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• Present situation: Simple bidding agents by e-bay and Amazon
• Expected: continued growth in the variety and sophistication 

of automated economic decision-making technologies.
• Agents: 

– They will have to be economically intelligent, capable of making
effective decisions about pricing, purchasing, or bidding.

– Their economic performance must exceed that of humans on average, 
otherwise, people will not entrust agents with making economic 
decisions.

• This paper provides a demonstration of agents competing 
against humans.

Agent-Human Interaction in the Continuous Double Auction
Introduction



3

• The dominant market institution for real-world trading of 
equities, commodities.

• An environment where both humans and agents can participate 
simultaneously. 

• This paper study of economic interactions between agents and 
humans utilizes a simplified model of a Continuous Double 
Auction (CDA) market.

Continuous Double Auction (CDA)
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• A fixed trading period, during which buy orders (“bids”) and 
sell orders (“asks”) may be submitted at any point during the 
period.

• If at any time there are open bids and asks that are compatible 
in terms of price and quantity of good, a trade is executed 
immediately.

• Typically, an announcement is broadcast immediately to all 
participants, when orders are placed or trades are executed.

Continuous Double Auction (CDA)
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CDA model, as adapted in the article

• Multiple units of a single hypothetical commodity can be 
bought or sold. 

• Participants are assigned a fixed role, either a Buyer or Seller.
• There are several periods of trading; at the start of each period 

participants are given a list of “limit values” (private value) for 
each unit to be bought or sold.

• The limit values are held constant for several periods and 
periodically shifted by random amounts to test responsiveness 
to changing market conditions.

• Each participant’s objective is to maximize “surplus”, defined 
as (limit value – trade price) for buyers and (trade price – limit 
value) for sellers.



6

• A market consisting of rational players will eventually 
converge to steady trading at an equilibrium price p*, at which 
there is a balance between:
� Supply (the total number of units that can be sold for positive surplus) 
� Demand (the total number of units that can be bought for positive 

surplus)

• For each participant, one can define a theoretical surplus as the 
total surplus that would be obtained if all units traded at price 
p*.

CDA model, as adapted in the article



7

Experiment

• A hybrid system that combined GEM, a distributed system for 
experimental economics was developed.

• To ensure that agents and humans could interact seamlessly 
with one another, humans and agents used the same set of 
messages to communicate with the GEM auctioneer.

• Agent and human bidders had access to identical streams of 
data from the auctioneer, and the auctioneer could not 
distinguish orders placed by humans from those placed by 
agents.
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Experiment
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Agents for the CDA

• The time order was based on a sleep-wake cycle.
• The sleep time was set to a fixed interval of seconds.
• Two types of agents based on timing:

� “Fast” agents: s=1, wake up on all orders and trades
� “Slow” agents: s=5, wake up only on trades.

• After waking up, the agent computes an order price using its 
pricing algorithm.

• Two types of agents based on pricing strategy:
� Zero-Intelligence-Plus (ZIP) strategy
� Gjerstad – Dickhaut (GD) strategy.
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Gjerstad – Dickhaut (GD) Strategy

• Each agent constructs an order and trade history H.
• Based on H, a GD buyer or seller forms a subjective “belief”

function f(p)

• Where:
� AAG(p) is the number of accepted asks in H with price � p
� BG(p) is the number of bids in H with price � p
� UAL(p) is the number of unaccepted asks in H with price � p
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• Old asks and bids were retained in a queue.
• A vector of limit prices was handled (original algorithm 

assumed a single trade-able unit).
• Empirically found that the original GD model could behave 

pathologically for “fast” agents, which placed orders whenever 
an order or trade had been placed in the market. 
� There are no unsuccessful orders in the history. 
� False assumption that any price would be accepted.
� Agents place absurdly low bids or high asks.
� Gradually lowering them until trades began to occur again.

• Reduced this phenomenon using softer form of history 
truncation.

Gjerstad – Dickhaut (GD) Strategy
(Version used for simulation)
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Zero-Intelligence-Plus (ZIP) strategy

Minimal-Intelligence Agents for Bargaining Behaviors in 
Market Based Environments

D. Cliff and J. Bruten. Technical Report HPL-97-91, Hewlett 
Packard Labs, 1997.

Pages 41 – 63

• Explores the minimum degree of agent intelligence required to 
reach market equilibrium in a simple version of the CDA
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Zero-Intelligence-Plus (ZIP) strategy

• Profit margin determines the difference between the traders 
limit price and shout-price.

• Initially, the only information known to a trader is the limit 
prices for the units the trader is entitled to sell or buy.

• Traders adjust their profit margins using market price 
information.
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• Each ZIP trader alters its profit margin on the basis of 
four factors:
1. The trader is active (still capable of making a transaction) 

or inactive (has sold or bought its full entitlement of units 
and has dropped out of the market) 

• The other three factors concern the last shout: 
2. Its price denoted by q
3. Whether it was a bid or an offer
4. Whether it was accepted or rejected

• Shout Price (p) : profit margin (�) x limit price (�) 
(Increase in � raises p for a seller and lowers p for a 
buyer)

Zero-Intelligence-Plus (ZIP) strategy
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Zero-Intelligence-Plus (ZIP) strategy

• Buyer: buy from any seller that makes an offer 
less than the buyers current bid shout price.

• Seller: sells to any buyer making a bid greater 
than the sellers current offer shout price.
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If the last shout was accepted at price q
then

any seller si for which pi � q should raise its profit margin
if the last shout was a bid 

then
any active seller si for which pi � q should lower its 

margin
Else

if the last shout was an offer
then

any active seller si for which pi � q should lower its 
margin

Sellers behavior
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If the last shout was accepted at price q
then

any buyer bi for which pi � q should raise its profit margin
if the last shout was an offer 

then
any active buyer bi for which pi � q should lower its 

margin
Else

if the last shout was an bid
then

any active buyer bi for which pi � q should lower its 
margin

Buyers behavior
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Adaptation

• At a given time t, a ZIP trader i calculates the shout-price pi(t) for unit j
with limit price �i,j, using the profit margin �i(t) according to:

pi(t)=�i,j(1+�i(t)) (1)
where: for sellers

for buyers 
• Simple update rule (Widrow-Hoff “delta rule”)

A(t+1)=A(t)+�(t) (2)
where: A(t) is the actual output at time t 

A(t+1) is the actual output on the next time step
�(t) is the change in output, where 

�(t)=�(D(t)-A(t)) (3) 
and � is learning rate coefficient (learning speed)

D(t) is the desired output at time t.
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Adaptation

• Rearranging (1) we can get the profit margin �i on the 
transition from time t to t+1:

�i(t+1)=(pi(t)+�i(t))/�i,j-1 (4)
where: 

�i(t)=�i(ri(t)-pi(t)) (5) 
and ri(t) is the target price.

• There are many ways in which the target price could be 
determined. 
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Adaptation

• In the current ZIP traders the target price is generated using a
stochastic function of the shout price q(t)

ri(t)=Ri(t)q(t)+Ai(t) (6)
where:

� Ri is a randomly generated coefficient that sets the target price in 
relation to the price q(t) of the last shout. 

� Ai(t) is a small random absolute price alteration.

� To increase shout price Ri>1.0 and Ai>0.0.
� To decrease shout price Ri<1.0 and Ai<0.0.
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Review

• Shout Price (p) : profit margin (�) x limit price (�)
• �i(t+1)=(pi(t)+�i(t))/�i,j-1
• �i(t)=�i(ri(t)-pi(t))
• ri(t)=Ri(t)q(t)+Ai(t)

[0.1,0.5]�
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[0.95,1.0][1.0,1.05]R
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• Each agent maintains a vector of limit prices p.

• If a sufficiently long time has passed without a trade taking 
place (1.0 seconds), ZIP buyers and sellers adjust pi in the 
direction of improving upon the best open competing bid or 
ask.

• There is a global constraint that each pi must always 
correspond to non-negative agent surplus.

Zero-Intelligence-Plus (ZIP) strategy 
(Version used for simulation)
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Experimental Results

• There were significant interactions and trades between agents 
and humans, even though the agents were potentially much 
faster.

• As a group, the agents outperformed the humans in all six 
experiments, with 20% average more than the total human 
surplus.

• Human performance tended to improve during the course of an 
experiment, as the subjects became more familiar with the 
GUI and the market behavior, and got a better idea of how to 
execute a good bidding strategy. 
� A consistent edge in agent surplus over human surplus by about 5 – 7% 

was still found. 
• Markets tended to have a lopsided character, in which either 

buyers consistently exploited sellers or vice versa.
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Experimental Results

Summary of the six agent-human CDA experiments. 
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Experimental Results
GD Agents vs. Humans

• The buyers were able to extract more surplus from the market 
than the sellers as most trades occurred below p*.

• The agent buyers and the agent sellers extracted more surplus 
than their human counterparts.

• Most of the lowest-priced trades below p*, were between 
agents and humans.
� An inspection of experimental records reveals that these trades were 

mostly between human sellers and agent buyers.
� Apparently the human sellers were consistently offering excessively 

low asks, and the agent buyers were able to pounce on such mistakes 
more quickly than their human counterparts.
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Experimental Results

Dashed line represents the equilibrium price p*
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Experimental Results
ZIP Agents vs. Humans

• Buyers extracted much more surplus than sellers.

• In each period, trades typically tended to occur first between 
agents, then between agents and humans, and finally between 
humans.

• Although the agents as a group outperformed the humans, 
agent sellers actually obtained less surplus than human sellers.
� ‘Fixed-profit-ratio’ strategy by same human sellers.
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Conclusions

• In many real marketplaces, agents of sufficient quality might 
be developed such that most agents beat most humans.

• A significant component of their advantage will come from 
their ability to initiate actions, and to react to market events
much faster than humans. 

• As a result, there will be significant economic incentive for 
humans to employ agents to act on their behalf. 


