
SOME GAME THEORY

What is game theory?

• Game theory is a framework for analysing interactions between
a set of agents.

• Abstract specification of interactions.

• Describes each agent’s preferences in terms of their utility.

– Assume agents want to maximise utility.

• Give us a range of solution strategies with which we can make
some predictions about how agents will/should interact.

• Game theory is not about being selfish.
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Why game theory?

• In order to go further with the discussion of auctions, we need to
get a bit more formal than we have been.

• That formality needs some game theoretic underpinning.

• Still not terribly formal :-)

• This lecture aims to give a quick overview of some of the main
concepts.

• For more detail . . .
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Book?

ISBN 978-159-829-5931
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Congestion Game

• Using TCP — defective implementation doesn’t back-off.

i

j

defect correct
defect -3 -4

-3 0
correct 0 -1

-4 -1

• Agent i is the column player.

• Agent j is the row player.
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Normal form games

• An n-person, finite, normal form game is a tuple (N, A, u), where

– N is a finite set of players.

– A = A1 × . . . × An where Ai is a finite set of actions available to
i. Each a = (a1, . . . , an) ∈ A is an action profile.

– u = (u1, . . . , un) where ui : A 7→ ℜ is a real-valued utility
function for i.

• Naturally represented by an n-dimensional matrix
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Prisoner’s Dilemma

i

j

coop defect
coop a c

a b
defect b d

c d

• Any game with c > a > d > b is a prisoner’s dilemma.
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Common payoff games

• Coordination game

left right
left 1 0

1 0
right 0 1

0 1

• Any game with ui(a) = uj(a) for all a ∈ Ai × Aj is a common
payoff game.
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Constant sum games

• Matching pennies

heads tails
heads -1 1

1 -1
tails 1 -1

-1 1

• Any game with ui(a) + uj(a) = c for all a ∈ Ai × Aj is a constant
sum game.
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• Rock, paper, scissors

rock paper scissors
rock 0 1 -1

0 -1 1
paper -1 0 1

1 0 -1
scissors 1 -1 0

-1 1 0
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General sum games

• Battle of the Sexes

this that
this 1 0

2 0
that 0 2

0 1

• Game contains elements of cooperation and competition.
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Strategies

• An agent’s strategy set is its set of available choices.

• Can just be the set of actions — pure strategies.

• Mixed strategies, probability distribution over pure strategies.

– Strategy set Si is set of all probability distributions over Ai.

• Set of mixed strategy profiles is S1 × . . . × Sn.

• The support for a mixed strategy si is the set of pure strategies
{ai|s(ai) > 0}

• The payoff of a mixed strategy is the expected utility of the
strategy:

ui(s) =
∑

a∈A
ui(a)

n
∏

j=1

sj(aj)
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Solution concepts

• For an agent acting alone we can compute the optimal strategy

– maximises the expected utility.

• In a multiagent setting this isn’t very meaningful.

• Best strategy depends on what others are doing.

• Solution concepts identify sets of outcomes (subsets of the whole)
that are interesting in some way.

• External view — Pareto optimality.

• Internal view — Nash equilibrium.

cis840-spring2009-parsons-lect04 13

Pareto optimality

• In multiagent settings it is hard to define “best solution”.

– Can’t easily handle tradeoffs between agents’ utilities.

– Which is best outcome in battle of sexes?

• But some outcomes are better than others.

• s Pareto dominates s′ if for all i, ui(s) ≥ ui(s′) and there is some j
such that uj(s) > uj(s′).

• Defines a partial order over strategies.

• s is Pareto optimal if there is no s′ such that s′ Pareto dominates s.

• “Pareto optimal” is also described as “strictly Pareto efficient”.
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Nash equilibrium
• If I know how you will play the game, I can maximise. I choose
my best response.

• i’s best response to the strategy profile s−i is the mixed strategy
s∗i ∈ S such that ui(s∗i , s−i) ≥ ui(si, s−i) for all si.

• Best response is not a solution concept since we don’t, in general,
know what other agents will do.

• But we build the idea of Nash equilibrium on top of it.

• A strategy profile s = (s1, . . . , sn) is a Nash equilibrium if, for all
agents i, si is a best response to s−i.

• Stable, since no agent can do better by switching strategy while
everyone else sticks.

• Every game (within reason) has a (mixed strategy) Nash
equilibrium.
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Dominated strategies

• Let si and s′i are strategies of i. S−i is the set of strategy profiles of
the other players.

• si strictly dominates s′i if u(si, s−i) > u(s′i, s−i) for all s−i ∈ S−i.

• si weakly dominates s′i if u(si, s−i) ≥ u(s′i, s−i) for all s−i ∈ S−i and
u(si, s−i) > u(s′i, s−i) for at least one s−i

• si very weakly dominates s′i if u(si, s−i) ≥ u(s′i, s−i) for all s−i ∈ S−i

• A dominant strategy is one that dominates all others.

• A strategy profile in which every si is dominant for i is a Nash
equilibrium

– equilibrium in dominant strategies
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Aside — Prisoner’s Dilemma redux

i

j

coop defect
coop 3 4

3 0
defect 0 1

4 1

• “defect” is a dominant strategy.

• Hence the dilemma — the dominant strategy equilibrium is the
only outcome that is not Pareto optimal.
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Dominated strategies II

• Game with dominated strategies

L C R
U 1 1 0

3 0 0
M 1 1 0

1 1 5
L 1 1 0

0 4 0

• Can eliminate the dominated strategies and simplify the game

• Remove R (dominated by L).
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Dominated strategies III

• Game with dominated strategies

L C
U 1 1

3 0
M 1 1

1 1
L 1 1

0 4

• M is now dominated by the mixed strategy that picks U and L
with equal probability.

• It was not dominated before we removed R.
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Dominated strategies IV

• Final game

L C
U 1 1

3 0
L 1 1

0 4

• This will not remove any Nash equilibria.

• If we only use strict dominance, the order of elimination doesn’t
matter.
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Evolutionarily Stable Strategies

• Consider a large population of agents playing a two player
game.

– Equilibrium strategy

• Is the equilibrium strategy stable against some fraction of the
population switching to a different strategy.

• A mixed strategy s is an evolutionarily stable strategy if for all
other strategies s′:

– u(s, s) > u(s′, s); or

– u(s, s) = u(s′, s) and u(s, s′) = u(s′, s′)
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• Hawk/Dove game

hawk dove
hawk -2 0

-2 6
dove 6 3

0 3

• Unique symmetric Nash equilibrium, (3/5, 2/5).

• Also the unique ESS.

• But, for example, (dove, dove) is not an ESS, though it is Pareto
optimal.
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• If a mixed strategy s is an evolutionarily stable strategy, then it is
a Nash equilibrium.

• Any ESS is a best response to itself, and is therefore an NE.

• The reverse does not hold — only strict Nash equilibria are ESS.

• In a two-player game, given a mixed strategy s, if (s, s) is strict
Nash equilibrium, then s is an evolutionarily stable strategy.

• Interesting because we can learn ESS and hence NE.
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Sequential Games

• In normal-form games we assume moves are simultaneous.

• Another area of game theory studies sequential games.

– Players take it in turns

• We don’t have time to look at this.

• Can always map the sequence of moves into a strategy, and
consider this to be a very big normal form game.
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Bayesian Games

• Everything we have done so far assumes agents know what
game they are playing.

• Assume that:

– Number of players

– Set of actions

– Payoffs

are common knowledge across all players.

• Now look at games of incomplete information or Bayesian games.

• Represent the lack of knowledge with a probability distribution
over a set of games

– Agents’ beliefs about which game they are playing.
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• All these games have the same number of players and strategy
space.

– Not a very restrictive assumption.

– Pad games if necessary with dominated strategies.

• Agents’ beliefs are posteriors, based on a common prior
conditioned on private signals.

– Start the same, experience differs.

cis840-spring2009-parsons-lect04 26

• Bayesian game over some familiar games

MP PD
0 2

2 0
2 0

0 2

2 3
2 0

0 1
3 1

p = 0.3 p = 0.1
Coord BoS
2 0

2 0
0 1

0 1

1 0
2 0

0 2
0 1

p = 0.2 p = 0.4

• Row player can only distinguish between (MP, PD) and
(Coord, Bos).
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• Usual formal treatment uses the notion of epistemic type.

• Defines the payoff that a player gets from a particular outcome.

– Private value

• A Bayesian game is a tuple (N, A, Θ, p, u) where:

– N is a finite set of players.

– A = A1 × . . .×An where Ai is a finite set of actions available to i.

– Θ = Θ1 × . . . × Θn, where Θi is the type space of i.

– p : Θ 7→ [0, 1] is a common prior over types; and

– u = (u1, . . . , un) where ui : A × Θ 7→ ℜ is a real-valued utility
function for i.

• Assume everyone knows the game at this level, and each agent
knows its own type.
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• Notion of strategy is slightly different.

• In a Bayesian game, a pure strategy is:

αi : Θi 7→ Ai

a mapping from every type i might have to the action it would
take were it to have that type.

• A mixed strategy is then just a probability distribution over
these.

• sj(aj|θj) is the probability that j plays aj in strategy sj given that its
type is θj.
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• To analyse a game we need to say what value each strategy has
to each agent.

– Expected utility.

• Ex post expected utility.

EUi(s, θ) =
∑

a∈A







∏

j∈N
sj(aj|θj)





 ui(a, θ)

where s is a strategy profile.

• We know the types of other agents, so uncertainty is just in their
mixed strategies.
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• But we typically don’t know other agents’ types.

• So, ex-interim expected utility:

EUi(s, θi) =
∑

θ−i∈Θ−i

p(θ−i|Θi)EUi(s, (θi, θ−i))

where the embedded EU is an ex-post value and again s is a
stragegy profile.

• So, we don’t assume we know the types of other agents, instead
we compute over all the possible types of other agents and
weight each by the probability of the other agent being that type
given our own type
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• Finally, ex-ante expected utility:

EUi(s) =
∑

θi∈Θi

p(θi)EUi(s, θ)

where the embedded EU is an ex-post value ana again s is a
strategy profile.

• Ignores any observation of type.
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• Now we can define best response.

• Agent i’s set of best responses to the mixed strategy profile set s−i

are:
BRi(s−i) = arg maxs′i∈Si

EUi(s
′
i, s−i)

• Note that this is based on ex-ante EU.

• And from that we get an equilibrium definition.

• A Bayes-Nash equilibrium is a mixed strategy profile s that
satisfies si ∈ BRi(s−i) for all i.

• Thus, just as before, the equilibrium is where everyone plays
their best response to everyone else’s best response.
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• Finally, a stronger form of equilibrium.

• An ex-post equilibrium is a mixed strategy profile s such that for
all i and θ:

si ∈ arg maxs′i∈Si
EUi(s

′
i, s−i, θ)

• If there is an ex-post equilibrium, no agent will deviate from it
even if it knew everyone’s type.

– Not the same as dominant strategy equilibrium though they
often coincide.

• Said another way: don’t have to believe that others have a good
picture of of your type distribution.
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Summary

• This lecture has given a quick tour of the main concepts of game
theory.

• Concentrated on normal form games.

• Talked about the main solution concepts.

– Nash equilibrium

• Wound up with Bayesian games.
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