
AUTOMATED MECHANISM DESIGN



Overview

• Auctions are increasingly used to buy and sell goods.
• Experience shows that “one size fits all” is not true.

– Australia & New Zealand Cable TV auctions

• Hard to identify all the ways the auction might be gamed.

– California power auctions.
– FCC spectrum auctions.

• Designing auctions is a tricky business.
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Mechanism design

• Mechanism design is the economics of designing auctions (and
other games).

• Standard approach is to:

– establish the optimum strategy of each player,
– calculate the resulting equilibrium; and
– check this meets the design criteria for the auction.

• Typical to assume every player plays her equilibrium strategy.
• From this trading behaviour, establish the best mechanism

analytically.
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Problems with mechanism design I

• The standard approach revolves around the concept of Nash
equilibrium

• For a two player game a strategy (i∗, j∗) is a Nash equilibrium
solution to the game (A, B) if:

∀i, ai∗,j∗ ≥ ai,j∗

∀j, bi∗,j∗ ≥ bi∗,j

• For A to compute this, it needs to know the payoff to B.

– Typically it won’t.
• If A only knows the type of B probabilistically, we can use the

notions of Bayesian Nash equilibrium.
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Problems with mechanism design II

• The (Bayesian) Nash equilibrium cannot be computed for some
(interesting) games.

– Double auction.

• In some cases the BNE can’t even be learnt.
• Even when the equilibrium can be computed, the players might

not play to it.
• Maybe alternative notions of equilibrium are necessary?
• These thoughts have led to computational economics.
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Problems with mechanism design III

• Assumes that players’ best response respects the mechanism.

– Nobody tries to game the system.

• Real life tells us that this is a BAD assumption.
• Maybe we can evolve mechanisms that are strategy proof.

– Let lots of different strategies try out against our auctioneer.
– Let the auctioneer co-evolve.
– The final auctioneer should be able to cope with all possible

gaming techniques.
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WHAT WE DID (1)



Scenario

• Discriminatory price double auction simulating electricity
market.

• NB buyers and NS sellers.

• Each Bi and seller Sj has a generating capacity GCBi or GCSj.
• Market parameters:

RCON =
NS
NB

and
RCAP =

∑NB
i=1

GCBi
∑NS

j=1 GCSj

define the relative balance of power in the electricity market.
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Scenario 2
• Buyers and sellers try to maximise their local profit:

ProfitBi =
NTBi∑

k=1

private valuek − trade pricek

and

ProfitSj =
NTSj∑

p=1

trade pricep − private valuep

• Auctioneer tries to maximise efficiency:

ME =
GlobalProfit

TP
where

GlobalProfit =
NB∑

i=1

ProfitBi +
NS∑

j=1

ProfitSj

and TP is the profit when every trader bids at its private value.
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Scenario 3

• In each round buyers bid pbi, sellers ask saj.
• Auctioneer matches overlapping bids and asks.

• Pricing rule sets the transaction price in the interval:

[paj, pbi]

• What should traders bid to optimise their local profit?
• What is the optimum pricing rule to maximise global profit

and/or efficiency?
• Try to evolve these using genetic programming

cis840-spring2005-parsons-lect10a 10



What we did first

• Initally we calibrated against results by Leigh Tesfatsion.
• Then we coded up the buyers and sellers as GPs.

• The auctioneer used a simple discriminatory price rule.
• Evolve traders:

– Start with random population;
– Run many auctions;
– Breed the best traders, judged on their average profit; and
– Repeat.

• Can this generate high efficiency trading?
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What we did second

• Now have the auctioneer as a GP as well.

• Do the same learning as before for the traders, but evolve the
auctioneer at the same time.

• Evolve auctioneer:

– Start with random population;
– Run many auctions;
– Breed the best auctioneer, judged on the global profit; and
– Repeat.

• Can this generate high efficiency trading?
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Problem

• Though we get high efficiency, this might not be for a good
reason.

• Seems as if the auctioneer is learning the distribution of private
values, not how to respond to bids.
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WHAT WE DID (2)



Scenario

• Discriminatory price double auction.

• NB buyers and NS sellers each trade 10 units.
• In each round buyers bid pbi, sellers ask saj.

• Auctioneer matches overlapping bids and asks.
• Pricing rule sets the transaction price in the interval:

[paj, pbi]

• What is the optimum pricing rule?
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Scenario II
• Measures used:

– Efficiency:

EA = 100



PBA + PSA
PBE + PSE




– Buyer market-power:

MPB =
PBA − PBE

PBE

– Strategic buyer market power:

SMPB =
PBA − PBT

PBE
• Rate auction using linear combinations:

V =
̂EA
2

+
̂SMPB + ̂SMPS

4
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What we did fourth

• What is the fitness landscape?

– Take the standard pricing rule:

pt = kpaj + (1 − k)pbi

– Work out rating for all values of k as buyers and sellers learn.

• Shows us the shape of the space in which we are trying to evolve
the auctioneer.
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Fitness landscape I
• Overall rating (30 buyers, 30 sellers)
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Fitness landscape II
• Overall rating (6 buyers, 6 sellers)
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Fitness landscape III
• Strategic buyer market power (30 buyers, 30 sellers)
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Fitness landscape IV
• Strategic seller market power (6 buyers, 6 sellers)
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What we did fourth

• Take a learning model of trading behaviour.
• Take a mechanism for deciding prices based on offers.

• Let agents learn how to trade in this market.
• Evaluate the market against some criteria:

– Efficiency
– Pareto optimality

• Change the mechanism & repeat.

In other words we learn the mechanism against a set of traders
that themselves learn to play the mechanism.
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Evolving a pricing rule

• After 90 generations

((0.6250385(0.93977016(ASKPRICE + 0.76238054)))+

(((((−0.19079465)/(ASKPRICE − (((BIDPRICE
+BIDPRICE)/(((((ASKPRICE − 1) + 1.6088724)/

(((1 − ASKPRICE) − (ASKPRICE/ASKPRICE))+

(2.5486426 + (BIDPRICE + 0.000012302072))))+

((BIDPRICE/ASKPRICE) + ((BIDPRICE + BIDPRICE)

+(1.430315)/(BIDPRICE · ASKPRICE)))))ASKPRICE)) . . .
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Evolving a pricing rule II
• Price plotted against pa and pb.
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Evolving a pricing rule III

• Deviation from k = 0.5.
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Summary

• First experiments seem to reinforce the idea that “the market is
the thing”.

• Reasonable efficiency even given dumb bidders.

• However, can’t learn smart auctioneer from dumb bidders.
• Second experiments, suggest that balancing demands of buyers

and sellers points towards k = 0.5 auction.

• With a nicely defined fitness landscape, we can recover a
sensible pricing rule.
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