Arrow's Impossibility Theorem

Philip J. Reny, Arrow's Theorem and the Gibbard -Satterthwaite Theorem: A Unified Approach, June 2000 version.

Notation

- A: Finite set of alternatives.
- L: Set of strict linear orders on A.
- L^* : Set of weak linear orders on A.

Fix a positive integer N.

A function $f: L^N \to A$ will be called a social choice function. A function $F: L^N \to L^*$ will be called a social welfare function.

A member of L^N is called a **profile**, and its *i*th component is called **individual** *i*'s ranking.

A member of L^* is called a **social order**, or **society's ranking**.

Pareto Efficiency

We say that a social choice function $f: L^N \to A$ is **pareto** efficient if whenever alternative a is at the top of every individual *i*'s ranking, L_i , then $f(L_1, ..., L_N) = a$.

Pareto Efficiency

We say that a social welfare function $f: L^N \to L^*$ is **pareto** efficient if whenever alternative a is ranked above baccording to each L_i , then a is ranked above b according to $F(L_1, ..., L_N)$.

Monotonicity

We say that a social choice function $f: L^N \to A$ is **monotonic** if whenever $f(L_1, ..., L_N) = a$ and for every individual *i* and every alternative *b* the ranking L'_i ranks *a* above *b* if L_i does, then $f(L'_1, ..., L'_N) = a$.

Independency of Irrelevant Alternatives

We say that a social welfare function $f: L^N \to L^*$ is independent of irrelevant alternatives if whenever the ranking of *a* versus *b* is unchanged for each i = 1, ..., N when individual *i*'s ranking changes from L_i to L'_i , then the ranking of *a* versus *b* is the same according to both $F(L_1, ..., L_N)$ and $F(L'_1, ..., L'_N)$.

Dictatorship

We say that a social choice function $f: L^N \to A$ is **dictatorial** if there is an individual *i* such that $f(L_1,...,L_N) = a$ if and only if *a* is at the top of *i*'s ranking L_i .

Dictatorship

We say that a social welfare function $f: L^N \to L^*$ is **dictatorial** if there is an individual *i* such that one alternative is ranked above another according to $F(L_1, ..., L_N)$ whenever the one is ranked above the other according to L_i .

Theorems

Theorem A (a version of Muller – Satterthwaite theorem): If $\#A \ge 3$ and $f: L^N \to A$ is pareto-efficient and monotonic, then f is a dictatorial social choice function.

Theorem B (Arrow's theorem): If $\#A \ge 3$ and $F: L^N \to L^*$ satisfies pareto-efficiency and IIA, then F is a dictatorial social welfare function.

Step 1. Consider any two distinct alternatives $a, b \in A$ and a profile of rankings in which a is ranked the highest and b lowest for every individual i = 1, ..., N.

Social Choice: Pareto efficiency implies that the social choice at this profile is a. Social Order: Pareto efficiency implies that a is strictly at the top of the social order.

L_1		L_i		L_{N-1}	L_{N}	Social Choice	Social Order
a		а	•••	а	а	а	а
•	•••	•	•••	•	•		•
•	•••	•	•••	•	•		•
•			•••		•		
•	•••	•	•••	•	•		•
b	•••	b	•••	b	b		

Now change individual 1's ranking by raising b in it by one position at a time.

Social Choice: By monotonicity, the social choice remains equal to a so long as b is below a in 1's ranking. But when b finally does rise above a, monotonicity implies that the social choice

- either changes to b
- or remains equal to *a*.

Social Order: By IIA, a remains at the top of the social order so long as b is below a in 1's ranking.

But when b finally does rise above a, IIA implies that a remains ranked above every alternative but perhaps b by the social order.

Social Choice: If the social choice remains equal to a, then begin the same process with individual 2, then 3, etc. until for some individual j, the social choice does change from a to b when b rises above a in j's ranking.

There must be such an individual j because alternative b will eventually be at the top of every individual's ranking and by pareto efficiency the social choice will then be b.

Social Order: If a does remain ranked above b, then begin the same process with individual 2, then 3, etc. until for some individual j, the social rank of b rises above a when b rises above a in j's ranking.

There must be such an individual j because alternative b will eventually be at the top of every individual's ranking and by pareto efficiency b then will be ranked above a.

Figure 1

After:								
L_1	•••	L_{j-1}	L_{j}	L_{j+1}		L_{N}	Social Choice	Social Order
b	•••	b	b	а	•••	а	b	b
а	•••	а	a		•••			a
•	•••	•	•	•	•••	•		•
•	•••				•••	•		
•	•••	•	•	•	•••	•		•
•	•••	•	•	b	•••	b		•

Figure 2

Step 2. Next we will obtain Figures 1' and 2' by moving the alternative *a* to the bottom of individual *i*'s ranking for i < j and moving it to the second last position *i*'s ranking for i > j in Figures 1 and 2.

Social Choice: These changes should not affect the social choices in Figures 1 and 2.

Social Order: These changes should not affect the top-ranked alternatives and the social orders are as follows:

Social Choice: The social choice in Figure 2', by monotonicity, must be b because the social choice in Figure 2 is b and no individual's ranking of b versus any alternative changes in the move from Figure 2 to Figure 2'.

The profiles in Figure 1' and 2' differ only in individual j's ranking of alternatives a and b. So, because the social choice in Figure 2' is b, the social choice in Figure 1' must, by monotonicity, be either a or b.

But if the social choice in Figure 1' is b, then by monotonicity, the social choice in Figure 1 must also be b, a contradiction. That means the social choice in Figure 1' is a.

Social Order: In Figure 2', by IIA, the top-ranked alternative must be *b* because it is top-ranked in Figure 2 and no individual's ranking of *b* versus any alternative changes in the move from Figure 2 to Figure 2'.

The profiles in Figure 1' and 2' differ only in individual j's ranking of alternatives a and b. So, by IIA, in Figure 1', b must remain ranked above every alternative but perhaps a.

But if b is ranked at least as high as a in Figure 1', then by IIA, b would also be socially ranked as high as a in Figure 1, a contradiction. That means a is ranked first and b second in Figure 1'.

Proof

Step 3. Consider $c \in A$ distinct from a and b.

Because the profile of rankings in Figure 3 can be obtained from the Figure 1' without changing the ranking of a versus any other alternative in any individual's ranking:

- Social Choice: the social choice in Figure 3 must, by monotonicity be *a*.
- Social Order: society's top-ranked choice in Figure 3 must, by IIA, be *a*.

Figure 3

Step 4. Next we will obtain the profile in Figure 4 by interchanging the ranking of alternatives a and b for individuals i > j.

Figure 4

b

a

•

. . .

. . .

b

a

b

a

•

.

. . .

. . .

b

a

Social Choice: Since the only difference between Figure 3 and 4 is the ranking of alternatives a and b for i > j, and because the social choice in Figure 3 is a, the social choice in Figure 4 must, by monotonicity, be either a or b.

But the social choice in Figure 4 cannot be b because alternative c is ranked above b in every individual's Figure 4 ranking, and monotonicity would then imply that the social choice would remain b even if c were raised to the top of every individual's ranking, contradicting pareto efficiency. Then the social choice in Figure 4 must be a.

Social Order: Since the only difference between Figure 3 and 4 is the ranking of alternatives a and b for i > j, and because a is top-ranked in Figure 3, IIA implies that the ranking of a remains above c as well as every other alternative, but perhaps b in Figure 4.

But because every alternative is ranked above b in every individual's Figure 4 ranking, the social ranking of c must be above b by pareto efficiency. Then a is top-ranked and c is ranked above b in Figure 4.

Proof

L_1	•••	L_{j-1}	L_{j}	L_{j+1}	•••	L_N	Social Choice	Social Order
			a		•••		а	а
•	•••		С	•	•••	•		
•	•••		b	•	•••			С
С	•••	С	•	С	•••	С		•
b	•••	b	•	b	•••	b		b
а	•••	а		a		a		

Figure 4

Proof: Social Choice

Step 5. An arbitrary profile of rankings with a at the top of individual j's ranking can be obtained from the profile in Figure 4 without reducing the ranking of a versus any other alternative in any individual's ranking.

Monotonicity implies that the social choice must be a whenever a is at the top of individual j's ranking. So, we may say that individual j is a dictator for alternative a:

Because a was arbitrary, for each alternative $a \in A$, there is a dictator for a. But there cannot be distinct dictators for distinct alternatives. Hence there is a single dictator for all alternatives.

Proof: Social Order

Step 5. Consider an arbitrary profile of rankings with a above b in individual j's ranking. If necessary, alter the profile by moving alternative c between a and b in j's ranking and to the top of every other individual's ranking. By IIA this does not affect the ranking of a versus b. Because the ranking of a versus c for every individual is now as in Figure 4, IIA implies that the ranking of a is above c, which by Pareto efficiency is ranked above b. So, by transitivity, we may conclude that a is ranked above b whenever j ranks a above b.

By repeating the argument with the roles of b and c reversed, and recalling that c was an arbitrary alternative distinct from a and b, we may conclude that the social ranking of a is above some alternative whenever j ranks a above that alternative. So, we may say that individual j is a dictator for a.

Since a was an arbitrary alternative we have shown that for every alternative $a \in A$, there is a dictator for a. But clearly there cannot be distinct dictators for distinct alternatives. Hence there is a single dictator for all alternatives.