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ABSTRACT

In this paper we describe an evolution-based method for
evaluating auction mechanisms, and apply it to a space of
mechanisms including the standard first- and second-price
sealed bid auctions. We replicate results known already in
the Auction Theory literature regarding the suitability of
different mechanisms for different bidder environments, and
extend the literature by establishing the superiority of novel
mechanisms over standard mechanisms, for commonly oc-
curring scenarios. Thus this paper simultaneously extends
Auction Theory, and provides a systematic method for fur-
ther such extensions.
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1. INTRODUCTION

Auctions are an important class of mechanisms for resolving
multi-agent allocation problems of various types. There ex-
ists a substantial body of work (see, e.g. [14] for a review)
regarding the theory underlying auctions, most of which fo-
cuses on the problem of how to design them so as to achieve
some desired outcome for the auctioneer. In situations where
the auctioneer plays the role of seller, this outcome is often
revenue maximization, and many results of a qualitative na-
ture are known regarding the suitability of different mecha-
nisms under different assumptions on the economic scenario
under consideration.

In parallel with this work, researchers have begun inves-
tigating how to design autonomous agents capable of par-
ticipating in auctions ([18], [1], [4], [6], [7], etc.). Often
such study is motivated by the possibility that suitable au-
tonomous agents will be superior to humans in making (pos-
sibly quite complex) economic decisions, and indeed Das et
al. report human experiments to substantiate this possibil-
ity [11]. When the agents acting in markets are non-human,

the space of potential market designs increases markedly,
since mechanisms that might seem “non-sensical” or diffi-
cult to interpret for humans can be considered.

Recently, a few papers have begun to address the confluence
of these ideas, taking inspiration from the Auction Theory
work on mechanism design, extending it into new design
spaces that might have been infeasible before, and adding a
degree of automation to the design process: for example, in
[8] and [9], Clff describes an application of Genetic Algo-
rithms [13] to the choice of a continuous parameter Qs gov-
erning the probability that a seller will be chosen to shout
in a given round of a stylized continuous double auction.

This paper continues the of such work, examining a space
of auction mechanisms that includes the standard first- and
second-price auctions, using GAs applied to a multi-agent
system to evolve good players for each mechanism under
consideration. We find that under several classes of non-
pathological conditions (e.g. bidders are risk-averse, and
are unaware of how many players they will face in a given
auction), there exist exotic sealed bid mechanisms which
are expected to return significantly higher revenue to the
auctioneer than either the first- or second-price sealed bid
mechanisms. See Section 4 for more details.

The paper is laid out as follows: in the next two sections
we discuss the methods used, introducing relevant Game
Theory concepts as needed. In Section 4 we describe the
results of our experiments. In Section 5 we describe in more
detail the relationship between these results and others in
the literature, and we conclude in Section 6.

2. AUCTION THEORY
2.1 Terms and Notation

In this paper we study sealed-bid auctions, in which a good
is put up for sale, and each potential buyer submits a bid
to the auctioneer; the auctioneer chooses a winner, and al-
locates payments to each agent. In most variants of this
type of auction, the good is awarded to the buyer who sub-
mits the highest bid, and only the winner pays. In a first-
price auction, the winner’s payment is equal to her bid; in
a second-price auction, the winner’s payment is equal to
the second highest bid.

In order to analyse how bidders might be expected to behave
in such auctions, we need to specify how they are motivated,



i.e. what is the good worth to each agent. We use a model
in which agents are only interested in their own awards and
payments, and there is some intrinsic monetary “value” v
associated to the good. All outcomes can therefore be rep-
resented by a single number, the monetary gain the agent
makes. This is v — x for a win with payment x, and —x for
a non-win with the same payment. The risk preferences of
agents are differentiated by use of a von Neumann — Mor-
genstern utility function u, so that an agent strictly prefers
a selection of possible outcomes x; with corresponding prob-
abilities p;, over a second selection of possible outcomes y;
with corresponding probabilities g;, if and only if

Zpiu(xi) > quu(mj)- 1)

In this representation, assuming twice-differentiability of u,
an agent for which u”(z) = 0 is known as risk-neutral; if
u”(x) < 0, the agent is risk-averse, and if u”(z) > 0, the
agent is known as risk-seeking (see Figure 1).
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Figure 1: Typical utility functions for a risk- seek-
ing, neutral and averse agent.

The value of a good to an agent can be independent of the
value of the good to other agents, or it can be derived from
information about how other agents value the good. In the
former case we say that the agent has a private value for
the good, and in the latter case that there is some common
value component. We treat both these cases by postulat-
ing that each bidder receives a “signal”, and that the value
of the good to the agent is some specified function of all
the agents’ signals. Since a bidder only necessarily knows
her own signal, her decision problem may in general involve
guess work about the worth of the good.

2.2 Revenue for the Auctioneer

In this paper we study mechanisms from the point of view of
the amount of money they are expected to make the seller.
Perhaps the most important result in this area is the Rev-
enue Equivalence Theorem, which states that if (con-
cerning the environment)

e there is a fixed number of bidders, known to everyone,
e all agents are risk-neutral,

e all bidders’ signals are picked from a common, known
distribution,

and if (concerning the mechanism),

e in equilibrium, the good always goes to the bidder with
the highest signal,

e any bidder whose signal is the lowest possible expects
to make nothing,

then the expected revenue to the seller is the same, inde-
pendent of the mechanism.

This rather surprising result means that, subject to these
hypotheses, it doesn’t matter what type of auction a seller
runs, he should expect to make the same amount of money
whatever the mechanism. But of course there are many
different auction mechanisms in use, of extremely variable
type, because at least one of the hypotheses on which the
Revenue Equivalence Theorem rests is often violated. It is
known, for example, that most people are not risk-neutral®,
and in the case when the bidders are risk-averse, it makes
more sense for a seller to run a first-price auction.

A method commonly used to establish an ordering on auc-
tions for different types of buyer, is to treat the problem as a
non-cooperative game, and solve for the game’s Nash equi-
librium. The difficulty with doing this is that the equations
used to define such an equilibrium might well be intractible.
In this paper we pursue an alternative method for determin-
ing an ordering: we simulate a population of buyers, and
play the game many times with random selections from this
population. The resulting averaged returns for the seller are
estimates of the true expected return. As such, the results
they give are not as satisfactory as those derived from Game
Theory.

3. METHODS

The basic methodology pursued was to instantiate a group
of agents according to various environmental and agent-
preference parameters, and let them compete in a specified
auction according to specified strategies, logging the utility
extracted by each agent as a result. Since many of the envi-
ronmental parameters require some degree of randomization
in the agent instantiation (e.g. randomized private value for
the good), this procedure was repeated a large number of
times, so as to generate an estimate of the expected utility
to an agent of using a given strategy in a given context.

3.1 Context Parameterization: Environment,

Preferences and Mechanism

We chose to investigate a space of mechanisms very similar
to the first- and second-price sealed bid auctions specified
earlier.

DEFINITION 1. Let w = (w1, ..., wy) be a vector of n real
numbers. A w-price auction is a sealed bid auction in which
the highest bidder wins the good, and pays

Zj'vzl w;bid;
N
Zj:l W

'Most people tend to act in a risk-averse manner in their
daily lives.

(2)




where N is the minimum of n and the number of bidders,
and bidy, bidz, . .. are the bids, ordered highest to lowest.

In this paper we examine a one-dimensional sub-space of w-
price auctions, namely those of type w = (1—ws2, w2). In this
parameterization, ws = 0 is a standard first price auction,
w2 = 1 a standard second-price auction, and all other values
of we correspond to non-standard auction types that have
not previously been studied.

The space of agent preferences and environmental variables
which we explored was motivated by examining exceptions
to the Revenue Equivalence Theorem; we allowed variable
group size, variable risk preference, and correlated (non-
independent) bidders’ signals. In addition, we allowed the
degree of commonality in values to be altered.

1. The number of agents in each trial was either an arbi-
trary fixed number, or was chosen with uniform prob-
ability from a set of consecutive integers bigger than
2. In most experiments the fixed number was chosen
to be 6, and the range {2,3,4,5,6}.

2. The signals (t1,...,t,) of a group (ai,...,an) of bid-
ders were chosen to be a weighted sum of a shared
random signal and a sequence of independent random
signals, with each such signal coming from a uniform
distribution on [0,1]2. Thus independent variables S,
Xi,...,X, were generated, and the signal ¢; for agent
a; was chosen to be ¢S+ (1 —c¢)X;, where ¢ € [0, 1] pa-
rameterizes the degree of correlation between agents’
signals.

3. The calculation of the utility extracted from winning
the good depends on two properties of the agents in-
volved: their risk preferences, and the degree of com-
monality in value. For risk, we chose to use Constant
Absolute Risk utility functions:

1
—(e*® -1 if

o () = o[(e ) if a #0, (@)
T if a =0,

« is zero for risk-neutral agents, negative for risk-averse
agents and positive for risk-seeking agents. Figure 1
plots these functions for « = —1,0, 1.

To model common value, we assumed that the mone-
tary value to agent a; of winning the good was given
by d - (Zj v;)/n + (1 — d)vi, where d is a parameter
controlling the degree of common value, with d = 0
representing purely private values, and d = 1 purely
common values. Thus the utility reward to agent a;
of winning the good at bid b, conditional on signals ¢;

2We also performed experiments with the family of distri-
butions

Buso) =m-a"a-at (F21) @

(for Kk =0,...,m). The results generated with these distri-
butions were not qualitatively different from those generated
for the uniform distribution.

for all players, was
Ua (d(th)/n—i—(l—d)vi—b). (5)
J

3.2 Strategy Optimization

The above variables w2, ¢, d, a specify the context in which
the agents have to act, but not how they should act in that
context. The most challenging piece of analysis in Mecha-
nism Design is always figuring out how a bidder is likely to
behave. The standard Game Theory approach is to enumer-
ate all strategies that an agent might pursue, and determine
a strategy from which deviation is not rational, i.e. which
is expected-utility maximizing given that the other agents’
behaviour is fixed.

As mentioned before, this process is often impossible, either
because of the intractability of the strategy space, or be-
cause the equations which need to be solved to determine a
deviation-proof strategy are too complex.

In this paper we take an empirical approach to finding good
strategies, whereby each agent in a population of bidders
is equipped with a bidding function which can be modified
through evolution to adapt to the necessities of the game. As
the agents play the game, successful strategies are bred pref-
erentially, and thus the entire population improves. There
is constant pressure to improve, because if an agent’s devia-
tion from the norm gives it a slightly higher expected utility,
then it will be slightly more likely to breed than average, and
so its genes will be preferentially reproduced into the next
generation.

The main drawback to this approach is that it can neither be
guaranteed that the population will evolve a good strategy
within a reasonable period of time, nor that the solution on
which the population eventually coverges is a global rather
than local optimum. Thus we gain formal simplicity at the
cost of computation. We run the entire process of evolution
many times independently, and reduce the effect of mutation
as time goes by, so as to encourage convergence.

The link between genomes and bidding function was as fol-
lows: A gene consisted of a sequence (g1, g2, ..., gx) of real-
valued “control points” assigned to evenly spaced input sig-
nals (0,1/k,...,1). The bid output for an input signal ¢ was
generated by interpolating between the control points:

g1 ift<0
bid(t) = g+ (kt=0(g+1—q) ftel/k,(1+1)/k)
Gk+1 ift>1

(6)

This representation was chosen over others (e.g. power series
representation, GP etc.) because it combines useful features
of the domain, while placing very few restrictions on the
space of all such functions. Specifically,

1. Stability: These functions are stable under small ran-
dom mutations: changing the data c¢; does not make a



huge difference to the output values generated by the
bid function.

2. Locality: A change in a value g; has no effect on the
function for signals above (I+1)/n or below (I —1)/n,
so each g value, or sequence of g values, represents a
partial solution for a certain input range.

In addition, the functions generated are guaranteed to be
continuous.

These data g; were then mutated and recombined according
to a standard Genetic Algorithm, where the fitness of a given
genome was determined relative to other genomes by par-
ticipation in a sequence of randomized games. Specifically,
the evaluation of a population of genomes was according to
the following algorithm:

For each of a large number of iterations {
while (not all agents have played in this round) {
select some as-yet-unplayed agents to play a game
generate random signals for the agents
get bids for each agent, according to their genome
select a winner and determine payments
accumulate the corresponding utility rewards

}
}

An agent’s fitness was equal to its accumulated utility from
all the games. This process is modular with respect to the
contextual parameters specified in Section 3.1.

The Genetic algorithm was simply

generate a population of N random genomes
for each generation {
assess the fitness of every individual by
playing a large number of games as above
rank the genomes by this fitness measure
repeat N times {
select two genomes from the old population,
favouring highly ranked genomes
select a random point in the genome, and
combine the first half of one with the
second half of the other
with pre-selected probability, mutate each
of the genes by an amount picked from a
pre-selected distribution?®
place this new genome into the new population

}
}

Thus we did not necessarily preserve the fittest individual
from each generation. Notice that the fitness function is
stochastic, so genomes can gain unfair advantage from being
lucky (in the selection of their signals, for example). Notice
also that the fitness is measured relative to other agents.
This means that the most successful agent strategy is not
necessarily that which gives greatest expected return, since
it may (for example) be incentive compatible in such an en-
vironment to deliberately disadvantage oneself if in doing so
ones opponents are even more disadvantaged. An example
of this is that agents with very low signals are (in most envi-
ronments) incented to bid higher than their valuation: they

3The mutation probability was constant (at 0.8), and the
maximal size of the mutation p was reduced as time went
on, being given, in generation G, by p = po(Go/(Go +G))™,
for fixed po = 0.05, Gp =20, and A =1.5

are very unlikely to win the good (and hence have nega-
tive surplus), whereas they are much more likely to decrease
the winner’s surplus, and hence increase their own relative
fitness.

Thus this process finds good players at the repeated com-
petitive game, not at the one-shot game. It is hoped (and
we shall demonstrate, in some cases) that this effect is very
small, so that conclusions about the one shot game can still
be made; it is worth noting that in real auctions with real
players (humans or corporations), exogenous effects such as
these are commonplace.

4. RESULTS

Shown below (Figure 2) is a graph showing the genes of
the best individual in a population of 360, plotted against
generation number, for an example evolutionary run for risk-
neutral agents with independent private values, competing
in a second price auction. In this context, the optimal bid-
ding strategy is to bid one’s signal, so given that k = 5
(i.e. the genome consists of 5 control values), the expected-
utility-maximizing genome is (0,0.25,0.5,0.75,1.0). As can
be seen, the best individual is initially far from perfect, and
varies greatly over the first few generations, since mutation
is (relatively) high, and the population very diverse. As
time wears on, however, the population discovers a bidding
strategy that is close to optimal: the final population’s best
individual’s bid is always within 5% of its optimal value.
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Figure 2: Genome for best individual in an example
evolutionary run, plotted as a function of generation
number.The population is initialized to random ra-
tional strategies (i.e. agents in the initial population
cannot lose money, initially).

We first verified the method by calculating revenue land-
scapes for situations where the ordering of first and sec-
ond price auctions is qualitatively known. When players are
risk-neutral, signals independent, and the number of play-
ers fixed, the Revenue Equivalence Theorem says that all
our mechanisms will generate the same expected revenue.
Figure 3 plots expected seller revenue against ws (in black).
These results were obtained by evolving a population of 360
agents for 200 generations, 200 times, and taking the aver-
age auctioneer revenue across these 200 trials. The revenue
was always calculated on the basis of all agents using the
best individual strategy from generation 200. The two lines



in grey, above and below the plotted curve of average rev-
enue, are plus and minus one standard deviation relative
to the average, and give an indication of the magnitude of
experimental uncertainty.

As can be seen, there is no experimentally significant dif-
ference in revenue between any of the mechanisms in the
risk-neutral independent private values case.
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Figure 3: Sample revenues for risk-neutral agents
operating in groups of fixed size 6, versus coefficient
wz of second-highest bid in payment. Left-hand side
is first price auction, right-hand side is second-price
auction.

As mentioned in Section 2.2, when we modify the above by
having risk-averse buyers, the first price auction becomes
preferred. Figure 4 shows this effect.
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Figure 4: Average revenues for risk-averse agents
operating in groups of fixed size 6.

As Milgrom et al. demonstrate, when values are correlated?,

we expect that the second-price auction will give greater
revenue [15]. Figure 5 demonstrates this effect occurring.

Much more interesting than confirming known results, is

“In fact [15] discuss not correlation but affiliation between
bidders’ signals. It can be shown that the joint signal dis-
tributions we have chosen to use in this paper satisfy this
stronger affiliation condition.
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Figure 5: Average revenues for risk-neutral agents
in fixed-size groups with values that are 50% corre-
lated.

investigating regions of the environment space where there
are no clear cut results. For example, if buyers have partial
common values, and are risk averse, then either first or sec-
ond price could be optimal for the seller, depending on the
magnitude of the two effects.
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Figure 6: Average revenues for risk-averse agents
(e = —10) in fixed-size groups with values that are
50% common.

Figure 6 shows the situation when bidders are risk-averse,
with parameter —10, and have a common value coefficient
of 0.5. In this case, the first-price auction is clearly superior
to the second-price auction. More surprisingly, a (0.3,0.7)-
price auction is superior to both first- and second-price auc-
tions.

Figure 7 shows the same situation when the common value
coefficient is 0.9, and risk aversion is —15. In this case,
second-price is superior to first-price, and once again a w-
price auction is superior to both. These auction forms, in
which the winner pays a weighted average of his own and
the second player’s bid are not studied in the literature, but
in this common scenario, can be revenue maximizing, de-



Figure 7: Average revenues for risk-averse agents
(v = —15) in fixed-size groups with values that are
90% common.

pending on the nature of the agents playing the game. The
optimality of non-standard auctions in this risk-averse, par-
tial common-value setting persists if the number of agents
is variable, as is seen in Figure 8.
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Figure 8: Average revenues for risk-averse agents
(oo = —15) with values that are 90% common, when
group size is random in the range [2,6].

In both of these scenarios, the graph of utility versus w;
is flat (see Figure 9): the agents themselves are indifferent
as to which auction they participate in. Thus selecting a
revenue-maximizing value of w; need not antagonize bid-
ders, however, as Bergman et al. show in [2], we should
expect the real dynamics of auction choice on the part of
bidders to be affected by more than just expected revenue:
the variance of payments is crucial also. Clearly more work
is needed to understand population dynamics in this new
environment.
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Figure 9: Graph of expected utility earned by each
agent as a function of w; for the equilibrium strategy
in the scenario described in Figure 7

5. RELATED WORK

Auction Theory is a mature field, with a substantial lit-
erature. We shall not attempt an exhaustive review here;
interested readers are referred to [14] for an overview.

The use of agents to investigate economic phenomena via
simulation is a much newer field, known, broadly, as Agent-
based Computational Economics [22], a sub-field of which is
concerned with designing agents that can operate in on-line
auctions or negotiations. See, for example [1], [6] with re-
spect to 1-1 negotiation; [7], [19], [12], [11], [21] with respect
to continuous double auctions; [17], [18], [5] with respect to
sequences of English Auctions and [4], [3] with respect to
sequences of sealed bid auctions.

When it comes to investigating novel auction types automat-
ically, or semi-automatically, the citations are much thinner
on the ground. A general discussion of automated mecha-
nism design appears in [10], which deals with issues of com-
putational complexity, but does not address any practical
implementation details. The work of Cliff [8] is the first to
provide a complete system for automated mechanism design.
Cliff addresses the case of a continuous open-cry auction, us-
ing a Genetic Algorithm to adjust both the parameters of
the bidding agents he uses, and the mechanism parameter,
which in this case is the probability s that in any given
round, a seller will be chosen at random to make an of-
fer. Besides being based on the continuous double auction,
Cliff’s work differs from ours in two significant ways. Firstly,
the space of agent strategies explored is necessarily very re-
strictive®, whereas the strategy space our GA explores con-
tains close approximations to all continuous bidding strate-
gies. Secondly, although Cliff’s choice of mechanism space

5This problem difficult to address in the continuous open-
cry auction, because such auctions have an intractably com-
plicated strategy space: an agent will typically have many
opportunities to act, for each of which the information space
is the set of all previous actions by all agents.



was inspired by the experimental design used by Smith in
[20], the Continuous Double Auction as it is used in such
real-world institutions as the New York stock exchange is
quite different — using order queues and bid improvement
rules, for example; our cases wa = 0,1 are faithful interpre-
tations of first- and second-price sealed bid auctions, which
are used in the world on a daily basis.

The work of Phelps et al. [16] provides another approach
to modifications of the continuous double auction, in which
the modification is to the clearing rule, via use of Genetic
Programming.

6. CONCLUSIONS

In this paper we have described an application of simulated
evolutionary game theory to a mechanism design problem.
We have demonstrated that this technique can be used to
explore a space of auction mechanisms, and by doing so
in a specific setting that involves faithful versions of real-
world mechanisms, have established the superiority of non-
standard auction types in a variety of common environ-
ments.

The advantages of such a method for exploring auction de-
sign issues are clear: the agents discover good bidding strate-
gies by evolution, without the need for complicated, possi-
bly intractable, and certainly fragile mathematical analy-
sis. In more complicated applications, the evolution process
can implicitly take factors into consideration that might not
have occurred to analysts. Additionally, the mechanism is
tested for revenue generation against a small neighborhood
of strategies, not just the Nash-equilibrium strategy. As a
result, its sensitivity to agents’ choice of strategy can be
determined.
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