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Abstract

Qualitative coalitional games (QCGs) are a variation of
conventional coalitional games in which each coalition may
choose to cooperate in a number of different ways, with dif-
ferent choices resulting in potentially different sets of goals
being achieved; each agent is associated with a set of goals,
the intuition being that an agent is “satisfied” if any of
its goals are achieved, but is indifferent between them. In
this paper, we extend the framework ofQCGs to incorpo-
rate preferencesthat agents have over their goals. In ad-
dition to establishing some basic properties ofQCGs with
Preferences (QCGPs), we investigate and characterise the
complexity of six natural decision problems associated with
QCGPs. For example, we prove that the problem of estab-
lishing Pareto optimality of a goal set with respect to some
coalition is co-NP-complete. We end with some brief con-
clusions and a discussion of related work.

1. Introduction

Coalitional games are abstract models of cooperative in-
teraction between self-interested agents, and as such, they
have been widely studied in the game theory literature [5,
pp.255–312]. The success of such models has led to them
being adapted for use within the multiagent systems com-
munity, where they have proved to be of great value in un-
derstanding the nature of coalitions and coalition forma-
tion [8, 9, 7]. Conventional coalitional games (with trans-
ferable payoff) assign to each potential coalition a numeric
value, corresponding to utility that could be distributed
among coalition members if the coalition chose to cooper-
ate. Given such models, solution concepts such as the core
attempt to predict which coalitions might form, by consid-
ering the potential payoff an agent could get from joining
different coalitions: a coalition is viewed as being “stable”
if the members of that coalition have no incentive to defect
and join any other coalition [5, pp.258–259].

In [10], we introduced a variation of coalitional games
called Qualitative Coalitional Games(QCGs). In a QCG,
each agent is assumed to have a set of goals: an agent is

“satisfied” with any outcome that accomplishes one of its
goals, but is indifferent aboutwhich of its goals should be
achieved – all are considered equally good (individual ra-
tional). Each potential coalition is then modelled as hav-
ing a set of choices available, intutitively correspondingto
the different ways in which they could choose to cooperate.
Associated with each choice is a set of goals, which would
be achieved if the coalition chose to cooperate in this way.
QCGs seem an appropriate abstract framework within which
to reason about goal-oriented multiagent systems, where
numeric utility values are either inappropriate or else impos-
sible to derive. In [10], we formulated and investigated the
computational complexity of a wide range of solution con-
cepts associated withQCGs: for example, we demonstrated
that showing the core of aQCG is non-empty (i.e., that a
coalition has a choice from which there is no incentive for
any member of the coalition to deviate) isDp-complete.

The aim of the present paper is to extend the basic frame-
work of QCGs, by allowing for agents that have preferences
over goals. We begin by formulatingQualitative Coali-
tional Games with Preferences(QCGPs), defining some con-
cepts (such as the core and stable sets) associated with
QCGPs, and establishing some fundamental properties of
these. The remainder of the paper is then largely taken up
with an investigation into the computational complexity of
six decision problems associated withQCGPs. For exam-
ple, we show that the problem of establishing Pareto opti-
mality of a goal set with respect to some coalition is co-
NP-complete. In general we will simply state results with-
out presenting detailed proofs. The reader interested in such
is referred to a more extensive version of this paper [3]. We
end with a brief discussion of related work and some con-
clusions.

Notation: We use> and? to denote the Boolean con-
stants “true” and “false”. For a propositional formula�(x1; : : : ; xn) over the variablesXn = hx1; : : : ; xni, given
Z � Xn, we denote by�[Z℄ the result of evaluating� un-
der the instantiationxi := > if xi 2 Z, xi := ? if xi 62 Z.
In addition to the standard Boolean operations of con-
junction (̂ ), disjunction (_), implication ()), and nega-



tion (:), we use the binary exclusive-or operation, denoted
by �. We usually omit the conjunction symbol (^) in for-
mulae, for example writing' to abbreviate' ^  . Some
familiarity with computational complexity theory is as-
sumed [6].

2. QCGPs

As noted above,QCGs were introduced as an abstract model
of scenarios in which an agent, having some set of goals of
which it would like to realise at least one, may have to coop-
erate with other agents in order to bring this about [10]. The
characteristic function of conventional coalitional games is
replaced inQCGs by a function which allocates to every
coalition a set of choices, where each choice intuitively cor-
responds to one way that the coalition could choose to co-
operate. Each choice is then associated with a set of goals,
the intuition being that if the coalition chose to cooperatein
this way, then the associated set of goals would be achieved.
Here, we extend theQCG model by assuming that agents
havepreferencesover goals.

Definition 1 A Qualitative Coalitional Game with Prefer-
ences(QCGP) is a2n+ 3-tuple:� = hG;Ag;G1; : : : ;Gn;	; .1; : : : ; .ni; where:� G = fg1; : : : ; gmg is a (finite, non-empty) set ofgoals;� Ag= f1; : : : ; ng is a (finite, non-empty) set ofagents;� Gi � G is the set ofacceptable goalsfor agent i2 Ag;� 	 is a propositional logic formula defined over the vari-
ables Ag= ha1; : : : ; ani and G= hg1; : : : ; gmi, represent-
ing thecharacteristic functionof the game: for every coali-
tion C� Ag and goal set G0 � G, we have	[C;G0℄ = > if
one of the choices for coalition C is goal set G0;� .i � Gi � Gi is a partial order over Gi representing i’s
preference relation, so that g1 .i g2 indicates that i would
rather have goal g1 satisfied than goal g2.
We assume that.i is presented as a directed acyclic
graph Di , so that forming the transitive closure of this
graph’s adjacency matrix will yield a matrixD�

i for which
D�

i [g1; g2℄ = > if and only if g1 .i g2.
A set of goalsG0 satisfiesagenti if G0 \Gi 6= ;. We say

G0 is feasiblefor coalitionC if this goal set corresponds to
one of the choices ofC, i.e., if	[C;G0℄ = >. ForC � Ag,
let X (C) denote the set of subsets ofG that are both feasi-
ble forC and satisfy every member ofC:X (C) = fG0 � G j 	[C;G0℄ = >^

î2C

Gi \G0 6= ;g
If X (C) 6= ;, then we say thatC is successful (since it has
at least one feasible choice that would result in an individ-
ual rational outcome for each of its members). LetX� de-
note the set of all goals sets which both satisfy and are fea-
sible for some coalition in�: X� = [C�Ag X (C).

We first comment on some aspects of these definitions,
in particular the relationship between the agents, goal sets
and feasibility function represented by the propositionalfor-
mula	. It should be noted that, in principle,f	 thefunction
described by	(Ag;G) could beanypropositional function,
e.g. we do not assumea priori that monotonicity conditions
hold such asf	[C;G0℄ = > implying f	[C0;G0℄ = > when-
everC � C0. To allow such generality may well seem to
be rather excessive, however, there are a number of reasons
why we proceed in this way. Firstly, it is certainly the case
that such latitude does not preclude any subsequent consid-
eration of restrictions such as monotonicity, i.e. our formal-
ism does notloseany expressive power by being general.
A second reason concerns rather subtle technical issues that
would need to be addressed were only feasibility functions
meeting given criteria to be employed. A full elaboration of
this point would be out of place in the context of the present
paper and so we merely comment that these arise in describ-
ing instances ofQCGPs in decision problems: if we wish
to consideronly thosef	(Ag;G) that satisfy some prop-
erty then it is reasonable to insist that	(Ag;G) – the repre-
senting formula – can be easilyvalidatedas defining such
functions. For a more detailed (and rather technical) discus-
sion of such representation issues with respect to monotone
feasibility functions, we refer the interested reader to [10,
pp. 13–17]1. Finally, as regards the specific case of mono-
tone feasibility functions, it is interesting to note thereare
strong indications suggesting that the decision problems we
consider forQCGPs would not become any easier if such
a restriction were imposed: of the nineQCG related deci-
sion problems in [10] for which monotone variants are ex-
amined, in all but two cases the complexities of the gen-
eral and monotone forms are identical, i.e. problemsNP-
complete,Dp-complete, etc. in the general case remain so
in the monotone variant. In only one instance does mono-
tonicity result in a polynomial time decision process for a
problem whose unrestricted form is intractable.

Of course, in practice “almost all” of the22n+m
pos-

sible definitions off (Ag;G) will be of no interest either
by reason of their being unlikely to occur in a realistic
context or because the shortest formula	 equivalent to
f (Ag;G) has excessive length. We also note that the man-
ner in which	 arises may vary considerably depending
on the exact scenario being modelled within an associated
QCGP. Thus, sometimes it may happen that the relationship
between agents and their associated goals suffices in itself
to define	; in others external factors may influence how	 (or more accuratelyf	 the associated propositional func-
tion) is formed. In order better to appreciate this distinction,
consider the following two examples.

1 The page numbers are for the technical report version of [10], not the
journal version which is in press at the the time of writing.



Example 1 A set of students have to select project topics
from a given collection. Each project can be allocated to
at most one student and students have preferences over the
subset of projects they would be prepared to undertake.

Example 2 We have a set of students and collection of
project topics as in Example 1, and the same model of pref-
erences. The allocation control is, however, complicated
by two additional factors: each project may be undertaken
by severalstudents, e.g. as a team working exercise; there
are external considerations governing whether an individ-
ual student (or team of students) is seen as suited to under-
take particular projects, e.g. some may require background
in certain specialist fields, some may be considered “too
easy” or “too demanding” for specific classes of student.

In both examples we haveAg = fs1; : : : ; sng correspond-
ing to the student set andG = fp1; : : : ; pmg the pool of
available projects so thatGi and the associated partial or-
der.i defines the subset whichsi is prepared to undertake
and preferences over these. Now in Example 1 there are a
number of ways in which one could define	(Ag;G): for
example, by	[C;G0℄ = > if and only if there is an injec-
tive mapping� : C ! G0 with which �(ai) 2 Gi for
eachai 2 C , i.e. G0 is feasible if it allows eachsi to be
allocated a project in their target set. It is clearly the case
that such	 depend solely on the specified setsGi . In con-
trast, with Example 2, knowingGi may not suffice to allow	 to be given: the presence of the additional factors colours
which G0 may be feasible for a givenC. It is worth noting
that Example 2 gives rise to a number of non-trivial strate-
gic issues: suppose a final allocation of projects to students
is to be generated by requiring individuals,si , to specify
a (linear) preference ordering over some small number of
projects,Pi . Now it cannot beknownif Pi � Gi (although,
presumably,Pi \Gi 6= ;), and thus if individuals know how
the allocation algorithm operates, coalitions may be able to
form that ensure those within it are given their most pre-
ferred choice by including “false preferences” in their re-
turnsPi . One aim underlying our formulation ofQCGPs is
to provide methods by which such possibilities can be anal-
ysed.

Given aQCGP�, we can extend the concept of an agent’s
preferences to that of acoalition’s. We present two defini-
tions and discuss how these are related. It is, of course, the
case that a number of methods for defining preferences be-
tweensetsfrom an underlying basis of partial order rela-
tion have been considered before, e.g. [4] gives an overview
of such extensions in one context, and we make no claim to
have originated the methods below.

Definition 2 For C � Ag and G0, G00 2 X�, we say that C
strongly prefersthe goal set G0 to G00, written G0 AC G00 if

1. G0 2 X (C).

2. 8i 2 C; 9r i 2 G0 \Gi ; 8si 2 G00 \Gi : r i .i si .

We say that Cweakly prefersthe goal set G0 to G00, written
G0 �C G00 if

1. G0 2 X (C).
2. 8i 2 C; 8si 2 G00 \Gi ; 9r i 2 G0 \Gi : r i .i si .

If G0 AC G00 this indicates that for eachi 2 C there is
a single goal, r i 2 G0 \ Gi that i ranks higher thanev-
ery oneof the goals,si , that it could have satisfied within
G00. If G0 �C G00 this indicates that for eachi 2 C no mat-
ter which goalsi 2 G00 \ Gi that i may have the possibil-
ity of realising, it can identify some goalr i 2 G0 \Gi that it
would rather achieve. We note that the goal setG00 is not re-
quired to be in the setX (C), although as a member ofX�
it must belong toX (S) for at least one coalitionS� Ag.

Our formulations ofG0 being preferred toG00 by C cap-
ture the idea thatG0 is a set of a goals that are feasible for
and satisfyC, i.e.,G0 2 X (C), whereas for each memberi
of C, G00 either fails to satisfyi at all or any goalsi 2 Gi

that can be realised withinG00 can be outranked by a goal
r i 2 G0\Gi : the difference betweenstrongandweakprefer-
ence is that in the former case at least oner i must be present
in G0\Gi that is preferred toeverygoalsi 2 G00\G, whereas
in the latter case differentr i can be used depending on the
goal chosen withinG00.

In terms of the scenario outlined in Example 2, for a set
of students,S, having feasible choices,P andP0, P AC P0,
indicates that for each student inS, there is somesingle
project in the poolP0 that is considered to be preferable
to any option that would satisfy them in inP. In contrast,
P �C P0, indicates that no matter which projects is given
within P, the student will be able to identify (at least) one
project inP0 they would rather be allocated.

Before proceeding with some further properties of these
relationships we extend our preference concepts to apply
to setsof coalitions. While our principal interest lies in the
caseR = 2C for C � Ag since this forms the basis for our
concepts of stability and core, the definition below is given
in terms of arbitrary (non-empty) setsR � 2Ag.

To avoid excessive repetition we use the relational sym-
bol� to indicate eitherA or�.

Definition 3 Given asetof coalitionsR � 2Ag the binary
relationship�R overX (R) = [C2RX (C) is defined as
G0�RG00 if for some coalition C2 R it holds that G0�CG00.
If G0 �R G00 we say that G0 strongly/weaklydominatesG00
with respect toR, noting that G0 �R G00 implies there is
some C2 R for which G0 strongly/weakly dominates G00
with respect to C.

The following Lemma summarises some key properties of
the relations�C andAC.

Lemma 1



a. If G0 AR G00 then G0 �R G00; the converse, however,
does not always hold.

b. IfR = fCg, (i.e., contains exactly one coalition), then�R induces a partial order overX (C).
c. IfR satisfies the property that for every pairfC;Dg of

coalitions inR, C \ D 6= ; then for all fG0;G00g 2X (R) at most one of G0 �R G00 and G00 �R G0 hold,
i.e.,�R is asymmetric.

Proof: We omit all but the proof of (a), concerning which
it is immediate from the definitions thatG0 AR G00 implies
G0 �R G00. To see that the converse may fail to hold, con-
sider the followingQCGP:

Ag = fa1g
G = fg1; g2; g3; g4g

G1 = G	 = a1 , ((g1 ^ g3)� (g2 ^ g4)).1 = fg1 .1 g2; g3 .1 g4g
Then fg1; g3g �fa1g fg2; g4g since g1 outranksg2

and g3 outranks g4. It is not the case, however, thatfg1; g3g Afa1g fg2; g4g since g1 is not strictly pre-
ferred tog4 andg3 is not strictly preferred tog2.
From Lemma 1(b), the following subsets ofX (C) are well-
defined for any coalition.

Definition 4 For any C � Ag, themaximal strongly pre-
ferred goal sets with respect toC, denoted�A(C), are de-
fined through�A(C) = fG0 2 X (C) j 8G00 2 X (C); G00 6AC G0g:
For any C� Ag, themaximal weakly preferred goal sets
with respect toC, denoted��(C), are defined through��(C) = fG0 2 X (C) j 8G00 2 X (C); G00 6�C G0g:
In the event of�A(C) = ��(C) we write simply�(C).
We note from this definition thatG0 2 X (C) n ��(C) im-
plies there is someG00 2 ��(C) such thatG00 �C G0.

In informal terms, the sets of goal sets�A(C) and��(C)
describe theoptimal outcomes that could be realised by a
coalition, C, with respect to each of the orderingsA and�: if G0 2 ��(C) then not only isG0 a feasible and sat-
isfying choice forC (by virtue of��(C) being a subset ofX (C)), in addition,G0 cannot be outranked by any other
feasibly satisfying choice forC. Certainly, in the event that
C could succeed, i.e.X (C) 6= ;, one would expect it to
seek to bring about one of its optimal outcomes, i.e. some
elementG0 2 ��(C). From such a perspective the issue of
whether a givenG0 2 X (C) also belongs to��(C) becomes
a decision question of some interest and is one whose com-
plexity we address in Section 4.

3. The Core and Stability

In this section we introduce some solution concepts in re-
spect of the preferred goal sets. These solution concepts are
closely based on the corresponding concepts from coopera-
tive game theory [5].

Definition 5 Let � be aQCG G = hG;Ag;G1; : : : ;Gn;	i
with preference relationsh.1; : : : ; .ni. For a coalition C�
Ag, thestrong coreof C, denoted�A(C) is the setfG0 2 �A(C) j 8C0 � C;8G00 2 X (C0); G00 6AC0 G0g:
For a coalition C� Ag, theweak coreof C, denoted��(C)
is the setfG0 2 ��(C) j 8C0 � C;8G00 2 X (C0); G00 6�C0 G0g:
Again, if it is the case that�A(D) = ��(D) for all D 2 2C

we refer simply to thecoreof C denoting this�(C).
These notions of coalitional core describe one motivation
for a coalition,C, to remain intact in order to bring about
a givenG0 2 ��(C). For suppose it were the case thatG0
did not belong to the set��(C), i.e. was not an element
of the core as we have defined it above. Certainly,C as it
stands cannot do better than to bring about the setG0 since
G0 is one of its optimal outcome choices, however, the fact
that G0 62 ��(C), indicates that there is somestrict sub-
set ofC0 of C that has good reason to secede:C0 can realise
some choiceG00 that its members prefer to those goals that
can be achieved withinG0. Thus, by analogy with the clas-
sical quantitative view of the core, we might say that the
“pay-off” that the members ofC0 achieve by bringing out
G00 is better than they would receive as part ofC in bring-
ing aboutG0. Our formulation of coalitional core above,
not only gives rise to the obvious decision question for a
coalition C and feasibly satisfying goal setG0 of whether
G0 2 ��(C), but also motivates a rather more subtle issue:
that of whetherC cansucceed and witheveryfeasibly satis-
fying outcome forC in its core, i.e. whetherX (C) = ��(C)
with X (C) 6= ;. For QCGPs within whichC has the latter
property,C may safely bring aboutanyof its feasibly satis-
fying outcomes,G0, being sure that the coalition intact can-
not do “any better” than achieveG0 and that no strict sub-
setC0 can realise outcomes it would prefer, and thence has
no “rational” incentive to break away. We address both of
these questions in Section 4.

A coalition attempting to realise someG0 2 ��(C) n��(C) may be undermined via someC0 � C forming
to bring about that goal setG00 which attests to the non-
membership ofG0 in ��(C). Our next definitions introduce
another class of methods through whichC may be “at risk”
in attempting to realiseG0 2 X (C). In these we consider
somesetof coalitionsR in order to define notions of a col-
lection of feasible outcome,Y , beingstable.



Definition 6 For R � 2Ag andY � X (R), we say thatY
is internally stable with respect to the set of coalitionsR if8G0;G00 2 Y ; :9C 2 R for which G0�C G00 or G00 �C G0:
The setY is externally stable with respect to the set of coali-
tionsR if8G0 2 X (R) n Y ; 9G00 2 Y and C2 R s.t. G00 �C G0:
The setY is stable with respect to the set of coalitionsR if
it is both internally and externally stable with respect toR.

Definition 7 For R � 2Ag andY � X (R), we say that
a subsetY of X (R) is anadmissible goal set with respect
toR if Y is internally stable with respect toR and for ev-
ery Gp 2 X (R) n Y , if there is a coalition C2 R for which
Gp�C Gq for Gq 2 Y then there is some Gr 2 Y and coali-
tion D 2 R for which Gr �D Gp. An admissible goal setY
is maximal with respect toR if no strict superset ofY is ad-
missible.

Notice that everystable setwith respect toR is also a
maximaladmissible goal set with respect toR; however,
the converse does not always hold. For example, considerR = fC;D;Eg, whose members are pairwise disjoint; fur-
thermore suppose we have three goal setsG(C) 2 X (C),
G(D) 2 X (D) andG(E) 2 X (E). It may be the case that

G(C) �C G(D) �D G(E) �E G(C):
If X (R) = fG(C);G(D);G(E)g, then the maximal admissi-
ble subset is the empty set; however, this is not externally
stable: in fact this system has no stable set. This possibil-
ity motivates the following.

Definition 8 The set of coalitionsR � 2Ag is coherentin
theQCGP�, if everyY � X (R) that defines a maximal ad-
missible set with respect toR is a stable set with respect toR.

The setsX (R) and concepts of core and stability introduced
in Definitions 5, 6 are analogous to the idea ofimputation,
core, and stability in classical coalitional games, cf. [5,Sec-
tion 14.2].

As an aside, we note that the definition of the core of a
succesful coalition differs from the (non-preference model)
view of [10] in which “core” of a coalition,C, is non-empty
if and only if X (C) 6= ; and for all strict subsetsC0 of C,
we haveX (C0) = ;. Suppose, however, we allow defini-
tions of�C to be independentof the preference relationsh.1; : : : ; .ni: then defining�(C) with respect to these we
can capture the interpretation of [10], as shown in the fol-
lowing easy lemma.

Lemma 2 Let � be a QCGP and define a preference rela-
tion for coalitionsC � Ag by

G0�CG00 if G0 2 X (C) and9C0 � C for which G00 2 X (C0)
so that�(C) – the core of C – isfG0 2 X (C) j 8C0 � C; 8G00 2 X (C0); G00 6 �C0G0g:
Then�(C) 6= ; if and only if C is both minimal and suc-
cessful.

Proof: If �(C) 6= ; then it is certainly the case thatC is suc-
cessful since�(C) � X (C). It must also be the case, how-
ever, thatC is minimal: for otherwise we have someC0 � C
with X (C0) 6= ; so that for anyG00 2 X (C0) we have
G00 �C0 G0 for everyG0 2 X (C) contradicting�(C) 6= ;.
Similarly if C is both successful and minimal then the for-
mer yieldsX (C) 6= ; while the latter indicates that for ev-
ery C0 � C, we haveX (C0) = ; hence�(C) = X (C) 6= ;
as required.

We note that we could restrict notions of stability and ad-
missibility to the case where the underlying set of coalitionsR is simply2Ag, i.e., the set of all possible coalitions. There
are, however, some disadvantages of this. Although it is cer-
tainly the case any setY � X� that is internally stable with
respect to2Ag will also have this property with respect to any
subset of the set of coalitionsR = fC j Y \ X (C) 6= ;g,
it may be the case that we wish to regard some goal sets
as internally stable (with respect to a given set of coali-
tionsR) that could not be considered as such in terms of
the set2Ag, i.e., if Y is internally stable for2C with some
C � Ag, it does not necessarily have this property with re-
spect to anyD 6� C. Similarly, as regards our definitions
of external stability and admissibility, using onlyR = 2Ag,
will view someY is externally stable (or admissible) that
do not have this property with respect to a given coalition
C or even2C. For example, we may haveY � X (2C) but
with someG00 2 X (2C) n Y for which no goal setG0 2 Y
and coalitionD 2 2C givesG0 �D G00 (henceY is not ex-
ternally stable with respect to the set of coalitions2C) even
thoughG0 �2Ag G0: the latter preference being exhibited by
someD 6� C.

In total, the choice ofR = 2Ag may be too restrictive sen-
sibly to considerinternal stability, but rather too general to
use as a basis forexternalstability.

We introduce some further notation prior to proving
some basic properties of these structures. ForR � 2Ag, we
define the sets��(R) =̂ fY � X (R) j Y is internally stable w.r.t.Rg��(R) =̂ fY � X (R) j Y is externally stable w.r.t.Rg��(R) =̂ ��(R) \ ��(R)Æ�(R) =̂ fY � X (R) j Y is maximally admissible w.r.t.Rg
Thus,��(R) defines the set of all stable goal sets with re-
spect toR.



3.1. Properties of Stable Sets and the Core

The relationships between these sets are summarised in the
next lemma.

Lemma 3 For anyR � 2Ag,

a. ��(R) � �A(R)
b. �A(R) � ��(R)
c. ��(R) \ �A(R) � ��(R) � �A(R) \ ��(R).

Proof: The proofs of (a) and (b) follow directly from
Lemma 1(a): ifY 2 ��(R) then for anyG0, G00 2 Y
andD 2 R, by definition, neitherG0 �D G00 nor G00 �D

G0 hold, thus neitherG0 AD G00 nor G00 AD G0, i.e.,Y 2 �A(R). Similarly Y 2 �A(R) indicates that for each
G0 2 X (R)nY we have someG00 2 Y andD 2 R for which
G00 AD G0, which givesG00 �D G0 and thusY 2 ��(R).
Finally, (c) is immediate from (a), (b), and the definition of��(R).
Regarding��(C) for C � Ag, we observe that parts (b–d)
of our next result can be seen as an analogous result to [5,
Proposition 279.2].

Lemma 4 For any C� Ag,

a. ��(C) � �A(C) � �A(C) � ��(C).
b. For everyY 2 ��(2C), ��(C) � Y .

c. IfY andZ are distinct sets in��(2C) thenY 6� Z andZ 6� Y .

d. If ��(C) 2 ��(2C) then��(2C) = f��(C)g.
Proof: Omitted.

Lemma 5 ��(fCg) = f��(C)g.
Proof: That��(C) is a stable set w.r.tC is immediate from
the definition of��(C): if fG0;G00g 2 ��(C) then cer-
tainly neitherG0�C G00 norG00�CG0 hold and, thus,��(C)
is internally stable w.r.t.C. In addition if we consider any
G0 2 X (C) n ��(C) then sinceG0 62 ��(C) there must be
someG00 2 ��(C) for which G00 �C G0 establishing that��(C) is externally stable w.r.t.C. To see that��(C) is the
unique stable set w.r.t.C, it suffices to observe that from ex-
ternal stability��(C) � Y for anyY 2 ��(fCg), which
suffices to ensure uniqueness.

We note that Lemma 5 indicates thatevery QCGP hasat
least one subset of2G which is stable. This set may, of
course, simply be the empty set: in the eventC � Ag hav-
ing no satisfying and feasible goal set, i.e.,X (C) = ;, then��(C) = ;which is stable. Since��(C) is the unique max-
imal admissible set with respect toC, it follows that in ev-
ery QCGPthe set of coalitionsR = fCg is coherentfor ev-
ery C � Ag. Another interesting consequence of Lemma 5

is the following, which asserts that there is anon-emptysta-
ble set of goal sets within theQCGP� if and only if some
coalition has a feasible and satisfying goal set.

Theorem 1 Let� be aQCGP� = hG;Ag;G1; : : : ;Gn;	; .1; : : : ; .ni:
There existsR � 2Ag for which��(R) 6= f;g if and only
if there exists some coalition C� Ag for whichX (C) 6= ;.
Proof: ()) SupposeC � Ag is such thatX (C) 6= ;. From
Lemma 1(b), the set��(C) is well-defined and non-empty.
From Lemma 5,��(C) is a stable set with respect toC.
Thus if for someC � Ag, it holds thatX (C) 6= ; then we
identifyR � 2Ag, i.e.,R = fCg, for which��(R) 6= ;.
(() SupposeR � 2Ag is such that��(R) 6= f;g, and letY
be a stable set with respect to the set of coalitionsR. By def-
inition, Y � X (R) = S

C2R X (C), and thusY 6= ; im-
plies that for someC � Ag, X (C) 6= ;.
One of the main points of interest regarding Theorem 1 is
that it allows the computational complexity of the following
decision problem to be determined exactly.

NON-TRIVIAL STABLE SET: (NTSS)
Instance: QCGPhG;Ag;G1; : : : ;Gn;	; .1; : : : ; .ni.
Question: Does there existsR � 2Ag andY � X (R) such thatY 6= ; andY 2 ��(R)?

Corollary 1 NTSS is NP-complete.

Proof: From Theorem 1, an instance� = hG; .1; : : : ; .ni
of NTSS is accepted if and only if some coalition is success-
ful, i.e., NTSS is equivalent to deciding ifG is accepted as
instance of the problemNON-EMPTY GAME (the comple-
ment of the problemEMPTY GAME which accepts instances
G of QCGs for which no coalition succeeds). The decision
problemEMPTY GAME was shown to be co-NP-complete in
[10, Theorem 35], and thus its complement decision prob-
lem – NON-EMPTY GAME – is NP-complete. This suffices
to deduce thatNTSS is alsoNP-complete.

We note, in passing, that from [10, Corollary 36] it is im-
mediate thatNTSS remainsNP–complete even if we restrict
instances to those which are coalition monotonic, i.e. for
which	(Ag;G) has the property that if	[C;G0℄ = > and
C � D then	[D;G0℄ = > also.

While theNP-hardness ofNTSS is perhaps unsurprising,
it is less obvious that the problem belongs toNP. Theorem 1,
however, provides a decision method inNP that obviates any
requirement to consider sets of coalitionsR � 2Ag and sets
of goal setsY � 2G whose size is superpolynomial inn+m,
by characterising the existence of non-empty stable sets in
terms of the existence of successful coalitions.



3.2. Optimal Goal Sets

The maximal preferred sets –��(C) – provide one ap-
proach to defining what is meant by a goal set being opti-
mal for a coalitionC: if G0 2 ��(C) then there is no choice
G00 2 X (C) that will result ineverymember ofC being able
to strictly improveupon the goals is realise withinG0. An-
other widely studied concept of optimality is of course that
of Pareto optimality[5, p.305].

Definition 9 A goal set G0 2 X (C) is Pareto optimal(with
respect toAC) if for all other G00 2 X (C), should it be the
case that for some i in C there is a goal ri 2 G00 \Gi which
is strictly preferred to every si 2 G0 \Gi , then there is some
sj 2 G0 \ Gj which is strictly preferred to every rj 2 G00 \
Gj . A goal set G0 2 X (C) is Pareto optimal(with respect
to �C) if for all other G00 2 X (C), should it be the case
that for some i2 C for every si 2 G0 \ Gi there is some
r i 2 G00 \ Gi for which ri .i si , then there is some j2 C in
which: for every rj 2 G00 \Gj there exists sj 2 G0 \Gi with
sj .j r j .

ThusG0 is a Pareto optimal goal set for a coalitionC if it
is feasible for and satisfies each member ofC, but for any
other goal setG00 that is feasible and satisfiesC, if some
agent can realise a more preferred goal withG00 this will
be at the expense of another agent having to accept a goal
that it prefers less to its optimal goals withinG0. We note
the distinction betweenG0 being Pareto optimal and a max-
imal preferred goal set (with either� or A as the underly-
ing preference relations). As counterparts to��, let��(C) = fG0 2 X (C) j G0 is Pareto optimal w.r.t�Cg
It is notnecessarily the case that��(C) = ��(C), although
it is easily shown via the respective definitions that for ev-
ery QCGPand coalitionC � Ag, we have��(C) � ��(C).
Consider, however, the following.

Example 3 Let � be a QCGP with Ag = fa1; a2g, G =fg1; g2; g3g, G1 = fg1; g2g, G2 = fg3g, .1 = fg1 .1 g2g,.2 = ;, and	(Ag;G) = a1a2g3(g1 _ g2). For thisQCGPit
is easily checked thatX (C) = � ffg1; g3g; fg2; g3gg if C = fa1; a2g; if C 6= fa1; a2g
Furthermore,�A(fa1; a2g) = ��(fa1; a2g)= X (fa1; a2g)= ffg1; g3g; fg2; g3gg
On the other hand, the Pareto optimal sets are�A(fa1; a2g) = ��(fa1; a2g) = ffg1; g3gg
In both cases strict subsets of��(fa1; a2g) which also con-
tains fg2; g3g. The goal setfg1; g3g strictly improves the

goal that can be realised by a1 (g1 .1 g2) but does not
leave a2 lesssatisfied than before. Thus for this example�(fa1; a2g) � �(fa1; a2g).
4. Decision Problems forQCGPs

We now consider four decision problems associated with
QCGPs. Although in principle one could define distinct vari-
ants of these in terms of the two different preference rela-
tionships –A and� – this turns out to be unnecessary. For
the complexity classifications that we prove, all the lower
bound results, (i.e., hardness proofs), construct instances for
which G0 AC G00 if and only if G0 �C G00 for every coali-
tion C. For upper bounds arguments, (i.e., membership of a
given class), it is easily verified given aQCGP, coalitionC,
and goal setsG0, G00 that the testsG0 �C G00 andG0 AC G00
can both be accomplished easily. The one exception arises
in the result proved in Theorem 4, aC-completeness result
for which establishing membership inC is a non-trivial ar-
gument involving differing constructions dependent on the
exact preference relation employed.

The first problem we consider is that of whether a set of
goals is in the core of a coalition.

CORE MEMBERSHIP: (CM)
Instance: QCGPhG;Ag;G1; : : : ;Gn;	; .1; : : : ; .ni,
coalitionC � Ag, goal setG0 � G.
Question: Is G0 2 ��(C)?

Theorem 2 CM is co-NP-complete.

Proof: CM is in co-NP sinceG0 2 ��(C) if and only if8G00; D � C (G0 2 X (C) and:(G00 �D G0)
That is, if G0 satisfies and is feasible forC, and is not

dominated by any other goal setG00 with respect to any
subset ofC. We note that ifG0 62 ��(C) (and hence can-
not belong to the core) then it will be dominated by some
G00 2 ��(C) with respect toC. By quantifying over all
subsets ofC, i.e., not simply strict subsets, this case is de-
tected. To complete the proof, we use a reduction fromUN-
SAT. Let �(x1; : : : ; xn) be an instance ofUNSAT. We form
an instanceh��;C;G0i of CM for whichG0 2 ��(C) if and
only if �(x1; : : : ; xn) is unsatisfiable.

The QCGP �� has Ag = fa1; : : : ; an; an+1g, Gi =fg>i ; g?i ; gmini g so thatG = [n+1
i=1 Gi . The characteristic

function	(Ag;G) is given as�Vn+1
i=1 aigmini (:g>i )(:g?i )� _(:an+1)�(a1(g>1 _ :g?1 ); : : : ; an(g>n _ :g?n ))

The preference relation.i contains exactly two elements:fg>i .i gmini ; g?i .i gmini g. Finally we setC = Ag and
G0 = [n+1

i=1 fgmini g to form the instanceh��;C;G0i of CM.



We note thatG0 AC G00 if and only if G0 �C G00 for
all C � Ag, and hence��(C) = �A(C) for every coali-
tion C. Now, G0 = Sn+1

i=1 fgmini g 2 �(Ag) if and only if�(x1; : : : ; xn) is unsatisfiable.

The next problem we consider is whether or not a goal
set is maximally preferred by a coalition, i.e., whether this
goal set both satisfies every member of the coalition, and
there is no other goal set that satisfies the coalition that is
strictly preferred by it.

MAXIMAL GOAL SET : (MGS)
Instance: QCGPhG;Ag;G1; : : : ;Gn;	; .1; : : : ; .ni,
coalitionC � Ag, goal setG0 � G.
Question: Is G0 2 ��(C)?

In addition, we consider the problem of determining
whether a goal set is Pareto optimal.

PARETO OPTIMAL GOAL SET: (PO)
Instance: QCGPhG;Ag;G1; : : : ;Gn;	; .1; : : : ; .ni,
coalitionC � Ag, goal setG0 � G.
Question: Is G0 2 ��(C)?

Corollary 2

a) MGS is co-NP-complete.

b) PO is co-NP-complete.

Proof: For (a), membership is immediate from the fact thath�;C;G0i is accepted as an instance ofMGS if and only if:
G0 2 X (C) and for eachG00, if G00 2 X (C) then it is not
the case thatG00 �C G0, a test easily accomplished by a co-
NP algorithm. For (b), membership is established from the
relationh�;C;G0i is accepted as an instance ofPO if and
only if: G0 2 X (C) and for allG00 � G for which G00 2X (C):(9i 2 C andsi 2 G00 \Gi with si .i r i ; 8r i 2 G0 \Gi) )(9j 2 C andr j 2 G0 \Gj with r j .j sj ; 8sj 2 G00 \Gj)

An identical reduction fromUNSAT serves to prove co-
NP-hardness in both cases. We use a similar reduction from
instances�(x1; : : : ; xn) of UNSAT as that of Theorem 2 but
with Ag = fa1; : : : ; ang, Gi , .i as before and	(Ag;G) in�� given by 

n̂

i=1 aig
min
i (:g>i )(:g?i )!_�(a1(g>1 _:g?1 ); : : : ; an(g>n _:g?n ))

We setC = Ag andG0 = [n
i=1fgmini g. It is clearly the case

thatG0 2 X (Ag). Furthermore by a similar argument to that
of Theorem 2X (Ag) = fG0g if and only if �(x1; : : : ; xn)
is unsatisfiable. As we noted earlierX (C) containing a sin-
gle goal set indicates that this set is maximal, i.e., in�(C).
EquallyG0 is Pareto optimal if and only if�(x1; : : : ; xn) is
unsatisfiable.

The result of Corollary 2(a), indicates one potential diffi-
culty for C considering whether or not to realiseG0. Al-
though given	(Ag;G) it may be efficiently checked (in
terms of the formula size) that	[C;G0℄ = > and thatG0 sat-
isfies each member ofC, unless significant computational
effort is expended, it may not be clear as to whetherG0 is a
“best” outcome achievable byC. In the same way, even if
this is guaranteed, Theorem 2 presents further difficultiesin
thatC’s realisation ofG0 is subject to the threat ofC0 � C
forming to realise a set of outcomes that it prefers to those
offfered in G0 if G0 62 ��(C). In this way a coalitionC
may face a non-trivial strategic choice in planning whether
to bring about a given choiceG0: namely, if C should ig-
nore the possibility thatG0 may not be “optimal” thereby
avoiding the significant computational effort that might be
required to validateG0 2 ��(C) but, in doing so engen-
dering both the risk thatG0 could be improved upon and
the possibility that some strict subsetC0 may secede on the
grounds thatG0 62 ��(C). Of course such considerations
would be redundant if one could guarantee bothX (C) 6= ;
– C cansucceed – andX (C) = ��(C) – every feasibly sat-
isfying set of outcomes is optimal and not subject to attack
by any strict subset ofC. Such questions form the basis of
the problem we introduce asCore Completeness. As might
be expected, this turns out to be complete for a complex-
ity class –Dp the class of languages expressible as the in-
tersection of a language inNP with a language in co-NP –
considered to be “harder” than eitherNP or co-NP.

We note that via near identical constructions to those of
Theorem 2 and Corollary 2 it is a trivial matter to show that
givenh�;Ci the problem of decidingX (C) = �(C) is co-
NP-complete: use the construction of Corollary 2 together
with the observation that for this constructionjX (Ag)j = 1,
(thence givingX (C) = �(C)), if and only if� is unsatisfi-
able.

Our observations earlier that the sets of Pareto optimal
goal sets for a given coalitionC may be astrict subsetof
the set of maximally preferred coalitions forC, motivates
the following decision problem

MAXIMAL ONLY GOAL SET : (MOGS)
Instance: QCGPhG;Ag;G1; : : : ;Gn;	; .1; : : : ; .ni,
C � Ag, G0 � G.
Question: Is G0 2 ��(C) n ��(C)?

Theorem 3 MOGS isDp–complete.

Proof: Omitted.

To conclude, consider the following problem.

CORE COMPLETENESS: (CC)
Instance: QCGPhG;Ag;G1; : : : ;Gn;	; .1; : : : ; .ni,
C � Ag.
Question: Is ��(C) = X (C) andX (C) 6= ;?



Thus,CC is concerned with the question of whetherC
is successfulandevery feasible goal set that satisfies each
member ofC is in the core. The proof of this result is omit-
ted: theDp-hardness proof is straightforward, but establish-
ing membership ofDp involves a rather elaborate construc-
tion, for which we do not have space here.

Theorem 4 CC isDp-complete.

5. Discussion & Further Work

The model of Qualitative Coalitional Games with Prefer-
ences that we have introduced has largely been considered
with respect to “classical” concepts from Game Theory, e.g.
we have formulated analogues of “core”, “stability”, and
“minimality”. While the fact that it is possible sensibly to
define such concepts forQCGPs provides some indication
that the formalism is sufficiently powerful, the investigation
of, say, solution concepts inQCGPs that originate indepen-
dently of game-theoretic ideas would be of some interest.

We note also that our analysis of decision problems aris-
ing from QCGPs has concentrated on issues of computa-
tional complexity, and less so on “positive” algorithmic as-
pects. Thus, to choose just two examples from the many
questions that may merit further study, we have: whether
there are classes of propositional function for which those
decision questions that are intractable in general, admit ef-
ficient algorithms; and, the examination of feasible negotia-
tion mechanisms by which coalitions with particular proper-
ties can be encouraged to form. We note several points about
the first of these. Although we have not provided details, the
reductions used to obtain our hardness results, typically pro-
cede by constructing the feasibility function,	, in a QCGP

via a propositional formula,� presented as part of a hard
satisfiability related decision problem. It is, of course, well-
known that there are a number of restricted classes of for-
mula whose associated satisfiability problems range from
bordering on the trivial, e.g. monotone and Horn clause for-
mulae, to allowing polynomial-time algorithms, e.g. 2-CNF

formulae. Hence we can raise two related questions of some
interest: are there restricted classes of formula which admit
efficient algorithmic solutions for any of the decision prob-
lems addressed in this article; and to what extent do such
classes allow descriptions of “realistic”QCGPcontexts.

If we consider the (non-preference) model ofQCGs as
introduced in [10] the answer to the first of these questions
seems far from clear: we noted earlier that forQCGs impos-
ing a monotonicity condition, in general, has no effect on
a problem’s computational complexity. Similarly there are
some indications to suggest that restricting the propositional
formulae forQCGs to be Horn clause forms may fail to re-
sult in tractable instances. The principal reason why classes
of formulae with efficient satisfiability methods, do not al-
ways yield similar efficiencies forQCGs, is that the concept

of a coalition,C, “succeeding” depends not only on there
being a set of goals,G0, for which	[C;G0℄ = > but also
on the requirement for such a set to satisfyC. For the de-
cision problems we have examined above, such asMGS, it
open whether one can exploit these requirements to con-
struct proofs of intractability for special cases.

6. Conclusions & Related Work

We have introduced Qualitative Coalitional Games with
Preferences, a variation of Qualitative Coalitional Gamesin
which agents are assumed to have preferences over goals.
We defined a number of solution concepts for such games,
established some properties of these solution concepts, and
investigated their computational complexity.

Probably closest to our work is that of Conitzer and
Sandholm, who investigated the complexity of determin-
ing non-emptiness of the core in a subclass of conventional
coalitional games [2]. By assuming superadditivity, they
were able to derive a succinct representation of character-
istic functions, and proved that determining non-emptiness
of the core assuming this representation wasNP-complete,
irrespective of whether or not utility was transferable. Bil-
bao and colleagues derived a number of complexity results
for other subclasses of cooperative games by interpreting
these games over combinatorial structures of various kinds
(e.g., minimal spanning trees) [1].

A number of approaches to coalition structure genera-
tion and related problems have been described in the lit-
erature [8, 9, 7]. For example, Shehory and Kraus devel-
oped algorithms for coalition structure formation in which
agents were modelled as having different capabilities, and
were assumed to benevolently desire some overall task to
be accomplished, where this task had some complex struc-
ture [8, 9]. Sandholm and colleagues developed algorithms
to find optimal coalition structures within some given ra-
tio boundk of optimal [7].
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