
AAAI Workshop on Auction Mechanisms for Robot Coordination, 2006.

Multiagent Coordination Using a Distributed Combinatorial Auction

José M. Vidal
Computer Science and Engineering

University of South Carolina
Columbia, SC 29208

vidal@sc.edu

Abstract

Combinatorial auctions are a great way to represent and solve
distributed allocation problems. Unfortunately, most of the
winner determination solutions that exists are centralized.
They require all agents to send their bids to a centralized auc-
tioneer who then determines the winners. The PAUSE auc-
tion, in contrast, is an increasing-price combinatorial auction
in which the problem of winner determination is naturally
distributed amongst the bidders. Furthermore, the bidders’
have an incentive to perform the required computations. But,
until now, no bidding algorithm for the auction existed. We
provide a bidding algorithm for agents in a PAUSE auction,
the PAUSEBID algorithm. It always returns the bid that max-
imizes the bidder’s utility. In effect, PAUSEBID is a the dis-
tributed counterpart to the existing centralized winner deter-
mination algorithms, from which we borrow several proven
techniques. Our test results show that a system where all
agents use PAUSEBID finds the revenue-maximizing solution
at least 95% of the time. Run time, as expected since this is
an NP-complete problem, remains exponential on the number
of items.

Introduction
Combinatorial auctions are a popular research topic in part
because of their applicability to a large number of dis-
tributed allocation problems and multiagent coordination
problems (Cramton, Shoham, & Steinberg 2006). However,
the bulk of the winner determination algorithms developed
thus far are centralized since they assume the standard auc-
tion where all the bids are sent to a centralized auctioneer
who then runs the winner determination algorithm. Specif-
ically, CASS (Fujishima, Leyton-Brown, & Shoham 1999),
CABOB (Sandholm et al. 2005), and the earlier Bidtree
(Sandholm 2002) all assume this type of centralized auc-
tion. Unfortunately, these type of centralized auctions are
not a good fit for multiagent systems where computational
resources are owned by each agent and each agent has local-
ized information. We need a way of distributing the compu-
tation.

Luckily, there do exist auction formulations where the
bidders must perform part of the computation, thereby leav-
ing the auctioneer with little or no work to perform. One

Copyright c© 2006, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

such auction is the Progressive Adaptive User Selection En-
vironment (PAUSE) auction (Land, Powell, & Steinberg
2006), and earlier and slightly different version of which ap-
peared first in (Kelly & Stenberg 2000), . The PAUSE auc-
tion lets bidders distribute the winner determination problem
amongst themselves. However, in order to use it in an agent
system we first need an algorithm that tells the agents how
they are to generate their bids. That is, in the same way that
the standard combinatorial auction requires a winner deter-
mination algorithm in order to be implemented by an agent
system, so does the PAUSE auction require a bidding algo-
rithm for its agents. We thus present the PAUSEBID algo-
rithm which enables agents in a PAUSE auction to find the
bids that maximize their utility.

A system of agents using PAUSEBID and the PAUSE auc-
tion can effectively and distributively calculate the solution
to complex coordination problems. For example, imagine a
group of robots trying to pick up and deliver a set of pack-
ages in an office building. Each robot is at a different loca-
tion and has different abilities (some can carry certain types
of packages, some can carry multiple packages at a time,
etc.) These can decide who will deliver which packages by
implementing the PAUSE combinatorial auction where each
robot uses its own valuation function for the sets of packages
it can deliver. The computation required for calculating the
final allocation is naturally distributed among the robots.

The PAUSE Auction
A PAUSE auction for m items has m stages. Stage 1 consists
of having simultaneous ascending price open-cry auctions
for each individual item. During this stage the bidders can
only place individual bids on items. At the end of this state
we will know what is the highest bid for each individual
good and who placed that bid. In each successive stage k =
2, 3, . . . ,m we hold an ascending price auction where the
bidders must submit sets of bids that cover all goods but each
one of the bids must be for k goods or less. The bidders are
allowed to use bids that other agents have placed in previous
rounds when placing their bid, thus allowing them to find
better solutions. Also, any new bid set has to have a sum of
bid prices which is bigger than the currently winning bid set.

At the end of each stage k all agents know the best bid for
every subset of size k or less. Also, at any point in time after
stage 1 has ended there is a standing bid set whose value in-

1



creases monotonically as new bid sets are submitted. Since
in the final round all agents consider all possible bid sets,
we know that the final winning bid set will be one such that
no agent can propose a better bid set. Note, however, that
this bid set is not guaranteed to be the one that maximizes
revenue since we are using an ascending price auction so the
winning bid for each set will be only slightly bigger than the
second highest bid for the particular set of goods. That is, the
final prices will not be the same ones as the prices in a tradi-
tional combinatorial auction where all the bidders bid their
true valuation. However, there remains the open question of
whether the final distribution of goods to bidders found by
the PAUSE auction is the same as the distribution dictated by
the revenue maximizing solution. Our test results provide an
answer to this question.

The PAUSE auction makes the job of the auctioneer very
easy. All it has to do is make sure each new bidset adds up to
a number that is bigger than the current best as well as make
sure that any bids an agent places that are not his do indeed
correspond to other agents’ bids. The computational prob-
lem shifts from one of winner determination to one of bid
generation. Each agent must search over the space of all bid
sets which contain at least one of its bids. The search is made
easier by the fact that the agent need only consider the cur-
rent best bids and only wants bid sets where its own utility is
higher than in the current winning bid. Each agent also has a
clear incentive for performing this computation, namely, its
utility only increases with each bid set it proposes (of course,
it might decrease with the bid sets that others propose). Fi-
nally, the PAUSE auction has been shown to be envy-free in
that at the conclusion of the auction no bidder would prefer
to exchange his allocation with that of any other bidder.

We can even envision completely eliminating the auction-
eer and, instead, have every agent perform the task of the
auctioneer. That is, all bids are broadcast and when an agent
receives a bid from another agent it updates the set of best
bids and determines if the new bid is indeed better than the
current winning bid. The agents would have an incentive
to perform their computation as it will increase their ex-
pected utility. Also, any lies about other agents’ bids are
easily found out by keeping track of the bids sent out by ev-
ery agent (the set of best bids). Namely, the only one that
can increase an agent’s bid value is the agent itself. Any-
one claiming a higher value for some other agent is lying.
The only thing missing is an algorithm that calculates the
utility-maximizing bid for each agent.
Related Work A lot of research has been done on various
aspects of combinatorial auctions. We recommend (Cram-
ton, Shoham, & Steinberg 2006) for a good review. How-
ever, the study of distributed winner determination algo-
rithms for combinatorial auctions is still relatively new. One
approach is given by our other algorithms for distributing
the winner determination problem in combinatorial auctions
(Narumanchi & Vidal 2006), but these algorithms assume
the computational entities are the goods being sold and thus
end up with a different type of distribution. The VSA al-
gorithm (Fujishima, Leyton-Brown, & Shoham 1999) is an-
other way of performing distributed winner determination

in combinatorial auction but it assumes the bids themselves
perform the computation. This algorithm also fails to con-
verge to a solution for most cases. In (Parkes & Shneid-
man 2004) the authors present a distributed mechanism for
calculating VCG payments in a mechanism design problem.
Their mechanism roughly amounts to having each agent cal-
culate the payments for two other agents and give these to a
secure central server which then checks to make sure results
from all pairs agree, otherwise a re-calculation is ordered.
This general idea, which they call the redundancy principle,
could also be applied to our problem but it requires the exis-
tence of a secure center agent that everyone trusts. Another
interesting approach is given in (Park & Rothkopf 2001)
where the bidding agents prioritize their bids, thus reducing
the set of bids that the centralized winner determination al-
gorithm must consider, making that problem easier. Finally,
in the computation procuring clock auction (Brewer 1999)
the agents are given an ever-increasing percentage of the
surplus achieved by their proposed solution over the current
best. As such, it assumes the agents are impartial computa-
tional entities—not the set of possible buyers as assumed by
the PAUSE auction.

Problem Formulation
We now introduce some notation to formally describe the
problem and our algorithm. Let each bid b be composed of
bitems which is the set of items the bid is over, bvalue the value
or price of the bid, and bagent the agent that placed the bid.
The agents maintain a set B of the current best bids, one for
each set of items of size ≤ k where k is the current stage.
At any point in the auction, after the first round, there will
also be a set W ⊆ B of currently winning bids. This is the
set of bids that currently maximizes the revenue, where the
revenue of W is given by

r(W ) =
∑
b∈W

bvalue. (1)

Agent i’s value function is given by vi : S → < where
S is a subset of the items. Given an agent’s value function
and the current set of winning bids W we can calculate the
agent’s utility from W as

ui(W ) =
∑

b∈W | bagent=i

vi(bitems)− bvalue. (2)

That is, the agent’s utility for a bid set W is the value it
receives for the items it wins in W minus the price it must
pay for those items. If the agent is not winning any items
then its utility is zero. The goal of the bidding agents in the
PAUSE auction is to maximize their utility, subject to the
constraint that their next set of bids must have a total revenue
that is at least ε bigger than the current revenue, where ε
is the smallest increment allowed in the auction. Formally,
given that W is the current set of winning bids, agent i must
find a g∗ such that r(g∗) ≥ r(W ) + ε and

g∗ = arg max
g⊆2B

ui(g), (3)

where each g is a set of bids all taken from B and g covers
all items.



PAUSEBID(i, k)
1 my-bids ← ∅
2 their -bids ← ∅
3 for b ∈ B
4 do if bagent = i or vi(bitems) > bvalue

5 then my-bids ← my-bids +new Bid(i, bitems, vi(bitems))
6 else their -bids ← their -bids +b
7 for S ∈ subsets of k or fewer items such that

vi(S) > 0 and ¬∃b∈Bbitems = S
8 do my-bids ← my-bids +new Bid(i, S, vi(S))
9 bids ← my-bids + their -bids

10 g∗ ← ∅ � Global variable
11 u∗ ← ui(W ) � Global variable
12 h(S)← max revenue on items from S given B, for all S.
13 PAUSEBIDSEARCH(bids, ∅)
14 surplus ←

∑
b∈g∗ | bagent=i bvalue −W (bitems)

15 if surplus = 0
16 then return g∗

17 my-payment ← vi(g∗)− u∗

18 for b ∈ g∗ | bagent = i
19 do if my-payment ≤ 0
20 then bvalue ← 0
21 else bvalue ←W (bitems) + my-payment · b

value−W (bitems)
surplus

22 return g∗

Figure 1: The PAUSEBID algorithm which implements a branch and bound search. i is the agent and k is the current stage of
the auction, for k ≥ 2.

Bidding Algorithm

During the first stage we simply have several English auc-
tions. As such, an agent’s dominant strategy is to bid ε
higher than the current winning bid until it reaches its valu-
ation for that particular item. The only caveat is for agents
with sub-additive valuations. These agents must make sure
that their valuation for all the subsets they are currently win-
ning is higher than the current sum of the prices. Our algo-
rithm focuses on the succeeding stages: k > 1.

Agent i can find g∗ by performing a complete search on
all the possible combinations of bids within B. This is a
large search tree but luckily we can speed up the search by
pruning it. We start by noticing that the agent wants to find
the set of bids that maximize its revenue and that at any one
time there are likely only a few bids within B which the
agent can dominate. That is, we start by defining my-bids
to be the list of bids for which the agent’s valuation is higher
than the current best bid, as given in B. We set the value
of these bids to be the agent’s true valuation (but we won’t
necessarily be bidding true valuation, as we explain later).
Similarly, we set their -bids to be the rest of the bids from
B. Finally, the agent’s search list is simply the concatenation
of my-bids and their -bids . Note that the agent’s own bids
are placed first on the search list as this will enable us to do
more pruning. Lines 3–9 of PAUSEBID, shown in Figure 1,
show how we create these lists.

The agent can now perform a branch and bound search

on the branch-on-bids tree produced by these bids. This
branch and bound search is implemented by PAUSEBID-
SEARCH shown in Figure 2. Our algorithm not only im-
plements the standard bound but it also implements other
pruning techniques in order to further reduce the size of the
search tree.

The bound we use is the maximum utility that the agent
can expect to receive from a given set of bids. We call it
u∗. Initially, u∗ is set to ui(W ) (PAUSEBID line 11) since
that is the utility the agent currently receives and any solu-
tion he proposes should give him more utility. If PAUSE-
BIDSEARCH ever comes across a partial solution where the
maximum utility the agent can expect to receive is less than
u∗ then that subtree is pruned (PAUSEBIDSEARCH line 21).
Note that we can determine the maximum utility only af-
ter the algorithm has searched over all of the agent’s own
bids (which are first on the list) because after that we know
that the solution will not include any more bids where the
agent is the winner thus the agent’s utility will no longer in-
crease. For example, if an agent has only one bid in my-bids
then the maximum utility he can expect is equal to his value
for the items in that bid minus the minimum possible pay-
ment we can make for those items and still come up with
a set of bids that has revenue greater than r(W ). The cal-
culation of the minimum payment is shown in line 19 for
the partial solution case and line 9 for the case where we
have a complete solution. Note that in order to calculate
the min-payment for the partial solution case we need an



upper bound on the payments that we must make for each
item. This upper bound is provided by h, defined in PAUSE-
BID line 12. This upper bound is identical to the one used by
the Bidtree algorithm—it merely assigns to each individual
item a value equal to the maximum bid in B divided by the
number of items in that bid.

The algorithm also uses the h heuristic to prune any
branches which cannot lead to a solution with revenue
greater than the current W , as shown in lines 16–17 of
PAUSEBIDSEARCH. That is, it uses the h function in the
same way an A∗ algorithm uses its heuristic.

A final pruning technique implemented by the algorithm
is ignoring any branches where the agent has no bids in the
current answer g and no more of the agent’s bids are in the
list (PAUSEBIDSEARCH lines 6–7).

The resulting g∗ found by PAUSEBIDSEARCH is thus the
set of bids that has revenue which is bigger than r(W ) and
maximizes agent i’s revenue. However, agent i’s bids in g∗

are still set to his own utility and not to the lowest possible
price (that is, the min-payment). Lines 18–21 in PAUSEBID
are responsible for setting the agent’s payments so that it can
achieve its maximum utility u∗. If the agent has only one bid
in g∗ then it is simply a matter of reducing the payment of
that bid by u∗ from the current maximum of the agent’s true
valuation. However, if the agent has more than one bid then
we face the problem of how to distribute the agent’s pay-
ments among these bids. There are many ways of distribut-
ing the payments and there does not appear to be a dominant
strategy for performing this distribution. We have chosen
to distribute the payments in proportion to the agent’s true
valuation for each set of goods, as shown in lines 18–21 of
PAUSEBID

The PAUSEBID function is called for rounds k ≥ 2
of the PAUSE auction and it returns the agent’s revenue-
maximizing bid, if there is one. It assumes that the set of
winning bids B and the current best winning bid set W re-
mains constant during its execution.

Analysis
Since PAUSEBID performs a complete branch and bound
search for g∗ we can prove that it is correct by analyzing
its pruning strategies.

Theorem 1. PAUSEBID finds g∗ which satisfies (3) given a
set B of current best bids and a currently winning bidset W .

Proof. The proof follows from the fact that it performs a
complete search and only prunes subtrees which are guar-
anteed to not contain a satisfactory solution. Lines 6–7 of
PAUSEBIDSEARCH prune subtrees where the final solution
will not contain any bid from the agent thus giving him a
utility of zero, lines 16–17 of PAUSEBIDSEARCH prune sub-
trees where the final solution is guaranteed to have lower
revenue than the current solution, and line 21 of PAUSEBID-
SEARCH prunes subtrees where the solution is guaranteed
to give the agent lower utility than an already found solu-
tion.

We know that in a single-item English auction an agent’s
myopic best-response strategy is to always bid ε higher than

the current price as long as his bid is less than his valua-
tion for the item, after which the agent should stop bidding.
The PAUSEBID algorithm implements a similar strategy. The
agent places the bid which maximizes its own utility and
has a revenue greater than the current winning bid. Since
the more an agent pays the less utility it receives, the agent
always places the bid that has the lowest possible revenue.
As such, PAUSEBID implements a myopic best-response bid-
ding strategy given that the agent knows nothing about the
others’ valuation or bidding strategies.

Unfortunately, PAUSEBID does have certain weaknesses
that could be exploited if used against an intelligent oppo-
nent who knows the agent is using PAUSEBID. The prob-
lem lies in lines 18–21 of PAUSEBID where we distribute the
agent’s surplus across his bids in g∗. Notice that we dis-
tribute the agent’s payments proportionately to the agent’s
valuation for that set of items. This has the unfortunate ef-
fect of revealing, to some extent, the agent’s true relative
valuation for the items. For example, if an agent increases
his bids for two sets of items, but his increase for the first
set is much greater than for the second set then we can de-
duce that the agent valuates the first set much higher than
the second. This knowledge could then, perhaps, be used
by a strategic agent to place his own bids. However, based
on our previous work on agent modeling (Vidal & Durfee
1998), we believe, that such strategic thinking will incur in
large computational costs and will deliver small utility gains.
But, even if this belief proves wrong, it is a simple matter to
change the surplus distribution method to include some ran-
domness. Of course, even with random distributions, the
fact that an agent increases the his bid for certain subsets of
items is still a clear signal that its valuation of those subsets
is higher than the current price (perhaps, a lot higher?). An
opponent might be able to use this knowledge to make better
decisions about which sets of items he should bid on.

Because of these strategic issues we cannot claim that the
PAUSEBID strategy is a dominant strategy: the best strat-
egy to use regardless of the other agents’ strategies. How-
ever, we can claim that at each time it is called it returns
the bid that maximizes the agent’s utility while still having a
revenue greater than the current solution and increasing the
agent’s utility over the one it is currently receiving. Further-
more, as our tests show, if all agents use PAUSEBID then the
system as a whole is likely to find the solution that is the
same as that found by a centralized winner determination
algorithm when everyone reports their true valuations.

Tests
We have implemented PAUSEBID in order to ensure that it

works as predicted and to test how long the auctions take to
finish and what is the final solution. In order to do our tests
we had to generate value functions for the agents1. The algo-

1Note that we could not use CATS (Leyton-Brown, Pearson,
& Shoham 2000) because it generates sets of bids for an indeter-
minate number of agents. Its like if you were told the set of bids
placed in a combinatorial auction but not who placed each bid or
even how many people placed bids, and then asked to determine
the value function of every participant in the auction.



PAUSEBIDSEARCH(bids, g)
1 if bids = ∅
2 then return
3 b← first(bids)
4 bids ← bids −b
5 g ← g + b
6 if g does not contain a bid from i
7 then return
8 if g includes all items
9 then min-payment ← max(0, r(W ) + ε− (r(g)− ri(g)),

∑
b∈g | bagent=i B(bitems))

10 max -utility ← vi(g)−min-payment
11 if r(g) > r(W ) and max -utility ≥ u∗

12 then g∗ ← g
13 u∗ ← max -utility
14 PAUSEBIDSEARCH(bids, g − b) � b is Out
15 else max -revenue ← r(g) + h(items not in g)
16 if max -revenue ≤ r(W )
17 then PAUSEBIDSEARCH(bids, g − b) � b is Out
18 elseif bagent 6= i
19 then min-payment ← r(W ) + ε− (r(g)− ri(g))− h(items not in g)
20 max -utility ← vi(g)−min-payment
21 if max -utility > u∗

22 then PAUSEBIDSEARCH({x ∈ bids |xitems ∩ bitems = ∅}, g) � b is In
23 PAUSEBIDSEARCH(bids, g − b) � b is Out
24 else
25 PAUSEBIDSEARCH({x ∈ bids |xitems ∩ bitems = ∅}, g) � b is In
26 PAUSEBIDSEARCH(bids, g − b) � b is Out
27 return

Figure 2: The PAUSEBIDSEARCH recursive procedure where bids is the set of available bids and g is the current partial solution.

0: (1) 44

Prune
lines 16–17

In

0: (2) 62

0: (0) 198

bids = ∅
lines 1–2

In

0: (0, 1) 849

u∗ ← 509
lines 12–13

In

bids = ∅

Out

Out

In

0: (0) 198

1: (1, 2) 270

max -utility = 66 < u∗

In

bids = ∅

Out

In

0: (0, 1) 849

bids = ∅

In

1: (1, 2) 270

bids = ∅

In

bids = ∅

Out

Out

Out

Out

Out S v0(S) B(S) in W ? h(S)

(0) 198 0 : 131 Yes 131
(1) 44 0 : 40 No 135
(2) 62 0 : 45 No 135

(0,1) 849 No NA
(1,2) 1 : 270 Yes NA

r(W ) = 131 + 270 = 401

Figure 3: Sample search tree produced by PAUSEBIDSEARCH for agent 0 given the values on the table at the top right. We
assume that ε = 1. The nodes are bids of the form “agentid : (items) price”.



GENERATEVALUES(i, items)
1 for x ∈ items
2 do vi(x) = EXPD(.01)
3 for n← 1 . . . (num-bids − items)
4 do s1, s2 ←Two random sets of items with values.
5 vi(s1 ∪ s2) = vi(s1) + vi(s2) + EXPD(.01)

Figure 4: Algorithm for the generation of random value
functions. EXPD(x) returns a random number taken from
an exponential distribution with mean 1/x.

rithm we used is shown in Figure 4. The type of valuations it
generates correspond to domains where a set of agents must
perform a set of tasks but there are cost savings for particu-
lar agents if they can bundle together certain subsets of tasks.
For example, imagine a set of robots which must pick up and
deliver items to different locations. Since each robot is at a
different location and has different abilities, each one will
have different preferences over how to bundle. Their costs
for the item bundles are subadditive, which means that their
preferences are superadditive.

The first tests we performed simply ensured the proper
functioning of the algorithm. We then compared the solu-
tion found by our algorithm to the solution found by CASS
when given a set of bids that corresponds to the agents’ true
valuation. That is, for each agent i and each set of items
S for which vi(S) > 0 we generated a bid. This set of
bids was fed to CASS which implements a centralized win-
ner determination algorithm to find the solution which max-
imizes revenue. When we compared this solution with the
set of bids found by PAUSEBID we found that on at least
95% of the runs both algorithms arrive at the same solu-
tion. Specifically, with 5 bidders, 6 items, and 1000 runs,
we found that on 96.2% of the runs both algorithms arrived
at the same solution. Note, however, that the revenue from
the PAUSE auction on all the auctions is always smaller than
that found by CASS using the agents’ valuations. Since
PAUSE uses English auctions the final prices (roughly) rep-
resent the second-highest valuation, plus ε, for that set of
items.

The cases where we failed to arrive at the revenue of the
revenue-maximizing solution are those where there was a
large gap between the first and second valuation for a set (or
sets) of items. If the revenue-maximizing solution contains
the bid (or bids) using these higher valuation then it is im-
possible for the PAUSE auction to find this solution because
that bid (those bids) is never placed. For example, if agent
i has vi(1) = 1000 and the second highest valuation for (1)
is only 10 then i only needs to place a bid of 11 in order to
win that item. If the revenue-maximizing solution requires
that 1 be sold for 1000 then that solution will never be found
because that bid will never be placed.

We are also interested in the real-time performance of the
system. We define a time unit as the time it takes for all
agents to place a bid. We can then measure how many time
units it takes for the system to arrive at the final solution.

50 250 450 650 850 1050
Time

50

100

150

200

78% of the runs take less than 250

Figure 5: Distribution of the times it took to run each auc-
tion, for 1000 runs with 6 agents and 5 items. The y-axis is
the number of runs that took at most x time units. A time
unit consist of all agents having a chance to place a bid.

Figure 5 shows a distribution of the time it took for each
one of 1000 runs for the system to finish. As we expected,
the distribution is thick on the left side (short time) but has
a long tail towards the right. This shape is similar to the
exponential distribution from which the agent’s valuations
were taken. The long times are from those cases where two
or more agents happen to have very high valuations for the
same set of items and engage in the typical oneupmanship
seen in English auctions.

The scalability of the algorithm can be determined by
counting the number of times that PAUSEBIDSEARCH gets
invoked for each time that PAUSEBID is called, that is, the
number of nodes expanded in the search tree. Figure 6 shows
the average number of nodes expanded on each invocation
of PAUSEBID as we vary the number of items for sale. As
expected since this is an NP-complete problem, the number
of nodes does grow exponentially with the number of items.
But, the actual number of nodes is a much smaller than the
worst-case scenario of xx where x is the number of items.
For example, for 10 items we expand slightly less than 104

nodes which is much smaller number than 1010. Notice also
that our value generation algorithm (Figure 4) generates a
number of bids that is exponential on the number of items, as
might be expected in many situations. As such, these results
do not support the conclusion that time grows exponentially
with the number of goods when the number of bids is inde-
pendent of the number of goods. We expect that PAUSEBID
will grow exponentially as a function the number of bids,
but stay roughly constant as the number of items grows.

Future Work
This algorithm continues our research in distributed winner
determination algorithms for combinatorial auctions (Naru-
manchi & Vidal 2006). In contrast with our previous work,
with the PAUSE auction we have made the assumption that



N
od

es
ex

pa
nd

ed

1 2 3 4 5 6 7 8 9 10
Number of items

10

102

103

104

105

Figure 6: Average number of nodes expanded as a function
of the number of items in the auction. There were 5 agents
in this experiment.

the agents are the buyers and each one has multiple bids that
it wants to place.

There are many obvious ways to improve on the perfor-
mance of PAUSEBID. The most dramatic gain will probably
be when we modify it to cache partial solutions. As it is,
the algorithm performs each search completely from scratch
each time it is invoked. However, since these are English
auctions where each agent submits, at most, one bid set then
it is likely that B does not change much from time t to t+1.
We will be implementing caching techniques similar to those
used by CABOB, where the algorithm remembers the best
bid set for each set of items previously searched over. The
added complication we face is that we must come up with
an efficient scheme for invalidating the proper entries in the
cache when B is updated.

Other possible improvements include developing ways
that agents may cooperate in order to minimize any re-
dundant work (while still not giving them any incentive to
cheat), ways of speeding up the inherent real-time slowness
of the English auction, exploiting the fact that in the k level
of the auction any new bid set is likely to include at least
one bid of size k, and eliminating the need for agents to
constantly broadcast new bids and instead use a multicast-
ing method.

Conclusion
We have presented PAUSEBID—an algorithm for bidding in
a PAUSE auction that is guaranteed to find the bid which
maximizes the agent’s utility given the outstanding best bids.
Agents in a multiagent system can use PAUSEBID to imple-
ment a distributed combinatorial auction and thereby solve
complex coordination problem distributively. The agents
can even be selfish as the system provides an incentive for
them to perform the computations. As it is an NP-complete
problem, the running time of our algorithm remains expo-
nential but it is significantly better than a full search. We are

currently working on caching techniques that should dra-
matically improve the performance of the algorithm. Cen-
tralized combinatorial auctions are only of limited use for
building multiagent systems, we believe that distributed al-
gorithms for achieving similar coordination will be much
more relevant to this domain.

References
[Brewer 1999] Brewer, P. J. 1999. Decentralized computa-

tion procurement and computational robustness in a smart
market. Economic Theory 13(1):41–92.

[Cramton, Shoham, & Steinberg 2006] Cramton, P.; Sho-
ham, Y.; and Steinberg, R., eds. 2006. Combinatorial
Auctions. MIT Press.

[Fujishima, Leyton-Brown, & Shoham 1999] Fujishima,
Y.; Leyton-Brown, K.; and Shoham, Y. 1999. Taming
the computational complexity of combinatorial auctions:
Optimal and approximate approaches. In Proceedings of
the Sixteenth International Joint Conference on Artificial
Intelligence, 548–553. Morgan Kaufmann Publishers Inc.

[Kelly & Stenberg 2000] Kelly, F., and Stenberg, R. 2000.
A combinatorial auction with multiple winners for univer-
sal service. Management Science 46(4):586–596.

[Land, Powell, & Steinberg 2006] Land, A.; Powell, S.;
and Steinberg, R. 2006. PAUSE: A computationally
tractable combinatorial auction. In Cramton et al. (2006).
chapter 6, 139–157.

[2000] Leyton-Brown, K.; Pearson, M.; and Shoham, Y.
2000. Towards a universal test suite for combinatorial auc-
tion algorithms. In Proceedings of the 2nd ACM confer-
ence on Electronic commerce, 66–76. ACM Press. http:
//cats.stanford.edu.

[2006] Narumanchi, M. V., and Vidal, J. M. 2006. Algo-
rithms for distributed winner determination in combinato-
rial auctions. In LNAI volume of AMEC/TADA. Springer.

[2001] Park, S., and Rothkopf, M. H. 2001. Auctions with
endogenously determined allowable combinations. Tech-
nical report, Rutgets Center for Operations Research. RRR
3-2001.

[2004] Parkes, D. C., and Shneidman, J. 2004. Distributed
implementations of vickrey-clarke-groves auctions. In Pro-
ceedings of the Third International Joint Conference on
Autonomous Agents and MultiAgent Systems, 261–268.
ACM.

[2005] Sandholm, T.; Suri, S.; Gilpin, A.; and Levine, D.
2005. CABOB: a fast optimal algorithm for winner deter-
mination in combinatorial auctions. Management Science
51(3):374–391.

[2002] Sandholm, T. 2002. An algorithm for winner deter-
mination in combinatorial auctions. Artificial Intelligence
135(1-2):1–54.

[1998] Vidal, J. M., and Durfee, E. H. 1998. Learn-
ing nested models in an information economy. Jour-
nal of Experimental and Theoretical Artificial Intelligence
10(3):291–308.

http://jmvidal.cse.sc.edu/lib/brewer99a.html
http://jmvidal.cse.sc.edu/lib/brewer99a.html
http://jmvidal.cse.sc.edu/lib/brewer99a.html
http://jmvidal.cse.sc.edu/lib/cramton06a.html
http://jmvidal.cse.sc.edu/lib/cramton06a.html
http://jmvidal.cse.sc.edu/lib/fujishima99a.html
http://jmvidal.cse.sc.edu/lib/fujishima99a.html
http://jmvidal.cse.sc.edu/lib/fujishima99a.html
http://jmvidal.cse.sc.edu/lib/kelly00a.html
http://jmvidal.cse.sc.edu/lib/kelly00a.html
http://jmvidal.cse.sc.edu/lib/land06a.html
http://jmvidal.cse.sc.edu/lib/land06a.html
http://jmvidal.cse.sc.edu/lib/leyton-brown00a.html
http://jmvidal.cse.sc.edu/lib/leyton-brown00a.html
http://cats.stanford.edu
http://cats.stanford.edu
http://jmvidal.cse.sc.edu/lib/narumanchi06a.html
http://jmvidal.cse.sc.edu/lib/narumanchi06a.html
http://jmvidal.cse.sc.edu/lib/narumanchi06a.html
http://jmvidal.cse.sc.edu/lib/park01a.html
http://jmvidal.cse.sc.edu/lib/park01a.html
http://jmvidal.cse.sc.edu/lib/parkes04a.html
http://jmvidal.cse.sc.edu/lib/parkes04a.html
http://jmvidal.cse.sc.edu/lib/sandholm05a.html
http://jmvidal.cse.sc.edu/lib/sandholm05a.html
http://jmvidal.cse.sc.edu/lib/sandholm02b.html
http://jmvidal.cse.sc.edu/lib/sandholm02b.html
http://jmvidal.cse.sc.edu/lib/vidal:98b.html
http://jmvidal.cse.sc.edu/lib/vidal:98b.html

	Introduction
	The PAUSE Auction

	Problem Formulation
	Bidding Algorithm
	Analysis

	Tests
	Future Work

	Conclusion

