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Introduction: Mechanism Design

”The mechanism design problem is to implement an optimal
system-wide solution to a decentralized optimization problem with
self-interested agents with private information about their
preferences for different outcomes”.

Two ways to think of it:

- How to get rugged individualists to work together.

- How to design the payoff matrix so that agents pick the
strategies that you want them to pick.
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Introduction : Banana Splitting

Suppose we have a banana b and two agents 1, 2. We can give the
banana to the first agent, b1, or to the second b2.

Agent 1 h1(b1) = 3, h1(b2) = 0 f1(b1) = 1, f1(b2) = 0
Agent 2 h2(b2) = 3, h2(b1) = 0 f2(b2) = 1, f2(b1) = 0

Table: Banana Splitting

Agent 1 P1(h1) = P1(f1) = 0.5
Agent 2 P2(h2) = 0.3, P2(f2) = 0.7

Table: Banana Splitting

Suppose we want to give the banana to the agent that is hungry, if
both or neither are, we flip a coin.
This social choice function is not implementable: agents have no
incentive to truthfully reveal their types.
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Problem and Idea

- Incentive constraints impose limitations on the attainments of
socially efficient outcomes.

- Idea: link decisions and ‘budget’ an agents moves/messages
depending on the probability distribution of his types. goto
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Decision problems

An n-agent decision problem is a triple D = (D,U,P) where

D, a finite set of possible alternative decisions,

U = (U1 × . . .× Un), a finite set of possible utility functions
(u1, . . . , un) where ui : D → R,

P = (P1, . . . ,Pn) a profile of probability distributions, where
Pi is a distribution over Ui .

We assume ui ’s are drawn independently.
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Social Choice Function

A social choice function on a decision problem D = (D,U,P) is a
function

f : U → ∆(D),

where ∆(D) is the set of probability distributions on D. f is the
target outcome function.

f is ex ante Pareto efficient if there does not exist a f ′ on D such
that

Σu[P(u)Σd(f ′d(u)ui (d))] ≥ Σu[P(u)Σd(fd(u)ui (d))],

for all i with > for some i .
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Linking Mechanisms

Given a decision problem D = (D,U,P) and K linkings.

A linking mechanism (M, g) is a message space
M = (M1 × . . .×Mn) and an outcome function
g : M → ∆(Dk).

A strategy for agent i in (M, g) on K copies of the decision
problem is a mapping

σK
i : UK

i → ∆(Mi )

We consider Bayesian Equilibria, σ’s, of such mechanisms.

Matthew Jackson and Hugo Sonnenschein Notes and Comments Overcoming Incentive Constraints by Linking decisions



Linking Mechanisms

Given a decision problem D = (D,U,P) and K linkings.

A linking mechanism (M, g) is a message space
M = (M1 × . . .×Mn) and an outcome function
g : M → ∆(Dk).

A strategy for agent i in (M, g) on K copies of the decision
problem is a mapping

σK
i : UK

i → ∆(Mi )

We consider Bayesian Equilibria, σ’s, of such mechanisms.

Matthew Jackson and Hugo Sonnenschein Notes and Comments Overcoming Incentive Constraints by Linking decisions



Linking Mechanisms

Given a decision problem D = (D,U,P) and K linkings.

A linking mechanism (M, g) is a message space
M = (M1 × . . .×Mn) and an outcome function
g : M → ∆(Dk).

A strategy for agent i in (M, g) on K copies of the decision
problem is a mapping

σK
i : UK

i → ∆(Mi )

We consider Bayesian Equilibria, σ’s, of such mechanisms.

Matthew Jackson and Hugo Sonnenschein Notes and Comments Overcoming Incentive Constraints by Linking decisions



Linking Mechanisms, continued

A Bayesian Nash equilibrium is a strategy profile that
maximizes the expected payoff for each player given their
beliefs about the other players’ types and given the strategies
played by the other players.

Given a social choice function f defined on D, we say that a
sequence of linking mechanisms
{(M1, g1), (M2, g2), . . . , (Mk , gk), . . .} and a corresponding
sequence of Bayesian equilibria, {σK}, approximate f if

limk [maxProbk≤K{gK
k (σK (u)) 6= f (uk)}] = 0.
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Their general linking mechanism

Mi consists of announcements of utility functions for each
decision problem.

The intuitive idea: each agent announces utility functions for
the K problems such that the agent’s announcements across
the K problems match the expected frequency distribution.
That is, the number of times i can announce ui is K × Pi (ui ).
(Sometimes we need to approximate)

Formally: agent i ’s strategy set is

Mk
i = {ûi ∈ Uk

i | #{k | ûk
i = vi} = Pk

i (vi )K for each vi ∈
Ui}.

The decision of gk for the problem k is simply gk(û) = f (ûk).
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Their general linking mechanism

Sometimes, an agent is forced to lie.

A strategy is approximately truthful if the agent’s
announcements always involve as few lies as possible.

Formally, σK
i : UK

i → MK
i is approximately truthful if

#{K | [σK
i (u1

i , . . . , u
K
i )]k 6= uk

i } ≤ #{k | mk
i 6= uk

i }
for all mi ∈ MK

i .
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Back to the bananas

Remember:

Agent 1 h1(b1) = 3, h1(b2) = 0 f1(b1) = 1, f1(b2) = 0
Agent 2 h2(b2) = 3, h2(b1) = 0 f2(b2) = 1, f2(b1) = 0

Table: Banana Splitting

Agent 1 P1(h1) = P1(f1) = 0.5
Agent 2 P2(h2) = 0.3, P2(f2) = 0.7

Table: Banana Splitting

- The social choice function f = ‘Give the Banana to the
hungry agent, if both or neither are, flip a coin.’

- If K = 10, then, following the mechanism, player 1 gets 5
tokens to say ‘I am hungry’, and 5 for ‘I am not hungry’.
Similarly, player 2 gets 3 tokens for ‘I am hungry’, and 7 for ‘I
am not hungry’. back
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The main result

Theorem

Given a 2-player decision problem D and an ex ante pareto efficient
social choice function f . The sequence of the linking mechanisms,
{(M1, g1), (M2, g2), . . . , (Mk , gk), . . .} just defined satisfies the
following:

(i) There exists a corresponding sequence of Bayesian equilibria
that are approximately truthful.

(ii) The sequence of linking mechanisms together with these
equilibria approximate f .

(iii) Any sequence of approximately truthful strategies for an agent
i secures a sequence of utility levels that converge to the ex
ante target level ūi , the expected outcome of f for player i .
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The main result

Theorem, continued

(iv) All sequences of Bayesian equilibria of the linking mechanisms
result in expected utilities that converge to the ex ante
efficient profile of target utilities of ū per problem.

(v) For any sequence of Bayesian equilibria and any sequence of
deviating coalitions, the maximal gain by any agent in the
deviating coalitions vanishes along the sequence.

The theorem also holds in a general setting of n players but
requires some modification of the linking mechanism.
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To conclude

Some crucial assumptions:

Reports after K linkings.

Independence:

Of utilities among players,
Of utilities across instances of the game.

If any of these assumptions are dropped, then, nobody knows...
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