
Semantic Web Technologies
and Automated Auctions

Papers:
"Implementing Semantic Interoperability in Electronic Auctions"
- Juha Puustjarvi (2007)

"Ontologies for supporting negotiation in e-commerce"
- Tamma, et Al (2004)

Presentation by
M. Meyer

What is the Semantic Web?
The Semantic Web is a proposed evolution of the
Web in which the semantics of the information
and services available on the Web will be formally
defined and made available.

Broad implementation of the Semantic Web
would:

1. Provide a common framework to allow data to be
shared and reused across application, platform and
enterprise boundaries.

2. Make it possible for machines (Intelligent Agents)
"to access, understand and manipulate web
content as readily as humans do". {Berners-Lee,
2001 #1}.

Intelligent Agents and the
Semantic Web

1. The current incarnation of the World Wide Web
(WWW) is designed almost exclusively to present
data and information to humans.

2.
3. An AI agent, on the current WWW, will find it very

difficult too:
Answer a complex query based on background
knowledge.
Locate and use information contained within data
repositories.
Find and use “web services”.

Semantic Web -
Basic Requirements

In order to make information on the WWW accessible and
processable by machines and intelligent agents, we need to
add two things to the information stored on the WWW:

1. Formal Structure:

Humans are able to determine the meaning of words by
context (ex: the word "address").
Machines will need data encoded so that context can be
determined (markup languages).

2. Semantics (Meaning):
Definitions, relationship and property information for data
needs to be formally defined and made available over
the internet.

1. Formal Structure
(XML, XSD & XPath, XQuery)

XML it is a markup language (like HTML), which allows us
to create our own tags, and use those tags to organize, and
structure text data.

XSD (XML-Schema) provides a means for defining the
structure, content and semantics of an entire XML
document.

XPATH and XQUERY are languages that allow us to treat
XML documents as hierarchical databases and query these
databases for subsets of information.

Example HTML vs. XML (XHTML)
HTML:

Contact Us:
100 Riverside Parkway

Suite 123

Fredericksburg, VA 22406

XML (XHTML):
Contact Us:
<address type="mailing">
 <street>100 Riverside Parkway

 Suite 123</street>

 <city>Fredericksburg</city>, <state>VA</state>
<zip>22406</zip>

</address>

Example XSD
<?xml version="1.0" encoding="utf-8"?>
<xs:schema elementFormDefault="qualified" xmlns:xs="http://www.w3.
org/2001/XMLSchema">
 <xs:element name="Address">
 <xs:complexType>
 <xs:attribute name="type" />
 <xs:sequence>
 <xs:element name="Recipient" type="xs:string" />
 <xs:element name="Street" type="xs:string" />
 <xs:element name="City" type="xs:string" />
 <xs:element name="State" type="xs:string" minOccurs="1" maxOccurs="1" />
 <xs:simpleType>
 <xs:restriction base="xs:string">
 <xs:enumeration value="AL" />

.....
 <xs:enumeration value="WY" />
 </xs:restriction>
 <xs:element name="Zip" type="xs:string" />
 </xs:sequence>
 </xs:complexType>
 </xs:element>
</xs:schema>

XML Data Trees (1)
(An example XML library document, "library.xml")
<?xml version="1.0" encoding="utf-8"?>
<?xml-stylesheet type="text/xsl" href="library.xsl" ?>
<library name="Example">
 <publisher>
 <name>Ebury</name>
 <address>20 V. Bridge Road, London</address>
 <book>
 <title>The Science of Discworld</title>
 <ISBN>0091865158</ISBN>
 <date>1999</date>
 <author>
 <name>Terry Pratchett</name>
 <birthday>28-Apr-48</birthday>
 </author>
 </book>
 </publisher>
 <publisher>
 <name>O'Reilly Media, Inc.</name>
.....

XML Data Trees (2)

Examples XPath & XQuery
XML documents are hierarchical databases (like file systems,
phone books) and can be queried using languages like XPATH
and XQuery.

XPath expression Interprets as.
/library/publisher/book/title "Select all title nodes"
/library/publisher[2]/book[1] "1st book from 2nd publisher"

 XQuery adds FLWOR ("For, Let, Where, Order by, Return").

XQuery Statement:
for $x in doc("library.xml")//author
where $x/birthday>1-Jan-20
order by $x/name
return $x/name

XQuery Result:
<name>Ellen Siever</name>
<name>Terry Pratchett</name>

1. Formal Structure - Summary
XML (XHTML, XSD)

Text markup languages used to present information in
a structured way.
XML documents are easy to transfer over the Internet.
Allow very simple parsing agents to locate specific
pieces of information.

XPATH, XSLT, XQUERY

Query languages that allow us to treat XML
documents like databases.
Allow us to manipulate the "document tree".

2. Semantics (Meaning)
XML provides us with a structure to use to encode data in a
format that is machine processable.
But tags do not by themselves provide a definition of the text
information that they contain.

Example: Find all the "people" in the library.xml file.

What is needed:
1. A way to provide definitions and relationship information

about an object that we can refer to from anywhere on the
internet.

2. A way to formalize definition and relationship information so
that we can communicate that information to other systems
which may use a different vocabulary.

RDF (web accessible definitions)
RDF (Resource Description Framework) is a language for
describing information about resources using the WWW.

RDF uses Internationalized Resource Identifiers (IRIs) to
describe objects in terms of simple properties, property
values, and relationships.

At it's heart RDF is composed of triples which specify a
subject, predicate and object.

 Example (in abbreviated notation):
 <http://www.example.org/example#Pratchett>
 <http://www.w3.org/1999/02/22-rdf-syntax-ns#type>
 <http://www.example.org/example#Human>

RDF cont.
Sets of RDF tuples form directed graphs, where subjects
and objects form the nodes of the graph and the predicates
become the directed edges.

RDF has a formal XML-Schema so RDF sets can be
expressed in XML format and operated on with XML tools.

RDF sets can be embedded in XHTML, associated with
existing databases, or used as stand-alone databases.

Ontologies (relationships and meaning)
RDF provides a formal method for attaching structured and
reusable information to data objects, but by itself does not
address the underlying problem of understanding the
semantics, or meaning, of the terms used.

In Computer Science in simple terms, an ontology is a set of
terms and rules used together to express a knowledge
base.

An ontology describes a domain, and all the possible
conditions (states) within that domain.

A knowledge base (constructed using the ontology)
describes a particular state of affairs within that domain.

Ontologies continued
Suppose we would like to create an ontology for
libraries. To do that we will need to be able to express
certain facts:
1. "people" is another term for "human"
2. authors, co-authors and editors are types of

humans.
3. authors and co-authors create written works.

These facts are all part of the ontology that we wish to
create.

The contents of our library.xml file, expressed using
this ontology would then become our knowledge base.

Requirements for an Ontology
Ontologies are created using ontology languages.

An ontology language, to be useful and effective, must
enable us to do several things:

1. It must give us a way to express the current facts of our

ontology, as well as add additional facts quickly and
easily (books are types of written works).

2. Our ontology language must allow us to reason within
those facts to make new discoveries (authors are
people).

3. Our ontology must allow us to communicate our own
personal knowledge base to other library owners who
also use this ontology.

RDF-Schema
RDF-Schema (RDF vocabulary description language)
extends basic RDF into a rudimentary ontology language.

Adds IRI resources including: rdfs:Class, rdfs:subClassof,
rdfs:subPropertyOf, rdfs:domain and rdfs:range (rdfs =
www.w3.org/2000/01/rdf-schema#).

Using these properties we could define some of the facts of
our library ontology.

 Author rdfs:subClassOf Human
 creatorOf rdfs:domain Human
 creatorOf rdfs:range WrittenWork

RDF-Schema Limitations

RDF-Schema allow us to create and define: classes, properties,
class hierarchies, property hierarchies, domain and range
restrictions.

However RDF-Schema cannot express:
Non-Binary relations
Property Characteristics (transitive, symmetric, inverse)
Cardinality restraints (Human may have at most 1 name)
Disjointness axioms (Human cannot be a Man and Woman)
Granular range restrictions (property hasName has range
xsd:string)
Complex concept descriptions (Human is defined by both
Man and Woman)

OWL (Web Ontology Language)

The family of OWL ontology languages (OWL-Lite, OWL-DL,
OWL Full, as well as OWL 2:

extend the capabilities of RDF-Schema.
can be expressed using XML and RDF notation.
are based on Description Logic (DL) languages which in
turn are a subset of first order logic (FOL) languages.

Query answering in a OWL language (as well as in a DL) is
comparable to theorem proving in an FOL.

Powerful reasoning engines for DLs exist and most work by
implementing the analytic tableau method.

Description Languages
DLs come in a variety of 'flavors' and there is an informal
naming convention that uses letters to roughly describe
what logical operators are allowed. As an example OWL-DL
can be described as a SHOIN(D) DL.

Ontology Managers
Ontology Managers (Protege, Jena) facilitate the creation and

reuse of Ontologies.

Ontology Enabled Auction System
Juha Puustjarvi created a model of an auction system using a
shared OWL ontology to represent the negotiation protocol.

System relies on WS, SOAP and BPEL.

SOAP (Simple Object Access Protocol)
Uses HTTP and RPC protocols to transfer messages.

SOAP message example:
<?xml version="1.0" encoding="utf-8"?>
<soap:Envelope xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/">
 <soap:Header>
 <! -- Header tags -->
 </soap:Header>
 <soap:Body>
 <!-- Application data -->
 </soap:Body>
</soap:Envelope>

WS-BPEL (Business Process Execution Language)
Every BPEL process is defined by a valid BPEL XML document, and that
document deals the orchestration of a series of events between a related set of
web services.

Skeleton of a BPEL document
<process name="ProcessName"
 targetNamespace="http://www.xmltc.com/ptc/process/"
 <!-- Additional namespace declarations for each external process involved -->
 ... >
 <partnerLinks>
 <!-- Identify the processes that will be contacted and their WSDL documents -->
 </partnerLinks>
 <variables>
 <!-- Used to store global variables and variables from received messages -->
 </variables>
 <sequence>
 <!-- Defines the flow of the business process, between links and local logic. -->
 </sequence>
</process>

Auction Specific Ontology

Ontology - Global Instance

Ontology - Local Instance (View by A)

System Architecture

BPEL
Diagram

Entire process is
managed by the BPEL
engine which invokes
all responses from
participants, and
processes those
responses in order to
update the ontology
instance.

Notes on the System.
System is fairly complex and because of the use of SOAP
the system (or auction manager) would require WSDL
(Web Services Description Language) documents
describing the protocol bindings and message formats
required to interact with each of the web agents
participating in an auction.

Heavy overhead limits the possibilities for it being a truly
dynamic system where agents can freely (even randomly)
participate in auctions.

This entire system could be redesigned much smaller and
simpler, allow for choreopgraphies, and dynamic auction
creation by using REST (REpresentational State
Transfer).

Ontology Based Auction System
Ontologies created in OWL and DAML + OIL used to:

Describe the negotiation domain.
Model the negotiation process.
Provide a single shared view of the objects of the
domain.

Heart of paper is about how agents can use the ontologies
to try and evolve optimal negotiation strategies.
Specifically, the chosen auction ontology is used as input
to an algorithm used by agents to decide on an opening
strategy and a reinforcement learning algorithm to use to
tune that strategy.

System Architecture
Upper-level parts of ontology constructed in Protege
and created by by reusing parts of existing ontologies
(Example: REA (Resource, Event, Agent) ontology.

 Execution of an auction is handled by treating the
ontology areas that describe negotiation protocols
as processes and using PSL (process specification
language) JESS (Java Expert System Shell) and JASA
(Java Auction Simulator) to execute them.

A fair amount of logic still had to be hard-coded into
the system and into the agents to enable auctions to
take place.

Trading Agents
Determining the "best" strategy to play, based on a
description of the game is impossible in non-trivial cases.

Trading agents in the system were provided with learning
algorithms in an attempt to evolve efficient strategies.

Agents did not always discover the "optimal" strategy for a
given mechanism but acquired "reasonably good" strategies
in only a few iterations.

What was discovered was that certain classes of learning
algorithms did perform better under identifiable auction
parameters.

Agent Strategies
Three broad classes of learning algorithms were
identified:

1. Mimicry learning strategies (Cliffs ZIP strategy).
2. Myopic stimuli-response learning algorithms (Roth-Erev

algorithm.)
3. MDP (Markoff Decision Problem) procedures (Q-learning

algorithm.

MDP strategies proved effective in double-sided
mechanisms where quotes were issued at every round.

Notes on the System.

The negotiation host (auction manager) specifically
advertises the URL of the ontology used to govern the
marketplace.

The negotiation host also advertises (via URL) ontology
instance information to insure that participants are working
from the same view of the domain.
System could be adapted to be RestFul fairly easy, as it
already revolves around exchanging updated onology
instances which are defacto state transition records.

