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Abstract

In this paper we develop an approach for optimal execu-
tion of plans under time and resource uncertainty. This line of
research has been described as a challenge of AI in [5]. The
authors claim that existing methods fail because they suffer
from many limitations where some of them consist of: (1) they
only handle simple time constraints, (2) they assume a sim-
ple model of uncertainty concerning action durations and re-
source consumption. In many domains, such as space applica-
tions (rovers, satellites), these assumptions are not valid. We
present an approach that relaxes those assumptions by con-
sidering the following: (1) a mission is an acyclic graph of
tasks that leads to complex dependencies between tasks, (2) a
task has a temporal window during which it can be executed,
(3) there is uncertainty about the durations and resource con-
sumption of tasks. This class of problems is found in some sce-
narios of rover domains where the objective of the rover is to
maximize the overall value of the mission. For that, we present
a Markov Decision Process Agent taking into consideration
uncertainty on temporal intervals execution and resource con-
sumption. We describe some experimental results and the scal-
ability of the approach.

1. Introduction

In this paper we develop an approach of planning under
time and resource uncertainty along the research lines de-
scribed in a challenge paper of [5]. In that challenge paper,
authors claim that existing methods fail because they suffer
from many limitations where some of them consist of: (1) they
only handle simple time constraints, (2) they assume a sim-
ple model of uncertainty concerning action durations and re-
source consumption. In many domains, such as space appli-
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cations (rovers, satellites), these assumptions are not valid.We
present an approach that relaxes those assumptions by using
a more complex model of tasks with complex dependencies
in the sense that execution time and resource consumption are
uncertain. In this approach, we consider the following: (1) a
mission is an acyclic graph of tasks that leads to complex de-
pendencies between tasks, (2) a task has a temporal interval
during which it can be executed, (3) there is uncertainty about
the durations and resource consumption of tasks. This class of
problems is found in some scenarios of rover domains where
the objective of the rover is to maximize the overall value of
the mission. Given the graph of the mission, as is the case in
space applications, we want the mission to be executed opti-
mally by an autonomous agent.

The major objectives of the space future missions [8, 5]
consist of maximizing science return and enabling certain
types of science activities by using a robust approach. To show
the significance of problems we deal with, let us give some ex-
amples of robotic vehicle domains where we express different
constraints we consider in this paper:

• Time windows: a number of tasks of robotic vehicles need
to be done at particular, but approximate times: for example,
“about noon,” “at sunrise,” “at sunset.” There is no explicit
time window, but we can represent these using time windows
or soft constraints on a precise time. The examples involve
measurements of the environment – a ”gravity wave” experi-
ment that needs to be done ”preferably in the morning”, and at-
mospheric measurements at sunrise, sunset, and noon (look at
the sun through the atmosphere). Another constraint is that the
rover will be power-constrained, so much of a solar-powered
rover’s operations will be in the window 10:00-15:00 to make
sure that there is enough sunlight to operate. Certainly driving
will happen during that part of the day. Communication has
also to start at a particular time, since that requires synchro-
nization with Earth. There are operations that cannot be done
outside of a time window – not enough solar energy, for exam-
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Figure 1. An acyclic graph of tasks

ple, or night-time operation of cameras or daytime operation
of the night-time spectrometer. Other constraints can be con-
sidered such as illumination constraints (which involves time
of day and position), setup times (warm-up or cool-down time
for instruments), potentially time separation between images
to infer 3D shape from shadows.

• Bounded resources: for the achievement of many activi-
ties, there is a need for power (moving from a location to an-
other one) and data storage capacity (taking pictures and stor-
ing them with different resolutions).

These scenarios are mainly characterized by:
1- Single rover activities have an associated temporal win-

dow.
2- There is uncertainty on time realization tasks and the

temporal interval activity of rovers.
3- The temporal constraints are, in general, soft.
4- The mission can be represented thanks to an acyclic

graph, as is the case in space applications.
5- Precedence dependencies between tasks exist.

Existing work on planning under uncertainty for rovers en-
counter difficulties in application to real problems because
most of them handle only simple time constraints and instan-
taneous actions. More sophisticated techniques have been de-
veloped to deal with uncertain duration [12, 13, 9], but they
fail to optimally control the execution.

The requirements for a rich model of time and action are
more problematic for those planning techniques [5]. The tech-
niques based on MDP and POMDP representations can be used
to represent actions with uncertainty on their outcomes [10, 7],
but they have difficulties when those actions involve complex
temporal dependencies and uncertain durations. Given all the
temporal constraints of the decision process we need for the
rover, which are not purely Markovian, the approaches should
handle irregular, multi-step transitions. Semi-Markov Deci-
sion Processes SMDPs and temporal MDPs (TMDPs) [4] offer a
rich model of time and action. An SMDP [11] is a special kind
of MDP appropriate for modeling continuous-time discrete-
event systems. The actions in an SMDP take variable amounts

of time and are intended to model temporally-extended ac-
tions. This kind of decision process could be appropriate for
our requirements. However, it does not express the temporal
information as a characteristic of the state. This property is
needed in our case, in order to know the interval of time dur-
ing which a task has been executed. In the next section, we
present the important features of the approach based on the
construction of an MDP taking temporal constraints and uncer-
tainty into account. This MDP uses a state representation that
can express the temporal information needed for the decision-
making process.

2. Principles of the approach

The mission of the agent is a graph of tasks where each task
is characterized by the execution time window and the uncer-
tainty about the execution time and resource consumption. In
the rest of the paper, we assume that the graph of the mis-
sion is given. For each task, one is given a probability distri-
bution over its finite set of execution times, and a probability
distribution over its finite set of possible amounts of resource.
The representation of execution time and resource consump-
tion are discrete.

Let’s consider a planetary rover that have a mission to com-
plete. First, it must move to a target. Then, depending on the
time and available resources, it can snap the target or com-
plete atmospheric measurements. To end its mission, the rover
must send the data it has collected. As shown in figure 1, this
small mission can be represented by an acyclic graph. Each
node stands for a task. Edges represent temporal constraints.
For instance, the rover must move to the target before it can
snap it. Each task has several resource consumptions and du-
rations. “Rini” is the initial resource rate. For each task, tempo-
ral constraints are represented thanks to time windows [EST,
LET] where EST is the Earliest Start Time and LET is the Lat-
est Start Time of the task. Larger and more complex missions
can easily be represented using acyclic graphs.

Given the mission graph, the problem of the agent is to
choose the best decision about which task to execute and when
to execute it. This decision is based on the available resources
and the temporal constraints. Respecting the temporal con-
straints requires knowledge of the time interval during which
the current task has been executed.

The decision process of the agent bases its decision on the
current state of the last task executed, the remaining resources
and the interval during which this task has been executed. A
state of this decision process is then, [ai, r, I] that corresponds
to the last executed task ai, the remaining resource r and the
interval of time.

Given the uncertainty on the execution time, there exist
many possible intervals of time during which a task could be



executed, as shown in figure 2. Moreover, many possible re-
source levels can be available for each task. In order to ex-
plore the entire state space of the decision process, we need
to know for each task in the graph the set of its possible ex-
ecution interval times and its possible resource levels. To do
that, we develop an algorithm that computes for each task in
the graph all the possible time intervals by propagating differ-
ent execution times. We also develop two algorithms to com-
pute all the possible resource levels. These algorithms are ex-
plained in detail in the following sections.

The decision process needs to know at each step the prob-
ability that execution will occur during an interval. This infor-
mation is computed by an algorithm that computes for each
task and for each interval its probability. Finally, when the de-
cision process propagates all temporal constraints and their
probabilities through the graph, it can develop the state space
of its decision. Note that the decision depends only on the cur-
rent state and thus this process has a Markov property. Conse-
quently, the model is based on the following steps:

• Propagating the temporal constraints and computing the
set of possible time intervals for execution of each task (node
in the graph). We use the terms task, activity, and node inter-
changeably.

• Discretizing the resource consumption levels.
• Computing the probability of the transitions.
• Constructing the state space of the Markov Decision Pro-

cess and defining the transition model (described in the section
“A decision model: MDP”).

• Using the value iteration algorithm to solve the MDP.
In the rest of the paper, we describe the details of all those

steps.

3. Preliminaries

In the previous section, we describe the overall basis of the
model we develop and present its main characteristics. This
model allows an agent to construct an optimal policy for ex-
ecuting its plan (graph of tasks) taking into account tempo-
ral and resource constraints and the uncertainty about execu-
tion duration and resource consumption. These uncertainties
lead to uncertain start and end times of the remaining tasks in
the plan and uncertainty about the available resources. To rep-
resent this model, we use a probability distribution on compu-
tation time and resources, and probabilities on start and end
times of tasks. We also define a time-dependent utility func-
tion of task achievement.

We denote by δi(a) and δr(a) the computation time and
resource consumption, respectively, of an activity a. When it
is unambiguous, we will suppress the activity argument a for
conciseness.

Uncertain execution time The uncertainty on execution time
has been considered in several approaches developed in [10,
14, 7]. All those approaches ignore the uncertainty on the start
time. We show in this paper how extensions can be considered
in those approaches taking different temporal constraints into
account.

Definition 1 A probabilistic execution time distribution,
Pc(tc) = Pr(δi = tc) is the probability that the activ-
ity takes tc time units for its execution.

The representation adopted for this distribution is discrete.
We use a set of pairs (tc, p), where each pair means that there
is a probability p that the execution will take tc time units.

Uncertain resource consumption The consumption of re-
sources (energy, memory, etc ...) are uncertain. We assume
a probability distribution on the resource consumptions of a
rover when performing an activity.

Definition 2 A probabilistic resource consumption is a prob-
ability distribution, Pr(∆r) = Pr(δr = ∆r) of resource con-
sumption measuring the probability that an activity consumes
∆r units of resources.

The representation adopted of this distribution is discrete.
We use a set of pairs (∆r, p) where each pair means that there
is a probability p that the execution will consume ∆r units of
resource.

We assume that resource consumption and execution time
are independent. But, this assumption does not affect the
genericity of the model (we can use a probability distribution
of (∆r, tc) such that P ((∆r, tc)) is the probability that the ac-
tivity takes tc time units and consumes ∆r resources).

Temporal window of Tasks Each task is assigned a temporal
window [EST,LET] during which it should be executed. EST
is the earliest start time and LET is the latest end time. The
temporal execution interval of the activity (start time and the
end time) should be included in this interval.

Time-dependent utility Given the fact that the utility of
the task achievement is time dependent, we define a time-
dependent utility function.

Definition 3 A time-dependent utility u(a, t) measures the
utility of finishing the achievement of task a at time t.

4. Temporal interval , resource level and proba-
bility propagation

4.1. A simple temporal interval propagation algo-
rithm

Given the possible transition times of different tasks, we de-
termine the set of temporal intervals during which a task can



be realized by propagation of temporal constraints through
the graph. The set of possible start times is a subset of
{EST, EST + 1, EST + 2, . . . , LET −min δi} (EST : Ear-
liest Start Time, LET : Latest End Time) determined by ab-
solute temporal constraints. We denote the Latest Start Time
LST as LST = LET − min δi where min δi is the mini-
mum duration of the task.

We can compute off-line all the possible end times of all
of an activity’s predecessors and consequently compute its
possible start times. The algorithm is similar to the one de-
scribed in [6]. The possible intervals I of execution are de-
termined with a single forward propagation of temporal con-
straints in the graph. This propagation organizes the graph into
levels such that: l0 is the root of the graph, l1 contains all
nodes that are constrained only by the root node, . . ., li con-
tains all nodes whose predecessors include nodes at level li−1

and all of whose predecessors are at level li−1 or before. For
each node in given level li, we compute all its possible inter-
val times from its predecessors (a problem widely studied in
literature).

• level l0: the start time and the end times of the root node
(the first task of the mission) are computed as follows:

- start time of the root : st(root) = EST (root)

- the set of end times of the root : ET (root) =
{st(root) + δi(root), ∀δi(root)}

where δi(root) is the computation time of the
first activity (task) of the mission. Consequently, pos-
sible execution intervals of the root are given by
I = [st(root), et(root)], where et(root) ∈ ET (root).
Note that there is potentially a non-zero probabil-
ity that some end times violate the deadline LET .

• level li: for each node in level i, its possible start times
are computed as all the times at which the predecessors
activities can finish. We first compute all the possible
start times, and then we eliminate the start times that do
not respect the constraints of earliest start time (EST) :
st < EST , and the latest start time (LST) : st > LST .

For each possible start time, we compute all the pos-
sible end times thanks to the durations of the node.
Note that there is the potential that st + δi(node) >

LET (node)

Figure 2 gives an example of temporal interval propagation.
This greedy algorithm can be improved by taking advantage

of information from some already computed intervals, and it is
sometimes not necessary to recompute the intervals of the fol-
lowing tasks. Many classical algorithms exist in literature, like
PERT, but most of them don’t deal with uncertainties of exe-
cution time and resource constraints.
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Figure 2. Temporal interval propagation exam-
ple

4.2. Resource level propagation algorithm

The execution intervals are computed with temporal prop-
agation. Two algorithms can be used in order to compute the
different resource levels available at the end of each task.

Explicit resource level propagation The first method is
combinatorial and computes exactly the available resource lev-
els. For each task ai executed by the agent, the available re-
source levels are computed using :

• The resource levels that can be available at the end of the
last task executed by the agent, before it performs ai.

• The resource levels that can be consumed by the execu-
tion of ai.

It is necessary to combine the values taken by these two
items. Thus, with a subtraction, we get exactly all the possi-
ble resource levels that can be available at the end of ai’s exe-
cution. An example is shown in figure 3.
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MinMax resource levels propagation Although the previ-
ous algorithm can compute exactly the available levels of re-
sources, it can not be used as soon as the graph of the mission
is greater than 20 tasks. Indeed, the combinatorics of consider-
ing all possible starting and ending resource levels became too
difficult. Therefore, we have developed a second algorithm,
allowing larger problem sizes. For each task ai executed by
the agent k, we compute the maximum (max) and the min-
imum (min) resource levels available at the end of ai’s ex-
ecution. Then we consider that all the values in the interval
[min, max] (not the specific combinations computed explic-
itly) describe a legal resource level available for ai. As a re-
sult, we get more possible resource levels with this algorithm.
The “ MinMax resource level algorithm ” avoids doing all the
combinations and so it can be used for larger missions. Fig-
ure 8 outlines that with the MinMax technique, our approach
can be used for missions of a hundred tasks.

4.3. A Probability propagation algorithm

All possible execution intervals of each activity (or node)
are computed off-line. We describe in this section how we can
weight each of those intervals with a probability. This proba-
bilistic weight allows us to know the probability that an activ-
ity will be executed during a given interval of time. For that,
a probability propagation algorithm among the graph of activ-
ities is described using the execution time probability and the
temporal constraints EST, LST, and LET.

This algorithm takes into account the uncertainty of exe-
cution time that affects the end time of the node and thus the
start time of the next task. The probability of an execution in-
terval Pw depends on its start time (the end time of the pre-
vious task) and the probability of execution time Pc. We can
compute the probability that the execution of an activity oc-
curs during an interval I where st(I) is the start time and et(I)

be the end time.

Definition 4 The probability of an execution interval I is the
probability Pw(I |et(I ′)) that interval I is the interval during
which an activity is executed if the las executed task ends at
et(I ′). This probability measures the probability that an activ-
ity starts at st(I) and it ends at et(I).

• If st(I) ≥ et(I ′) : Pw(I |et(I ′)) = Pc(et(I) − st(I))

• Else : Pw(I |et(I ′)) = 0

where st(I) = et(I ′), the end time of the last executed task.
This probability is needed in the transition model that we will
describe below.

5. A decision model: MDP

As mentioned above, we model this problem with a Markov
Decision Process. To do that, we need to define the state space,
the transition model, and the value function. The states need to
take three parameters of the application into account : the tasks
to perform, the available resource for the remaining task, and
the interval of time during which a task should be performed.
These parameters are important for our transition model. How-
ever, when representing the state with [executed task, remain-
ing resource, interval of time], we assume that states are fully
observable because the temporal intervals are determined off-
line and the resource consumption is observed by the agent as
feedback of the environment.

The consequence of representing all the intervals and re-
source levels is that the state space becomes fully observable
and the decision process can perform its maximization action
selection using the Bellman equation defined below. However,
the maximization action selection uses an uncertain start time
that is computed from an uncertain end time of the predeces-
sors.

The start time selected by the policy to execute one of the
next activities leads to many cases. If the start time is later
than the LST, this situation leads to a “deadline reached” sit-
uation that the policy should handle. Indeed, when this situa-
tion occurs the policy moves to a failure state. This situation
can also occur when the execution duration is too long. We
have also to consider execution that consumes more resources
than are available. In the transition model, we describe in de-
tail all these situations.

State Representation The agent observes its resource levels
and the progress made in achieving its tasks which represent
the state of the agent. The state is then a triplet [task, remain-
ing resource, interval activity]. The state in this framework is
assumed to be completely observable by the agent since the in-
terval of the activity is completely determined off-line and the
resource level is observed by the agent.



For each task, we develop a set of states by combining the
intervals of execution and the remaining resource.

Transition model
The agent has the ability to act to achieve its tasks. The agent
should make a decision on which task to execute and when to
start its execution. The set of actions to perform consists of Ex-
ecuting the next task k at time st (Ek(st)), where k is a succes-
sor of the last executed task. This action is probabilistic since
the processing time and resource consumption of the task are
uncertain. This action allows to move from state [ai, r, I ] to
new state s′. There are four possible transitions that we de-
scribe in the following :

• Successful Transition: The action allows the policy to
transition to a [ai+1, r

′, I ′] where task ai+1 has been
achieved during the interval I ′ respecting the EST and
LET of this task and r′ is the remaining resource. The
probability of moving to the state [ai+1, r

′, I ′] is :
∑

∆r≤r

∑

et(I′)≤LET Pr(∆r).Pw(I ′|st(I ′) = et(I))

• Too late start time (TLST) Transition: The action starts
too late and the execution exceeds the deadline LET. In
such case, the action allows the policy to transition to
a [failure, r, [st, +∞]]. The probability to move to this
state is : Pr(st > LST ).

• Deadline met Transition: The action starts an exe-
cution at time st but the duration δi is so long that
the deadline is met. This transition moves to the state
[failure, r, [st, +∞]] (in fact, the resource and inter-
val arguments are unimportant). The probability of mov-
ing to this state is :

Pr(st ≤ LST ) ·
∑

∆r≤r

∑

LET−tc<st≤LST

.Pr(∆r) · Pc(tc)

• Insufficient resource Transition: The execution action
requires more resources than available. This transition
moves to the state [failure, 0, [st, +∞]]. The probabil-
ity of moving to this state is :

∑

∆r>r Pr(∆r)

Figure 5 gives a representation of the relationship between the
original graph structure, and the state space and transitions of
the MDP. The left part of the figure stands for the mission
graph. As seen previously, the nodes stand for the tasks, and
edges represent the precedence constraints. The right part of
the figure represents the state space of the MDP and its transi-
tions. Each box groups together the states associated to a task
ai. Each node stands for a state. Each edge represents a transi-
tion. It links a state associated to a task ai, with a failure state
or a state associated to a task ai+1, where ai+1 is a successor
of ai in the mission graph. The transitions between two states
depend on the executed task ai+1, its start time, the execu-
tion duration and the resource consumption. The task executed
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Figure 5. Relationship between the original
graph structure and the MDP state space

for each transition is specified on the figure. Some nodes have
no successor : they are terminal states. Failure states (striped
nodes) are considered as terminal state. It is straightforward to
adapt our system to non terminal failure state. States associ-
ated to the last task of the mission are also terminal states.

Utility and Value functions considering temporal con-
straints Given different transitions, we adapt our former to
Bellman equation as follows:

V ([ai, r, I ]) = u(ai, et(I)) + max
Ek(st=et(I)),k=successor(ai)

(V ′)

(1)
The agent gets local reward U([ai, r, I ]) = u(ai, et(I))

from being in state [ai,r, I], and V ′ is the expected value from
visiting future states after this state. We decompose V ′ as the
following :

V ′ = V 1 + V 2 + V 3 + V 4

such that :

• Expected Value of successful transition :

V 1 =
∑

∆r≤r

∑

et(I′)≤LET

Pr(∆r)Pw(I ′|et(I))

·V ([ai+1, r − ∆r, I
′])

This value is when an agent starts and finishes with suc-
cess, there is enough resource and I ′ is the interval of ex-
ecution of the next activity where its start time st(I ′) is
the end time et(I) of the last executed task.

• Expected Value of TLST Transition :

V 2 = Pr(st > LST ) · V ([failure, r, [st, +∞]])



This value is when the agent starts too late because the
last executed task has finished too late. The execution
never starts, so no resource is consumed.

• Expected Value of Deadline met Transition:

V 3 = Pr(st ≤ LST )·
∑

∆r≤r

∑

LET−tc<st≤LST

.Pr(∆r)·Pc(tc)

·V ([failure, r, [st, +∞]])

This value is when the deadline is met. As soon as we
meet the time LET, we stop the execution.

• Expected Value of Insufficient resource Transition:

V 4 =
∑

∆r>r

Pr(∆r) · V ([failure, 0, [st, +∞]])

This value is when there is not enough resource.

The value of terminal states V ([an, r, I ′]) is the local util-
ity u(an, et(I ′)) of finishing the last task an at time et(I ′).
The failure states are also terminal and have a value of nega-
tive infinity.

V ([an, r, I ′]) = u(an, et(I ′)) and V ([failure, ∗, ∗]) = −∞

The obtained MDP is easily solved using a standard dy-
namic programming, like policy iteration, by propagating
backwards the value from terminal states to initial state. The
policy obtained is optimal for this class of MDP (finite hori-
zon with no loops). Consequently, the execution of such
model of planning is optimal because of the one to one corre-
spondence between the state of execution and the state of the
obtained MDP.

6. Experimental Results

6.1. Objectives

The proposed model overcomes the difficulties we de-
scribed in the introduction by proposing a rich model of deci-
sion process that can deal with complex temporal constraints,
limited resources, and uncertainty. However, we need to de-
termine the gain obtained using this approach and the scale of
problems we can solve. The first experiments consist of show-
ing the number of tasks our model can solve. We show in the
following that our approach is powerful enough for a hundred
tasks required by robotic applications (we can deal with more).

• Scalability: The objective as described in [5] for this ex-
periment is to overcome the problem with a hundred tasks. We
show in the experiments how we achieve this objective with
some adaptation in discretizing resources and the Sensitivity
of the approach to this discretization.

•Performance: We compare our approach with the ap-
proaches based on temporal planning techniques. This com-
parison is made using the expected values obtained respec-
tively by our approach and an approach similar to the one ex-
plained in [12].

6.2. Experiments on scalability

A benchmark, composed of several missions of different
sizes, has been used. For instance, the mission composed of
four tasks can be represented by the figure 1.

Temporal constraints are given for each task. Thanks to
these informations, we can compute the state space. Its size
relies on :

• the number of tasks
• the number of intervals for each task
• the number of resource rates that can be available after

the execution of each task
These parameters (intervals per task, range of available re-

sources) affect the complexity of the problem. In the worst
case, the state space size is given by the following equation :

#nstates = #ntasks.#nMax Interv .#nMax Res (2)

where #ntasks is the number of tasks of the mission,
#nMax Interv is the maximum of intervals per task,
#nMax Res is the maximum of resource levels per task.

Number of tasks : As it can be seen in equation 2, if the num-
ber of tasks increases, the state space size grows. Figures 7
and 8 illustrate this evolution.

Number of intervals for each task : In the worst case, the
number of intervals for a task is given by :

#nInterv = (LET − minδi − EST ).#ndurations

where #ndurations is the number of possible execution dura-
tions for the task. If the temporal constraints are tight, the tem-
poral window [EST, LET] is reduced. We then compute few
intervals and the number of states decreases.

When we increase the size of the temporal windows, the
state space size grows. Indeed, temporal constraints are less
tight, and new execution plans (involving new states) can be
considered. Figure 6 gives an example of this evolution con-
sidering a graph of one hundred tasks. Size“1” is the initial size
of the temporal windows. Size “2” stands for sizes of windows
twice larger than the initial size. On figure 6, the state space
size rises and then, levels off at 1.5. Indeed, temporal win-
dows become more and more large, and temporal constraints
get more and more relaxed. At 1.5, temporal windows don’t
constraint any more the execution of the agent. All the pos-
sible execution plans (and possible states) are considered and
the maximum of the state space size is reached. Keeping on
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Figure 7. State space size using different re-
source level algorithms

relaxing the constraints doesn’t increase the state space size.
Thus, figure 6 shows that temporal constraints allow to prune
the possible start times and end times. The more tighten the
constraints are, the less execution intervals are possible and
the smaller the state space is.

Number of resource levels : In the worst case, the number of
resource levels for a task ai is given by :

#nRes = (
∑

ak∈pred(ai)

#nRes).#nconsum

where #nconsum is the number of possible resource consump-
tions for a task. This equation gives the number of available re-
source levels when using the explicit resource level algorithm.

If we use the “ MinMax resource level ”, the number of re-
source levels for a task ai is given by :

#nRes =
(

(maxak∈pred(ai)r)−(minak∈pred(ai)r)
)

.#nconsum

where maxak∈pred(ai)r is the maximum resource level avail-
able at the beginning of the task, and minak∈pred(ai)r is the
minimum resource level.
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Max resource level ” algorithm

Figure 7 represents the state space size for different size
of the graph, using the explicit and Min-Max resource level
propagation. The explicit resource level algorithm can not be
used as soon as the graph mission is greater than 20. The state
space size is greater when using the “ MinMax resource level”
algorithm. Indeed, with “ MinMax resource level”, some re-
source levels are considered to be available, but are not le-
gal (possible). They are called “impossible” levels. The dif-
ference in state space size between the two algorithms re-
lies on these “impossible” levels. For each task, let’s con-
sider minc the minimum resource consumption, and maxc the
maximum. If each value between minc and maxc is a pos-
sible resource consumption for the task, all the resource lev-
els computed by the “ MinMax resource level ” algorithm are
possible. There is no difference between the explicit and the
“ MinMax resource level” algorithms. While some values in
[minc, maxc] are not resource consumption values, the num-
ber of “impossible” resource levels computed by the“ Min-
Max resource level ” increases. Therefore, the difference be-
tween the state space size using the “ MinMax resource level”
or the explicit algorithm is more important.

When we compute the value of each state, even with “ Min-
Max resource level ” algorithm, we only consider the possible
resource levels: impossible resource levels are not taken into
account. Thus, states corresponding to resource values that are
not actually possible, are not valued. We only consider the le-
gal resource levels in the interval [min, max]. Therefore, the
values are the same whatever the algorithm we use.

Figure 8 shows the state space size when we use the “ Min-
Max resource level” algorithm. As seen previously, the state
space size increases when the number of tasks grows.

If the initial resource level is large, a lot of resource lev-
els are available for each task. When we compute the resource
levels we only consider levels greater than zero. If the ini-
tial resources increase, the number of negative resource lev-
els decreases and more levels must be taken into account. Fig-
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ure 9 gives the state space size, for a one hundred task mission,
when increasing the initial resource level. When the initial re-
sources are greater than 350 units, it can be seen that the state
space size levels off. Indeed, the agent has a large initial re-
source level, and never lacks of resources. When we compute
the resource levels, each level is positive and is taken into ac-
count : increasing the initial level, does not increase the num-
ber of levels that have to be considered. If the initial resources
are scarce, a lot of resource levels are pruned while comput-
ing the legal resource levels. Then, the state space size dimin-
ishes.

Branching factor If we increase the number of possible pre-
decessors for task ai, the number of possible resource levels
available before ai execution increases, and the number of pos-
sible start times as well. The number of branchings in the mis-
sion graph influences the state space size. More experiments
about the number of branchings are under development.

MDPs smaller than one hundred states can be solved easily.
Thus, these experiments shows the scalability of our approach.

6.3. Experiments on performance

For experiments on performance, we have compared our
approach to a probabilistic temporal planning that uses a stan-
dard strategy using the most likely duration and resource con-
sumption.

Table 1 gives the initial state’s value using our approach and
a standard strategy [1]. The value of the standard strategy is a
simple adaptation of equation 1 as follows:

V ′ = max
et(I′)≤LET,r≥∆r

(Pw(I ′|et(I)ai
).Pr(∆r)).V ([ai+1, r−∆r, I ′])

Table 1 shows that our approach outperforms the proba-
bilistic planning approach. More experiments are needed to
produce more definitive results.

number value (our value (standard
of tasks approach) strategy)

2 5 1.8
4 15 2.69
20 148.9 2.8
30 327361 -162.72
50 1.22 -325.38

Table 1. Initial state’s values

7. Related Work

There has been considerable work in planning under uncer-
tainty that lead to two categories of planners: conformant plan-
ners and contingent planners. These planners are characterized
along to important criteria: representation of uncertainty and
observability. The first criterion consisting of uncertainty rep-
resentation has been addressed in two ways in many planners
using disjunction or probability while the second criterion con-
sisting of Non-observability (NO), partial observability (PO)
or a full observability (FO) of planners. A survey on all classes
of planners can be found in Blythe [2] and Boutilier [3] where
details are given on NO, PO, or FO disjunctive planners and on
NO, PO or FO probabilistic planners. Let us just recall some of
those planners: C-PLAN NO-disjunctive planner, Puccini PO-
disjunctive planner, Warplan FO-disjunctive planner, Buridan
NO probabilistic planner, POMDP, C-MAXPLAN PO proba-
bilistic planners and JIC, MDP FO probabilistic planners. In
this section we focus on why those planners are unsuitable for
our concern and why our work is a contribution to overcome
those limits.

These planners encounter some difficulties in our domain
of interest:

• Model of time: the existing planners do not support ex-
plicit time constraints nor complex temporal dependencies.

• Model of actions: the existing planners assume that ac-
tions are instantaneous.

• Scalability: the existing planners don’t scale to larger
problems. For rover operations, a daily plan can involve on
the order of a hundred operations, many of which have uncer-
tain outcomes.

The approach we present in this paper meets the require-
ments for a rich model of time and actions and for scalabil-
ity. It complements the work initiated in [6] by using a similar
model of time and utility distribution and by using a decision-
theoretic approach. The advantage of using such approach is
to achieve optimality. Another contribution consists of han-
dling uncertainty on resource consumption combined with un-
certainty on execution time.

In the MDP we present, actions are not instantaneous as in



the previous planners and can deal with complex time con-
straints such as a temporal window of execution and tempo-
ral precedence constraints. We also show that our approach
can solve large problems with a hundred operations, many of
which are uncertain. Another requirement needed by the rover
applications consists of continuous time and resources. We
experimentally show that when we use different approaches
for resource units, our approach has a minor error at run-time
while we win in scalability of the approach. The tradeoff be-
tween the scalability and the time granularity shows that we
can discretize the time and the outcomes of actions regarding
a small error in execution. Another requirement mentioned for
the rover applications is concurrent actions. This problem is
under development, taking advantage of some multiagent con-
cepts where as soon as the rover needs to execute two actions
we consider those two actions are two concurrent agents. This
new line of research consists of bridging the gap between the
multiagent systems and the distributed MDP.

8. Conclusion and future work

In this paper we presented an MDP planning technique that
allows for a plan where operations have complex dependen-
cies and complex time and resource constraints. The opera-
tions are organized in an acyclic graph where each operation
has a temporal window during which it can be executed and an
uncertain resource consumption and execution time. This ap-
proach is based on an MDP using a rich model of time and
resources and complex dependencies between actions. This
technique allows us to deal with the variable duration of ac-
tions. We present experimental results that show that our ap-
proach can scale to large robotic problems (a hundred of oper-
ations). Our approach overcomes some of the limitations de-
scribed in [5]. Indeed, our model is able to handle more com-
plex time constraints and uncertainty on tasks’ durations and
resource consumptions. Moreover, as required in [5], our sys-
tem can consider plans of more than a hundred tasks.

However, this approach needs to be extended to other re-
quirements such as continuous variables. In our current ver-
sion of the approach we use a discrete representation of time
and resource. We show experimentally that with such repre-
sentation the errors in execution are small and this representa-
tion can be tolerated. We continue experiments in this line of
work to reduce the errors. We are specially interested in find-
ing tradeoffs between the scalability, errors in execution and
discretization. The other extension we are developing consists
of the use of multiagent system with complex temporal depen-
dencies using a distributed MDP.

Currently, we use a discrete representation assuming that
most of states are stored. The other are manipulated as one of
stored states using 1-NN techniques. This approximation does

not affect the quality of the system. Future works will con-
cern the construction of plans that we consider given in this
paper.
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