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Abstract

We develop an exact dynamic programming algorithm
for partially observable stochastic games (POSGs). The al-
gorithm is a synthesis of dynamic programming for par-
tially observable Markov decision processes (POMDPs)
and iterated elimination of dominated strategies in normal
form games. We prove that when applied to finite-horizon
POSGs, the algorithm iteratively eliminates very weakly
dominated strategies without first forming a normal form
representation of the game. For the special case in which
agents share the same payoffs, the algorithm can be used
to find an optimal solution. We present preliminary empiri-
cal results and discuss ways to further exploit POMDP the-
ory in solving POSGs.

1. Introduction

The theory of stochastic games provides a foundation
for much recent work on multi-agent planning and learn-
ing [17, 3, 13, 4, 11]. A stochastic game can be viewed as
an extension of a Markov decision process (MDP) in which
there are multiple agents with possibly conflicting goals,
and the joint actions of agents determine state transitions
and rewards. Much of the literature on stochastic games
assumes that agents have complete information about the
state of the game; in this respect, it generalizes work on
completely observable MDPs. In fact, exact dynamic pro-
gramming algorithms for stochastic games closely resem-
ble exact dynamic programming algorithms for completely
observable MDPs [22, 7, 13]. Although there is consider-
able literature on partially observable Markov decision pro-
cesses (POMDPs), corresponding results for partially ob-
servable stochastic games (POSGs) are very sparse, and no
exact dynamic programming algorithm for solving POSGs
has been previously described.

In this paper, we show how to generalize the dynamic
programming approach to solving POMDPs in order to de-

velop a dynamic programming algorithm for POSGs. The
difficulty in developing this generalization is that agents
can have different beliefs. As a result, it is not possible to
solve a POSG by transforming it into a completely observ-
able stochastic game over belief states, analogous to how
a POMDP is solved by transforming it into a completely
observable MDP over belief states. A different approach is
needed. Our approach is related to iterative elimination of
dominated strategies in normal form games, which also al-
lows agents to have different beliefs. In fact, our approach
can be viewed as a synthesis of dynamic programming for
POMDPs and iterated elimination of dominated strategies
in normal form games. We define a generalized notion of
belief that includes uncertainty about the underlying state
and uncertainty about other agent’s future plans. This al-
lows us to define amulti-agent dynamic programming op-
erator. We show that the resulting dynamic programming
algorithm corresponds to a type of iterated elimination of
dominated strategies in the normal form representation of
finite-horizon POSGs. This is the first dynamic program-
ming algorithm for iterated strategy elimination. For the
special case where all agents share the same payoff func-
tion, our dynamic programming algorithm can be used to
find an optimal solution.

1.1. Related work

A finite-horizon POSG can be viewed as a type of exten-
sive game with imperfect information [16]. Although much
work has been done on such games, very little of it is from
a computational perspective. This is understandable in light
of the negative worst-case complexity results for POSGs
[2]. A notable exception is reported in [14, 15], in which
the authors take advantage of thesequence formrepresenta-
tion of two-player games to find mixed strategy Nash equi-
libria efficiently. In contrast to their work, ours applies to
any number of players. Furthermore, our algorithms are fo-
cused on eliminating dominated strategies, and do not make
any assumptions about which of the remaining strategies



will be played.
For the special case of cooperative games, several al-

gorithms have been proposed. However, previous algo-
rithms do not guarantee optimality in general. If all agents
share their private information, a cooperative POSG can
be converted to a single-agent POMDP. There are also al-
gorithms for solving cooperative POSGs with other forms
of very specialized structure [10, 1]. For general coopera-
tive POSGs, algorithms such as those of Peshkin et al. [20]
and Nair et al. [18] can be used, but they are only guaran-
teed to converge to local optima.

2. Background

As background, we review the POSG model and two
algorithms that we generalize to create a dynamic pro-
gramming algorithm for POSGs: dynamic programming for
POMDPs and elimination of dominated strategies in solv-
ing normal form games.

2.1. Partially observable stochastic games

A partially observable stochastic game(POSG) is a tu-
ple hI;S; fb0g; fAig; fOig;P ; fRigi, where,� I is a finite set of agents (or controllers) indexed1; : : : ; n� S is a finite set of states� b0 2 �(S) represents the initial state distribution� Ai is a finite set of actions available to agenti and~A = �i2IAi is the set of joint actions (i.e., action

profiles), where~a = ha1; : : : ; ani denotes a joint ac-
tion� Oi is a finite set of observations for agenti and ~O =�i2IOi is the set of joint observations, where~o =ho1; : : : ; oni denotes a joint observation� P is a set of Markovian state transition and observation
probabilities, whereP(s0; ~ojs;~a) denotes the probabil-
ity that taking joint action~a in states results in a tran-
sition to states0 and joint observation~o� Ri : S � ~A ! < is a reward function for agenti

A game unfolds over a finite or infinite sequence of
stages, where the number of stages is called thehorizonof
the game. In this paper, we consider finite-horizon POSGs;
some of the challenges involved in solving the infinite-
horizon case are discussed at the end of the paper. At each
stage, all agents simultaneously select an action and receive
a reward and observation. The objective, for each agent, is
to maximize the expected sum of rewards it receives dur-
ing the game.

Whether agents compete or cooperate in seeking reward
depends on their reward functions. The case in which the

agents share the same reward function has been called ade-
centralized partially observable Markov decision process
(DEC-POMDP)[2].

2.2. Dynamic programming for POMDPs

A POSG with a single agent corresponds to a POMDP.
We briefly review an exact dynamic programming algo-
rithm for POMDPs that provides a foundation for our ex-
act dynamic programming algorithm for POSGs. We use
the same notation for POMDPs as for POSGs, but omit the
subscript that indexes an agent.

The first step in solving a POMDP by dynamic program-
ming (DP) is to convert it into a completely observable
MDP with a state setB = �(S) that consists of all pos-
sible beliefs about the current state. Letba;o denote the be-
lief state that results from belief stateb, after actiona and
observationo. The DP operator can be written in the form,V t+1(b) = maxa2A (Xs2S b(s)"R(s; a) +Xo2OP(ojs; a)V t(ba;o)#) ;

(1)
whereP(ojs; a) = Ps02S P(s0; ojs; a), and the updated
value function is computed for all belief statesb 2 B. Ex-
act DP algorithms for POMDPs rely on Smallwood and
Sondik’s [23] proof that the DP operator preserves the
piecewise linearity and convexity of the value function. This
means that the value function can be represented exactly
by a finite set ofjSj-dimensional value vectors, denotedV = fv1; v2; : : : ; vkg, whereV (b) = max1�j�kXs2S b(s)vj(s): (2)

As elucidated by Kaelbling et al. [12], each value vector
corresponds to a complete conditional plan that specifies an
action for every sequence of observations. Adopting the ter-
minology of game theory, we often refer to a complete con-
ditional plan as astrategy. We use this interchangeably with
policy tree, because a conditional plan for a finite-horizon
POMDP can be viewed as a tree.

The DP operator of Equation (1) computes an updated
value function, but can also be interpreted as computing an
updated set of policy trees. In fact, the simplest algorithm
for computing the DP update has two steps, which are de-
scribed below.

In the first step, the DP operator is given a setQt of
depth-t policy trees and a corresponding setVt of value
vectors representing the horizon-t value function. It com-
putesQt+1 andVt+1 in two steps. First, a set of deptht+1
policy trees,Qt+1, is created by generating every possible
deptht + 1 policy tree that makes a transition, after an ac-
tion and observation, to the root node of some depth-t pol-
icy tree inQt. This operation will hereafter be called anex-
haustive backup. Note thatjQt+1j = jAjjQtjjOj. For each



policy treeqj 2 Qt+1, it is straightforward to compute a
corresponding value vector,vj 2 Vt+1.

The second step is to eliminate policy trees that need
not be followed by a decision maker that is maximizing
expected value. This is accomplished by eliminating (i.e.,
pruning) any policy tree when this can be done without de-
creasing the value of any belief state.

Formally, a policy treeqj 2 Qt+1i with corresponding
value vectorvj 2 Vt+1i is considered dominated if for allb 2 B there exists avk 2 Vt+1i n vj such thatb � vk � b � vj .
This test for dominance is performed using linear program-
ming. Whenqj is removed from the setQt+1i , its corre-
sponding value vectorvj is also removed fromVt+1i .

The dual of this linear program can also be used as a
test for dominance. In this case, a policy treeqj with corre-
sponding value vectorvj is dominated when there is a prob-
ability distributionp over the other policy trees, such thatXk 6=j p(k)vk(s) � vj(s);8s 2 S: (3)

This alternative, and equivalent, test for dominance plays
a role in iterated strategy elimination, as we will see in
the next section, and was recently applied in the context of
POMDPs [21].

2.3. Iterated elimination of dominated strategies

Techniques for eliminating dominated strategies in
solving a POMDP are very closely related to tech-
niques for eliminating dominated strategies in solving
games in normal form. A game in normal form is a tu-
pleG = fI; fDig; fVigg, whereI is a finite set of agents,Di is a finite set of strategies available to agenti, andVi : ~D ! < is the value (or payoff) function for agenti.
Unlike a stochastic game, there are no states or state transi-
tions in this model.

Every strategydi 2 Di is a pure strategy. Let Æi 2�(Di) denote amixed strategy, that is, a probability dis-
tribution over the pure strategies available to agenti, whereÆi(di) denotes the probability assigned to strategydi 2 Di.
Let d�i denote a profile of pure strategies for the other
agents (i.e., all the agents except agenti), and letÆ�i de-
note a profile of mixed strategies for the other agents. Since
agents select strategies simultaneously,Æ�i can also repre-
sent agenti’s belief about the other agents’ likely strategies.
If we defineVi(di; Æ�i) =Pd�i Æ�i(d�i)Vi(di; d�i), thenBi(Æ�i) = fdi 2 DijVi(di; Æ�i) � Vi(d0i; Æ�i) 8d0i 2 Dig

(4)
denotes thebest response functionof agenti, which is the
set of strategies for agenti that maximize the value of some
belief about the strategies of the other agents. Any strategy
that is not a best response to some belief can be deleted.

A dominated strategydi is identified by using linear pro-
gramming. The linear program identifies a probability dis-
tribution�i over the other strategies such thatVi(�i; d�i) > Vi(di; d�i);8d�i 2 D�i: (5)

This test for dominance is very similar to the test for dom-
inance used to prune strategies in solving a POMDP.
It differs in using strict inequality, which is called
strict dominance. Game theorists also useweak domi-
nanceto prune strategies. A strategydi is weakly domi-
nated ifVi(�i; d�i) � Vi(di; d�i) for all d�i 2 D�i, andVi(�i; d�i) > Vi(di; d�i) for somed�i 2 D�i. The test
for dominance which does not require any strict inequal-
ity is sometimes calledvery weak dominance, and cor-
responds exactly to the test for dominance in POMDPs,
as given in Equation (3). Because a strategy that is very
weakly dominated but not weakly dominated must bepay-
off equivalentto a strategy that very weakly dominates it,
eliminating very weakly dominated strategies may have
the same effect as eliminating weakly dominated strate-
gies in thereduced normal formrepresentation of a game,
where the reduced normal form representation is cre-
ated by combining any set of payoff-equivalent strategies
into a single strategy.

There are a couple other interesting differences between
the tests for dominance in Equations (3) and (5). First,
there is a difference in beliefs. In normal-form games, be-
liefs are about the strategies of other agents, whereas in
POMDPs, beliefs are about the underlying state. Second,
elimination of dominated strategies is iterative when there
are multiple agents. When one agent eliminates its domi-
nated strategies, this can affect the best-response function
of other agents (assuming common knowledge of rational-
ity). After all agents take a turn in eliminating their dom-
inated strategies, they can consider eliminating additional
strategies that may only have been best responses to strate-
gies of other agents that have since been eliminated. The
procedure of alternating between agents until no agent can
eliminate another strategy is callediterated elimination of
dominated strategies.

In solving normal-form games, iterated elimination of
dominated strategies is a somewhat weak solution concept,
in that it does not (usually) identify a specific strategy foran
agent to play, but rather a set of possible strategies. To se-
lect a specific strategy requires additional reasoning, andin-
troduces the concept of a Nash equilibrium, which is a pro-
file of strategies (possibly mixed), such thatÆi 2 Bi(Æ�i)
for all agentsi. Since there are often multiple equilibria,
the problem ofequilibrium selectionis important. (It has a
more straightforward solution for cooperative games than
for general-sum games.) But in this paper, we focus on the
issue of elimination of dominated strategies.



3. Dynamic programming for POSGs

In the rest of the paper, we develop a dynamic pro-
gramming algorithm for POSGs that is a synthesis of dy-
namic programming for POMDPs and iterated elimination
of dominated strategies in normal-form games. We begin
by introducing the concept of a normal-form game with
hidden state, which provides a way of relating the POSG
and normal-form representations of a game. We describe a
method for eliminating dominated strategies in such games,
and then show how to generalize this method in order to de-
velop a dynamic programming algorithm for finite-horizon
POSGs.

3.1. Normal-form games with hidden state

Consider a game that takes the form of a tupleG =fI;S; fDig; fVigg, whereI is a finite set of agents,S is
a finite set of states,Di is a finite set of strategies available
to agenti, andVi : S� ~D! < is the value (or payoff) func-
tion for agenti. This definition resembles the definition of
a POSG in that the payoff received by each agent is a func-
tion of the state of the game, as well as the joint strategies
of all agents. But it resembles a normal-form game in that
there is no state-transition model. In place of one-step ac-
tions and rewards, the payoff function specifies the value of
a strategy, which is a complete conditional plan.

In a normal form game with hidden state, we define an
agent’s belief in a way that synthesizes the definition of be-
lief for POMDPs (a distribution over possible states) and
the definition of belief in iterated elimination of dominated
strategies (a distribution over the possible strategies ofthe
other agents). For each agenti, a belief is defined as a dis-
tribution overS�D�i, where the distribution is denotedbi.
The value of a belief of agenti is defined asVi(bi) = maxdi2Di Xs2S;d�i2D�i bi(s; d�i)Vi(s; di; d�i):
A strategydi for agenti is very weakly dominated if elim-
inating it does not decrease the value of any belief. The
test for very weak dominance is a linear program that de-
termines whether there is a mixed strategy�i 2 �(Di n di)
such thatVi(s; �i; d�i) � Vi(s; di; d�i);8s 2 S;8d�i 2 D�i: (6)

These generalizations of the key concepts of belief, value
of belief, and dominance play a central role in our develop-
ment of a DP algorithm for POSGs in the rest of this pa-
per.

In our definition of a normal form game with hidden
state, we do not include an initial state probability distri-
bution. As a result, each strategy profile is associated with
an jSj-dimensional vector that can be used to compute the

value of this strategy profile forany state probability dis-
tribution. This differs from a standard normal form game
in which each strategy profile is associated with a scalar
value. By assuming an initial state probability distribution,
we could convert our representation to a standard normal
form game in which each strategy profile has a scalar value.
But our representation is more in keeping with the approach
taken by the DP algorithm for POMDPs, and lends itself
more easily to development of a DP algorithm for POSGs.
The initial state probability distribution given in the defi-
nition of a POMDP is not used by the DP algorithm for
POMDPs; it is only used to select a policy after the al-
gorithm finishes. The same holds in the DP algorithm for
POSGs we develop. Like the POMDP algorithm, it com-
putes a solution for all possible initial state probabilitydis-
tributions.

3.2. Normal form of finite-horizon POSGs

Disregarding the initial state probability distribution,a
finite-horizon POSG can be converted to a normal-form
game with hidden state. When the horizon of a POSG is
one, the two representations of the game are identical, since
a strategy corresponds to a single action, and the payoff
functions for the normal-form game correspond to the re-
ward functions of the POSG. When the horizon of a POSG
is greater than one, the POSG representation of the game
can be converted to a normal form representation with hid-
den state, by a recursive construction. Given the sets of
strategies and the value (or payoff) functions for a horizont
game, the sets of strategies and value functions for the hori-
zon t + 1 game are constructed by exhaustive backup, as
in the case of POMDPs. When a horizon-t POSG is repre-
sented in normal form with hidden state, the strategy sets
include all depth-t policy trees, and the value function is
piecewise linear and convex; each strategy profile is associ-
ated with anjSj-vector that represents the expectedt-step
cumulative reward achieved for each potential start state
(and so any start state distribution) by following this joint
strategy.

If a finite-horizon POSG is represented this way, iter-
ated elimination of dominated strategies can be used in
solving the game, after the horizont normal form game is
constructed. The problem is that this representation can be
muchlarger than the original representation of a POSG. In
fact, the size of the strategy set for each agenti is greater
than jAijjOijt , which is doubly exponential in the horizont. Because of the large sizes of the strategy sets, it is usu-
ally not feasible to work directly with this representation.
The dynamic programming algorithm we develop partially
alleviates this problem by performing iterated elimination
of dominated strategies at each stage in the construction of
the normal form representation, rather than waiting until the



construction is finished.

3.3. Multi-agent dynamic programming operator

The key step of our algorithm is amulti-agent dynamic
programming operatorthat generalizes the DP operator for
POMDPs. As for POMDPs, the operator has two steps. The
first is a backup step that creates new policy trees and vec-
tors. The second is a pruning step.

In the backup step, the DP operator is given a set of
depth-t policy treesQti for each agenti, and corresponding
sets of value vectorsVti of dimensionjS � Qt�ij.1 Based
on the action transition, observation, and reward model of
the POSG, it performs an exhaustive backup on each of the
sets of trees, to formQt+1i for each agenti. It also recur-
sively computes the value vectors inVt+1i for each agenti.
Note that this step corresponds to recursively creating a nor-
mal form with hidden state representation of a horizont+1
POSG, given a normal form with hidden state representa-
tion of the horizont POSG.

The second step of the multi-agent DP operator consists
of pruning dominated policy trees. As in the single agent
case, an agenti policy tree can be pruned if its removal does
not decrease the value of any belief for agenti. As with nor-
mal form games, removal of a policy tree reduces the di-
mensionality of the other agents’ belief space, and it can be
repeated until no more policy trees can be pruned from any
agent’s set. (Note that different agent orderings may lead to
different sets of policy trees and value vectors. The ques-
tion of order dependence in eliminating dominated strate-
gies has been extensively studied in game theory, and we do
not consider it here.) Pseudocode for the multi-agent DP op-
erator is given in Table 1.

The validity of the pruning step follows from a version
of the optimality principle of dynamic programming, which
we prove for a single iteration of the multi-agent DP opera-
tor. By induction, it follows for any number of iterations.

Theorem 1 Consider a setQti of deptht policy trees for
agenti, and consider the setQt+1i of deptht + 1 policy
trees created by exhaustive backup, in the first step of the
multi-agent DP operator. If any policy treeqj 2 Qti is very
weakly dominated, then any policy treeq0 2 Qt+1i that con-
tainsqj as a subtree is also very weakly dominated.

1 The value functionV ti of agenti can be represented as a setVti of
value vectors of dimensionjS � Qt�ij, with one for each strategy inQti, or as a set of value vectors of dimensionjSj, with one for each
strategy profile inQti � Qt�i. The two representations are equiva-
lent. The latter is more useful in terms of implementation, since it
means the size of vectors does not change during iterated elimination
of dominated strategies; only the number of vectors changes. (Using
this representation, multiplejSj-vectors must be deleted for each strat-
egy deleted.) The former representation is more useful in explaining
the algorithm, since it entails a one-to-one correspondence between
strategies and value vectors, and so we adopt it in this section.

Proof: Consider a very weakly dominated policy treeqj 2Qti. According to the dual formulation of the test for domi-
nance, there exists a distributionp over policy trees inQtinqj
such that

Pk 6=j p(k)vk(s; q�i) � vj(s; q�i) for all s 2 S
andq�i 2 Qk�i. (Recall thatvj 2 Vti is the value vector
corresponding to policy treeqj .) Now consider any policy
tree q0 2 Qt+1i with qj as a subtree. We can replace in-
stances ofqj in q0 with the distributionp to get abehavioral
strategy, which is a stochastic policy tree. From the test for
dominance, it follows that the value of this behavioral strat-
egy is at least as high as that ofq0, for any distribution over
states and strategies of the other agents. Since any behav-
ioral strategy can be represented by a distribution over pure
strategies, it follows thatq0 is very weakly dominated.2

Thus, pruning very weakly dominated strategies from the
setsQti before using the dynamic programming operator is
equivalent to performing the dynamic programming opera-
tor without first pruningQti. The advantage of first pruning
very weakly dominated strategies from the setsQti is that it
improves the efficiency of dynamic programming by reduc-
ing the initial size of the setsQt+1i generated by exhaustive
backup.

It is possible to define a multi-agent DP operator that
prunes strongly dominated strategies. However, sometimes
a strategy that is not strongly dominated will have a strongly
dominated subtree. This is referred to as anincredible threat
in the literature. Thus it is an open question whether we can
define a multi-agent DP operator that prunes only strongly
dominated strategies. In this paper, we focus on pruning
very weakly dominated strategies. As already noted, this is
identical to the form of pruning used for POMDPs.

There is an important difference between this algorithm
and the dynamic programming operator for single-agent
POMDPs, in terms of implementation. In the single agent
case, only the value vectors need to be kept in memory. At
execution time, an optimal action can be extracted from the
value function using one-step lookahead, at each time step.
We do not currently have a way of doing this when there
are multiple agents. In the multi-agent case, instead of se-
lecting an action at each time step, each agent must select
a policy tree (i.e., a complete strategy) at the beginning of
the game. Thus, the policy tree sets must also be remem-
bered. Of course, some memory savings is possible by real-
izing that the policy trees for an agent share subtrees.

3.4. Solving finite-horizon POSGs

As we have described, any finite-horizon POSG can be
given a normal form representation. The process of com-
puting the normal form representation is recursive. Given
the definition of a POSG, we successively compute normal
form games with hidden state for horizons one, two, and
so on, up to horizonT . Instead of computing all possible



Input: Sets of depth-t policy treesQti and corresponding
value vectorsVti for each agenti.

1. Perform exhaustive backups to getQt+1i for eachi.
2. Recursively computeVt+1i for eachi.
3. Repeat until no more pruning is possible:

(a) Choose an agenti, and find a policy treeqj 2Qt+1i for which the following condition is sat-
isfied:8b 2 �(S � Qt+1�i ), 9vk 2 Vt+1i n vj
s.t.b � vk � b � vj .

(b) Qt+1i  Qt+1i n qj .
(c) Vt+1i  Vt+1i n vj .

Output: Sets of depth-t+ 1 policy treesQt+1i and corre-
sponding value vectorsVt+1i for each agenti.

Table 1. The multi-agent dynamic program-
ming operator.

strategies for each horizon, we have defined a multi-agent
dynamic programming operator that performs iterated elim-
ination of very weakly dominated strategies at each stage.
This improves the efficiency of the algorithm because if a
policy tree is pruned by the multi-agent DP operator at one
stage, every policy tree containing it as a subtree is effec-
tively eliminated, in the sense that it will not be created ata
later stage. We now show that performing iterated elimina-
tion of very weakly dominated strategies at each stage in the
construction of the normal form game is equivalent to wait-
ing until the final stage to perform iterated elimination of
very weakly dominated strategies.

Theorem 2 Dynamic programming applied to a finite-
horizon POSG corresponds to iterated elimination of very
weakly dominated strategies in the normal form of the
POSG.

Proof: Let T be the horizon of the POSG. If the initial state
distribution of the POSG is not fixed, then the POSG can be
thought of as a normal form game with hidden state. Theo-
rem 1 implies that each time a policy tree is pruned by the
DP algorithm, every strategy containing it as a subtree is
very weakly dominated in this game. And if a strategy is
very weakly dominated when the initial state distribution is
not fixed, then it is certainly very weakly dominated for a
fixed initial state distribution. Thus, the DP algorithm can
be viewed as iteratively eliminating very weakly dominated
strategies in the POSG.2

In the case of cooperative games, also known as DEC-
POMDPs, removing very weakly dominated strategies pre-
serves at least one optimal strategy profile. Thus, the multi-
agent DP operator can be used to solve finite-horizon DEC-

Horizon Brute force Dynamic programming

1 (2, 2) (2, 2)
2 (8, 8) (6, 6)
3 (128, 128) (20, 20)
4 (32768, 32768) (300, 300)

Table 2. Performance of both algorithms on
the multi-access broadcast channel problem.
Each cell displays the number of policy trees
produced for each agent. The brute force al-
gorithm could not compute iteration 4. The
numbers (in italics) shown in that cell reflect
how many policy trees it would need to cre-
ate for each agent.

POMDPs optimally. When the DP algorithm reaches stepT , we can simply extract the highest-valued strategy pro-
file for the start state distribution.

Corollary 1 Dynamic programming applied to a finite-
horizon DEC-POMDP yields an optimal strategy pro-
file.

For general-sum POSGs, the DP algorithm converts the
POSG to a normal form representation with reduced sets
of strategies in which there are no very weakly dominated
strategies. Although selecting an equilibrium presents a
challenging problem in the general-sum case, standard tech-
niques for selecting an equilibrium in a normal form game
can be used.

4. Example

We ran initial tests on a cooperative game involving con-
trol of a multi-access broadcast channel [19]. In this prob-
lem, nodes need to broadcast messages to each other over a
channel, but only one node may broadcast at a time, other-
wise a collision occurs. The nodes share the common goal
of maximizing the throughput of the channel.

The process proceeds in discrete time steps. At the start
of each time step, each node decides whether or not to send
a message. The nodes receive a reward of 1 when a mes-
sage is successfully broadcast and a reward of 0 otherwise.
At the end of the time step, each node receives a noisy ob-
servation of whether or not a message got through.

The message buffer for each agent has space for only
one message. If a node is unable to broadcast a message,
the message remains in the buffer for the next time step. If
a nodei is able to send its message, the probability that its
buffer will fill up on the next step ispi. Our problem has two
nodes, withp1 = 0:9 andp2 = 0:1. There are 4 states, 2 ac-
tions per agent, and 2 observations per agent.
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Figure 1. A pair of policy trees that is optimal
for the horizon-4 problem when both mes-
sage buffers start out full.

We compared our DP algorithm with a brute-force al-
gorithm, which also builds sets of policy trees, but never
prunes any of them. On a machine with 2 gigabytes of mem-
ory, the brute-force algorithm was able to complete itera-
tion 3 before running out of memory, while the DP algo-
rithm was able to complete iteration 4. At the end of itera-
tion 4, the number of policy trees for the DP algorithm was
less than 1% of the number that would have been produced
by the brute-force algorithm, had it been able to complete
the iteration. This result, shown in Table 2, indicates that
the multi-agent DP operator can prune a significant number
of trees. However, even with pruning, the number of pol-
icy trees grows quickly with the horizon. At the end of the
fourth iteration, each agent has 300 policy trees that are not
dominated. Because the piecewise linear and convex value
function consists of onejSj-vector for each pair of policy
trees from the two agents, the representation of the value
function requires3002 jSj-vectors. In the fifth iteration, an
exhaustive backup would create a value function that con-
sists of2 � 3004 jSj-vectors, or more than 16 billionjSj-
vectors, before beginning the process of pruning. This il-
lustrates how the algorithm can run out of memory. In the
next section, we discuss possible ways to avoid the explo-
sion in size of the value function.

Figure 1 shows a pair of depth-4 policy trees constructed
by the DP algorithm. In the case where the message buffers
both start out full, this pair is optimal, yielding a total re-
ward of 3.89.

5. Future work

Development of an exact dynamic programming ap-
proach to solving POSGs suggests several avenues for fu-
ture research, and we briefly describe some possibilities.

5.1. Improving efficiency

A major scalability bottleneck is the fact that the num-
ber of policy trees grows rapidly with the horizon and
can quickly consume a large amount of memory. There
are several possible ways to address this. One technique
that provides computational leverage in solving POMDPs
is to prune policy trees incrementally, so that an exhaustive
backup never has to be done [5]. Whether this can be ex-
tended to the multi-agent case is an open problem. Other
techniques seem easier to extend. More aggressive pruning,
such as pruning strategies that arealmostvery weakly dom-
inated, can reduce the number of policy trees in exchange
for bounded sub-optimality [6]. The number of policy trees
may be reduced by allowing stochastic policies, as in [21].
Work on compactly represented POMDPs and value func-
tions may be extended to the multi-agent case [9].

In addition, there exist POMDP algorithms that leverage
a known start state distribution for greater efficiency. These
algorithms perform a forward search from the start state and
are able to avoid unreachable belief states. Whether some
kind of forward search can be done in the multi-agent case
is an important open problem.

5.2. Extension to infinite-horizon POSGs

It should be possible to extend our dynamic program-
ming algorithm to infinite-horizon, discounted POSGs, and
we are currently exploring this. In the infinite-horizon case,
the multi-agent DP operator is applied to infinite trees. A fi-
nite set of infinite trees can be represented by a finite-state
controller, and policy iteration algorithms for single-agent
POMDPs have been developed based on this representa-
tion [8, 21]. We believe that they can be extended to develop
a policy iteration algorithm for infinite-horizon POSGs. Be-
cause our definition of belief depends on explicit represen-
tation of a policy as a policy tree or finite-state controller,
it is not obvious that a value iteration algorithm for infinite-
horizon POSGs is possible.

6. Conclusion

We have presented an algorithm for solving POSGs that
generalizes both dynamic programming for POMDPs and
iterated elimination of dominated strategies for normal form
games. It is the first exact algorithm for general POSGs, and
we have shown that it can be used to find optimal solutions
for cooperative POSGs. Although currently limited to solv-
ing very small problems, its development helps to clarify the
relationship between POMDPs and game-theoretic models.
There are many avenues for future research, in both mak-
ing the algorithm more time and space efficient and extend-
ing it beyond finite-horizon POSGs.
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