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Abstract

The majority of studies of agent decision making in envi-
ronments with multiple auctions assume homogeneity in the
rules of the auctions. However, online markets are much
more fragmented, and products are often for sale in a vari-
ety of venues with different rules. We present a conceptual
approach to designing flexible trading agents that is broad
enough to encompass both multiple types of auctions and a
variety of user preferences. The generalizations described
lead to natural representations of the agent’s decision task
as either a Markov decision processes or an extensive form
game, depending upon the form of the market model.

1 Introduction
Electronic auctions have rapidly become one of the most
vibrant and widespread applications in e-commerce. Each
day, consumers list millions of items in electronic auction
sites such as ebay, and it is difficult to find an industry that
is not launching a vertical B2B “exchange”. This profusion
of auctions poses new challenges for the participants in the
marketplace. Currently, if one does a search for a common
product, such as a Palm Pilot, one will find there are hun-
dreds of active listings hosted on a dozen different Web sites
each with potentially different auction “types”. In addition,
each auction has a unique closing time, and can have other
attributes which affect the buyers interest level, such as text
describing the quality of the product or a measure of the
seller’s reputation.

For a variety of reasons, the actual Internet marketplace
has evolved into a fragmented market in which related prod-
ucts are sold in various auction formats with subtle but very
important differences in rules. Seemingly minor differences
can induce radically different bidding behavior on the part
of the bidders. Take, for example, the different strategies
induced by the ascending auctions that end after a period
of inactivity in which no new bids are received (eg. Ama-
zon.com), and those that end at a fixed time (eg. ebay). The
latter set of rules induces participants to “snipe”, that is, to
hold off bidding until the final moments, and then try to sub-
mit a high bid just before the auction closes. This strategy is
ineffective in auctions with inactivity-based closing rules.
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Making bidding decisions in fragmented marketplaces is
complex; to our knowledge, people handle this problem by
simply restricting their attention to a small subset of the auc-
tions of potential interest. Clearly this can lead to subopti-
mal outcomes for both the buyers and the sellers. Software
agents have the potential to greatly enhance an individual’s
ability to effectively participate in these environments. We
call such software programs trading agents.

In some situations, such as consumer purchasing on the
Internet, the conditions that a real agent will face will vary
from episode to episode. Even when market conditions are
more consistent, as might be found in a B2B exchange, we
need to be able to quickly develop and deploy agents in
each specialized environment. Adoption of agent technolo-
gies will be limited if an agent’s bidding strategy must be
hand-coded for each marketplace, and then recoded when
the rules of the market change. Thus, we argue that trad-
ing agents must be designed to be flexible, that is, capable
of perceiving both the context and the dynamic state of the
marketplace in order to make rational decisions.

Consider the decision problem facing an agent when it
desires to purchase two units of a particular object for sale.
The agent searches the web and finds the following three
auctions listing the desired object.1

� Auction A lists a single unit. The auction rules are those
of a typical ascending auction with a fixed closing time,
designated tA.

� Auction B lists a single unit. The auction is also an as-
cending auction, however it will close after time tB when
ÆB time passes without any new bids.

� Auction C lists five units. It uses a type of multi-unit auc-
tion in which each bidder pays the price of the lowest ac-
cepted bid. Indivisible bids are accepted. This auction
closes after time tC when ÆC time passes without any new
bids.

The agent could satisfy its goals by purchasing two items
in auction C, one in C and one in A or B, or one in each A
and B. The bidding strategy that accomplishes the selected
goal is dependent upon the expected final prices in each auc-
tion, the rules of each auction, and the relative closing times

1All three of the auction rules described are widely used on the
Internet.



of each auction. Moreover, this decision is not static—the
agent’s expectations of the final prices depends upon the cur-
rent price quotes and the actions of the other participants.

The research to date, both in economics and computer sci-
ence, views the multi-unit or multi-object allocation prob-
lems from one of two perspectives. One body of work takes
the perspective of the designer of the mechanism whose
goal is to select a set of rules that maximizes some ob-
jective. The approaches studied include both auctions for
sets of identical objects (Demange, Gale, & Sotomayor
1986; Gale 1990; Rodrı́guez et al. 1997) and combina-
torial auctions (Lehmann, O’Callaghan, & Shoham 1999;
Parkes 1999; Wellman et al. to appear; Wurman & Well-
man 2000) The second perspective is that of the participant.
This body of work focuses on decision making for scenar-
ios in which the auctions are homogeneous (Boutilier, Gold-
szmidt, & Sabata 1999b; Hu & Wellman 1998; Park 1999;
Rust, Miller, & Palmer 1993). We are interested in decision
making for heterogeneous marketplaces.

This paper presents a conceptual approach toward build-
ing flexible trading agents. In Section 2, we describe the
architectural elements of a flexible trading agent and sug-
gest some useful formalisms. Section 3 describes some of
the issues related to game theoretic and decision theoretic
strategy selection.

2 Components of a Trading Agent
We use the term marketplace to refer to the combination of
the user’s agent (called the principal agent), the auctions,
and the other bidders in the system.

Similarly, the decision making policy of a flexible trading
agent can be viewed as a function with three inputs:

1. A model of the user’s preferences.

2. A list of auctions that are relevant to the task and a method
of determining the particular rules of each auction.

3. A model of the other bidders in the auctions.

From these inputs, the agent must derive a bidding strat-
egy that when executed (ideally) maximizes the user’s ex-
pected payoff. The Strategy Generation Engine (SGE) is re-
sponsible for deriving a bidding strategy. Figure 1 illustrates
how these components fit together. The following discus-
sion identifies some issues associated with each of the four
components.

2.1 User Preferences
Eliciting the user’s economic preferences in a manner that is
not overly burdensome to the user and yet acquires enough
information to be of value is a challenging problem. For
example, the agent should not ask the user how much she
values every make/model of computer monitor that is cur-
rently being sold online. Instead, we would like the agent
to ask a few questions from which it can infer a sufficiently
complete preference structure.

Although preference elicitation is an interesting area of
research, for the purposes of this paper we assume that we
have the users’ preferences in the form of a utility function.
We admit a variety of preference structures, including both
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Figure 1: An architecture for trading agents.

substitutable and complementary preferences, and both in-
dependent private values and affiliated common value prob-
lems.

2.2 Auction Rules
In previous work (Wurman, Wellman, & Walsh to appear),
we have described a parametrization of auction rules that
encompasses the majority of common auction formats, in-
cluding those used by most Internet auction sites. Moreover,
the parametrized rules are instantiated in an online auction
server called the Michigan Internet AuctionBot (Wurman,
Wellman, & Walsh 1998).

The parameters are organized according to whether they
govern the admittance of bids into the system, the revelation
of information by the auction, or the policies and timing of
events that clear the auction.

For example, rules associated with bid admittance deter-
mine who is allowed to bid, the format of bids, and whether
and in what manner bids must “improve”. Rules that control
clearing specify the events that trigger a clear (e.g. at a fixed
time or after no bids are received for x minutes), and the
policies used to compute the prices, quantities, and trading
partners involved in the resulting exchanges.

The rules are, to a large extent, orthogonal, enabling a
combinatorial number of different auction types. Not only
can the vast majority of auctions available on the Internet
can be defined using the parametrized rules, a large number
of new and potentially useful auctions can be identified.

The AuctionBot server also includes an Agent Program-
ming Interface (API) which permits software agents to inter-
act with the server. Through the API the agent can request
the specific rules of each auction. Currently, the Auction-
Bot returns a text string specifying the auction rules. Work
is currently underway to convert the API to an XML based
interaction.

2.3 Market Models
How much and what type of knowledge of the other partic-
ipants in the market does an agent need to perform effec-
tively? This is one of the fundamental research questions in



the design of trading agents. Among the choices of market
models are:

1. A model of the evolution of prices that ignores the behav-
ior of individual non-principal participants. This essen-
tially treats the external market as a single entity we call
a representative agent, with (potentially uncertain) reac-
tions to the agent’s bids.

2. A model of the individual participants in the auctions. In
general there are a variety of issues that come up when
modeling other participants.

� Are the other agents’ preferences known?
� Are the other agents’ strategies known?
� What information do the other agents have about our

agent, and how is that information used?

The model used by Boutilier, Goldszmidt, and Sabata
(1999b) falls into the first category, while the model ex-
plored by Hu and Wellman (1998) explores multiagent
learning in the second context. These examples help illus-
trate the spectrum of potential models. At one end are gross
level models in which the behavior of the other agents is en-
capsulated in a single representative agent. At the other end
of the spectrum we have game theoretic models which as-
sume perfectly rational, self-interested agents with common
knowledge of each other’s utility functions and capabilities.

The applicability of the potential representations is also
affected by features of the particular market. For instance,
consider a marketplace with several sequential auctions for
individual, substitutable objects and a fixed number of bid-
ders. As the marketplace progresses and some of the objects
are allocated, the number of agents competing decreases.
More importantly, the past behavior of the remaining agents,
and the fact that they haven’t yet purchased an object, pro-
vides information to the principal agent regarding the re-
maining agent’s preferences. A purely gross level represen-
tation may not properly capture this valuable information.

However, in practice it is quite rare to have as much in-
formation as the game theoretic model assumes. Eventually,
we would like our market models to be based on the types
of real data that is accessible to the agent. Many sites, such
as ebay, provide identifying information that can be used to
track the behavior of individual participants. We are writ-
ing software to collect this type of information from a small
set of auctions in a particular product area and will use it to
explore the automated construction of market models.

2.4 Strategy Generation Engine (SGE)
The primary focus of this project is to build a strategy gen-
eration engine. At an abstract level, we can separate strategy
generation from strategy implementation, that is, we assume
we can generate a complete policy a priori that specifies the
agent’s best action for every state it may encounter. From a
practical point of view, it is often not desirable to precom-
pute a policy for all possible states, and therefore some re-
planning is desirable.

The task of the strategy generation engine is to compute
a strategy that maximizes the agent’s utility. The methodol-
ogy that is employed in this task depends upon the internal
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Figure 2: The cycle of actions.

model used to represent the inputs to the SGE. For exam-
ple, if individual agents are modeled, then a game theoretic
representation may be appropriate. On the other hand, if
the market is modeled as a stochastic state machine, then
a Markov Decision Process may be a useful framework for
making decisions. In this section, we describe the SGE at an
abstract level in the framework presented by Boutilier, Dean,
and Hanks (Boutilier, Dean, & Hanks 1999).

We assume a discrete time environment in which the agent
models the world as the cycle of actions depicted in Figure 2.
The agent evaluates the marketplace and selects an action
(i.e. bids). As a result of this action, the auctions compute
new states. The other agents then respond to the new in-
formation, which in turn causes the auctions to recompute
states. Each iteration of the cycle is called a stage, denoted
t.

Formally, the environment in which a trading agent op-
erates is a collection of auctions, f�1; : : : ; �mg, each with
its own set of rules. The principal agent is denoted u, and
the market is inhabited by other agents, D = fd1; : : : ; dng.
The subset of D that participates in auction i is denoted D i.
If Di \ Dj = fg for all i 6= j then we can safely assume
that the agent’s actions in i does not affect the behavior of
the agents in j. However, we expect that there will be many
situations in which the participation is not disjoint among
the auctions of interest.

Each auction has a state, �it, which is defined by the
sequence of messages (bids) that the agents have sent to
the auction. The market state is the set of auction states,
S = f�1t : : :�

m
t g. The rules of each auction greatly influ-

ence the state variables that must be stored to represent the
auction. In addition, the rules define the agent’s permissible
actions from a given state. Let fi(�it) be the function that
returns the set of actions, including the null action, that the
principal agent can take in auction i at time t.

Typically, but not always, the permissible actions depend
on only the most recent bid from each agent in each auction,
which enables us to make use of the Markov assumption.
However, in some situations (eg. with activity rules) f can
depend upon the entire history of messages. In such cases,
the state may be able to be augmented with summary infor-
mation which captures the current restrictions imposed by
the activity rules. The set of joint actions that the agent can
take at a given instant is the combination of actions in indi-
vidual auctions. That is, At = �fi(�

i
t).



The rules also define the auction’s state transition for
a given action, a 2 A. We denote the state transition
function for the auction i by g i. Thus, a successor state,
�0

= gi(a; �), is reached when action a is taken. In most re-
search on iterative auctions, this function is deterministic—
if the agent bids more than the current highest bidder, it
will be the new high bidder. However, in some recent
iterative combinatorial auctions (DeMartini et al. 1998;
Wurman & Wellman 2000) the agent cannot always predict
from the information it is given the state transition that will
result from an action. This occurs because the agent cannot
directly observe the important aspects of the auction’s state
(i.e. all of the current bids). Instead, it can observe only the
price information revealed by the auction. When the state is
only partially observable, the agent may not be able to tell
with certainty which state it is in, greatly complicating the
decision problem.

Uncertain state transitions can also be used to model irreg-
ularities in system performance. For instance, it is a fact of
Internet life that occasionally messages are lost in the net-
work and servers crash. Also, the amount of time that it
takes for a bid to reach the auction server and be admitted
varies with network congestion and server load. Thus, all
bids, but especially last minute bids, incur some probability
of failing to reach the server in time to be counted. These
random events can be accounted for in the state transition
model.

Typically, the other participants will respond to the
agent’s action with actions of their own. It is at this point
that we start to see the interplay between the market model
and the decision representation. If the agent is planning on
using game theoretic reasoning, it needs a method to com-
pute the other agents’ choices of actions from a given state.
Typically, the other agents have the same basic choices as
the principal agent, and thus the logic used in the function
f can be reused. However, when each of the other agents is
acting independently, the “market responds” step in Figure 2
would have to be expanded.

On the other hand, the agent may choose to use an ag-
gregate model of the other participants that treats them as a
single representative agent which takes a single (joint) ac-
tion � . To determine the representative agent’s choice(s) of
actions, we use the response function, �. When the response
function is deterministic, our agent’s next decision point is
in state �00

= gi(�; gi(a; �)) where � = �(gi(a; �)). When
the function is not deterministic, it returns a set of possible
states with associated probabilities. Note that the represen-
tative agent’s response function is also constrained by the
rules of the auctions.

It is natural in this model to distinguish between the ef-
fects of the principal’s actions and the effects of the other
agents in the system. Thus, we suggest that a flexible trading
agent be based on an explicit-event model (Boutilier, Dean,
& Hanks 1999). Doing so allows us to explore the approach
of treating market models as modules with well defined pro-
gramming interfaces. When necessary, we can construct an
implicit model from the explicit models.

A bidding policy, � is a mapping between states and ac-
tions, � : S ! A. When the states are only partially ob-

servable, the policy is a mapping between observations and
actions.

The purpose of an auction is to generate an allocation of
the resources as a function of the messages received. The
allocations that an agent receives determines its final utility.
We call the auction’s policy for determining allocations the
allocation function, h. Essentially, the allocation function
runs the same code as the auction server, although it can do
so without the real-time constraints of the actual servers and
can take advantage of certain efficiencies in the computation.

2.5 Generating Admissible Actions
The parametrization of the auction design space provides
a convenient way in which to define and communicate the
rules of an auction. However, the decomposition of the auc-
tion rules does not correspond to a useful parametrization
of the space of bidding strategies. To illustrate the point,
consider the strategies of an agent bidding in ebay’s version
of the English auction—which closes at a fixed time—and
an agent bidding in Amazon.com’s more traditional English
auction. The only rule different between the two sites is
the parameter that controls the timing of the clearing event.
However, that difference induces very dissimilar bidding
strategies. In particular, ebay’s rules promote a strategy
equivalent to that of the first-price, sealed-bid auction: esti-
mate the second highest bid and bid slightly above it. Ama-
zon’s version of the auction induces the standard English
type bidding behavior—keep bidding higher than the other
buyers until either you win or you are unwilling to pay more.

Because there are potentially millions of ways to combine
the auction parameters, we cannot make much progress to-
ward flexible agents by analyzing individual auction types.
Moreover, when multiple auctions are considered, the tim-
ing of the events and relationships between the goods can
interact in complex ways. Thus, we advocate automatic ex-
ploration of the space of strategies. To accomplish this, we
need a way to transform the auction rules into admissible
actions.

One approach which we are exploring is the use of declar-
ative languages for reasoning about actions. The following
description is meant to be suggestive of our approach. Con-
sider a rule that defines the action of placing a bid that is �
more than the current price quote in auction i:

bid(i; quote(i; s) + �)  winning(i; s) < 1

^:closed(i; s):

This rule can be interpreted as: bid in auction i for a price
� more than the current price quote if auction i is not closed
and the agent is currently winning zero units in i.

This scheme depends upon us storing quite a bit of infor-
mation in the state �. In particular, we need to store win-
ning, closed, and quote for each auction. However,
this information is easily derived from the auction’s state
transition function.

The above rule is applicable only to single unit auctions.
To develop a rule set applicable to the example from Sec-
tion 1, we need to introduce quantity to both the state and



Auction closed winning bid quote
1 true 1 1 @ $10 1 @ $10
2 false 0 1 @ $7 1 @ $9
3 false 0 1 @ $6 1 @ $8

2 @ $7.5 each

Table 1: A state in the thee auction example.

the action rules. Table 1 shows a state that may occur for
the three auction example from Section 1. The quote for the
third auction displays prices that depend upon the number of
units requested.

The modified action rule is

bid(i; quote(i; s; q) + �; q)  winning(i; s) < q

^:closed(i; s):

This rule states that an agent can place a bid in auction i

for q units for a dollar value quote(i; s; q) + � if the auc-
tion is not closed and the agent is winning less than q units.
Assuming the state in Table 1 and that the domain of i is
f1; 2; 3g and the domain of q is f1; 2g, the following con-
clusions can be drawn:

bid(2; $9 + �; 1)

bid(3; $8 + �; 1)

bid(3; $15 + �; 2)

Notice that this formulation permits the action
bid(3; $15 + �; 2) even though the agent has already
won an item in the first auction. In this step we are comput-
ing all possible actions. It is the task of the decision process
to evaluate the utility of these actions.

The above presentation is suggestive—a complete action
specification will require null actions and wait actions, and
a variety of other time-related reasoning.

3 Decision Representations
We see a natural connection between decision representa-
tions and the market model. When the agent constructs a
model of the other individuals in the market, it can use game
theory to select a strategy. However, when the market is
modeled as a reactive black box, then Markov Decision Pro-
cesses are an appropriate tool.

3.1 Game-Theoretic Models
Game theory (Fudenberg & Tirole 1996), the fundamental
tool for analysis in microeconomic settings, is applicable to
decision making in fragmented markets. A particular frag-
mented market scenario can be modeled as a strategic form
game using standard notation. In game theory terminology,
the sequences of bids are the agent’s strategies, and the se-
quences of bids by the other agents (or market responses)
define the strategies of the opponent(s). Thus, the decision
problem reduces to a problem of finding a Nash or Bayes-
Nash equilibrium. However, the strategic form is a cumber-

some view of the decision problem. It is more natural to
view the analysis in an extensive form game.

Game Construction Let us continue with the scenario
presented in Section 1. The agent is interested in buying
two items for no more than $5 each, and has three auc-
tions in which it can participate. Suppose that the current
price quotes from each auction are pA = $3; pB = $4, and
pC = $2 for one unit and $3 for two units. Suppose that the
only admissible bids in each auction are exactly $1 over the
current price quote.

If we view the agent’s problem as an extensive form game,
the situation described above is one branch on the game tree.
This branch, and the actions associated with it are shown in
Figure 3. The rectangle represents the game state, while the
rounded rectangles indicate the agent’s possible actions. The
actions are composed of bids placed in one or more of the
three auctions (i.e. bC denotes placing a bid in auction C
for the designated value). Each action leads to a new game
state, which in turn presents the agent with a new choice of
actions.

In some cases, the agent may not be able to precisely pre-
dict the outcome of its actions. This can occur when the
agent does not have complete information about the other
agent’s actions in the auction, and thus cannot precisely pre-
dict the effect that its bid will have on the auction state.
These situations can be modeled using the notation for im-
perfect information in extensive form games (Fudenberg &
Tirole 1996).

Strategy Selection The purpose of constructing a
game-theoretic representation of the agent’s decision
problem is to enable the agent to select a strategy.
Considerable work has been done on computational
game theory (Koller, Megiddo, & von Stengel 1994;
1996; McKelvey & McLennan 1996), and
general purpose systems, such as GAMBIT
(http://masada.hss.caltech.edu/g̃ambit/Gambit.html) and
GALA (http://robotics.stanford.edu/k̃oller/papers/gala.html),
have been built for solving games.

However, game theoretic representations quickly become
intractable as the number of strategies and number of agents
increase. It may be possible to exploit regularities in the auc-
tion games to improve the performance of the general algo-
rithms. For instance, in some situations the agent’s decision
problem may be effectively treated hierarchically—at a high
level we may represent the agent’s action in an ascending
auction simply as the maximum bid it will place, and in a
subplan enumerating all of the intermediate bids. Similarly,
when the values of bids are not restricted (as in the example),
we need methods to represent and reason with action ranges
(eg. bid between $4 and $5) (cf. (Boutilier, Goldszmidt, &
Sabata 1999a)).

3.2 Markov Decision Models

We also anticipate that some models of the market behav-
ior, particularly those that model the market response as a
purely reactive entity, will be amendable to decision mak-
ing using Markov Decision Processes (MDPs) (Boutilier,



PA = $3
PB = $4
PC = $2 for one unit

$3 each for two

bA = $4
bB = $5

bA = $4
bC = $3/one

bB = $5
bC = $3/one

bC = $4/two bC = $3/one bB = $5 bA = $5

Figure 3: A portion of the game tree for an agent with a choice of bidding in three auctions with different rules.

Dean, & Hanks 1999). In the simplest case, the market
function generates a single market action, � and the state
transition function is as described in Section 2.4. The gen-
eral model presented in this paper admits various sources of
imperfect information, such as probability distributions over
the agents’ preferences, affiliated common values, or simply
the fact that the agent’s observations of price quotes are an
indirect measure of the other agent’s bids. In such cases, the
market response function returns a set of possible market ac-
tions which in turn result in a set of possible successor states.
These situations can be modeled using Partially Observable
Markov Decision Processes (POMDPs).

The agent framework which we are building will be de-
signed to be modular so that we can implement both of the
above decision representations. When the agent has sev-
eral potential decision representations available, it needs to
perform metareasoning to select one to use for a particular
problem instance. This suggests another avenue of research,
namely, the automatic selection of decision representation
based on dynamic assessment of problem features.

4 Conclusion
In this article we have advocated an approach to building
trading agents that stresses flexibility. We have identified
three inputs which are central to a trading agent: user prefer-
ences, auction rules, and a market model. These inputs feed
the strategy generation and the strategy evaluation engines.
Game theory and decision theory, when combined with an
appropriate market model, can be used for the task of strat-
egy selection. The architecture can handle a wide variety of
auction rules and agent preferences.

We are currently building a trading agent in the spirit of
the one described here.
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