

[8] V. Lumelsky and A. Stepanov, “Dynamic path planning for a
mobile automaton limited information on the environment,” IEEE
Trans. Automat. Contr., vol. AC-31, no. 11, Nov. 1986, pp.

[9] H. Abelson and A. diSessa, Turtle Geometry, Cambridge, MA:
MIT Press, 1980, pp. 176-199.

[lo] J. Borenstein and Y. Koren, “Real-time obstacle avoidance for
fast mobile robots,” IEEE Trans. Syst. Man Cybern., vol. SMC-19,
no. 5, pp. 1179-1187, Sept./Oct. 1989.

[l l] T. Skewis, J. Evans, V. Lumelsky, B. Krishnamurthy, and
B. Barrows, “Motion planning for a hospital transport robot,”
Yale University, Center for Systems Science, Tech. Rep. 9001,
Mar. 1990.

1987, pp. 1314-1319.

1058-1063.

Wadimir J. Lumelslg (M’80-SM83) received the Ph.D. degree in
applied mathematics from the Institute of Control Sciences (ICs),
U.S.S.R. National Academy of Sciences, Moscow, in 1970.

From 1967 to 1975 he held academic positions of Junior Researcher
and Senior Research Fellow in ICs, conducting research in pattern

LUMELSKY AND SKEWIS: INCORPORATING RANGE SENSING IN THE ROBOT NAVIGATION FUNCXION 1069

recognition, cluster analysis, factor analysis, and
control systems. Concurrently, from 1970 to
1975, he served as Adjunct Professor at the
Moscow Institute of Radioelectronics and Au-
tomation. From 1976 to 1980 he was with the
Ford Motor Company Scientific Laboratories,
Dearborn, MI, doing research in robotics, image
processing, and industrial automation. From
1980 to 1985 he was on the research staff at the
General Electric Research Center, Schenectady,
NY, doing research in robotics, pattern recogni-

tion, system engineering, and control theory. Since 1985 he has been on
the faculty of the Department of Electrical Engineering at Yale Univer-
sity. His research interests are in robotics, image processing, pattern
recognition, and control theory.

Dr. Lumelsky is a member of the IEEE, the ACM, and Robotics
International of the SME.

Tim Skewis 6’86) received the B.S. degree in
electrical engineering from Lehigh University,
Bethlehem, PA, in 1983; the M.S. degree in
electrical engineering from Yale University, New
Haven, CT, in 1986; and is currently a candidate
for the Ph.D. degree in electrical engineering at
Yale University.

During 1984-1987, he was on the technical
staff of Unimation Inc., Danbury, CT. He devel-
oped motion planning and trajectory software
for the UniVAL robot arm controller and was

awarded U.S. patent #4,773,025. During 1987-1989 he was on the
technical staff of the Transitions Research Corporation, Danbury, CT,
and developed navigation software for HelpMate, a mobile robot for
hospital transport tasks. His research interests include sensor-based
motion, mobile robots, and graphical robot simulation.

Mr. Skewis is a recipient of a CT High Technology Scholarship and is

