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Abstract “satisfied” with any outcome that accomplishes one of its
goals, but is indifferent abowthich of its goals should be
Qualitative coalitional gamesqCGs) are a variation of  achieved — all are considered equally good (individual ra-
conventional coalitional games in which each coalition may tional). Each potential coalition is then modelled as hav-
choose to cooperate in a number of different ways, with dif- ing a set of choices available, intutitively corresponding
ferent choices resulting in potentially different sets oaly the different ways in which they could choose to cooperate.
being achieved; each agent is associated with a set of goals Associated with each choice is a set of goals, which would
the intuition being that an agent is “satisfied” if any of be achieved if the coalition chose to cooperate in this way.
its goals are achieved, but is indifferent between them. In QCGs seem an appropriate abstract framework within which
this paper, we extend the framework QEGs to incorpo- to reason about goal-oriented multiagent systems, where
rate preferenceshat agents have over their goals. In ad- numeric utility values are either inappropriate or elsedswyp
dition to establishing some basic properties @€Gs with sible to derive. In [10], we formulated and investigated the
Preferencesqccrs), we investigate and characterise the computational complexity of a wide range of solution con-
complexity of six natural decision problems associatetl wit cepts associated withcas: for example, we demonstrated
QCGHRs. For example, we prove that the problem of estab- that showing the core of @cG is non-empty (i.e., that a
lishing Pareto optimality of a goal set with respect to some coalition has a choice from which there is no incentive for
coalition is conpP-complete. We end with some brief con- any member of the coalition to deviate)i¥-complete.

clusions and a discussion of related work. The aim of the present paper is to extend the basic frame-
) work of QCcGs, by allowing for agents that have preferences
1. Introduction over goals. We begin by formulatinQualitative Coali-

tional Games with PreferencégcGrs), defining some con-
cepts (such as the core and stable sets) associated with
QCGHRs, and establishing some fundamental properties of

Coalitional games are abstract models of cooperative in-
teraction between self-interested agents, and as sugh, the

have been widely studied in the game theory literature [5, {hase. The remainder of the paper is then largely taken up
pp.255-312]. The success of such models has led to themy i, 4 investigation into the computational complexity of

being adapted for use within the multiagent systems_ COM-giy decision problems associated witttGrs. For exam-
munity, where they have proved to be of great value in un- 5o ' \ye show that the problem of establishing Pareto opti-
derstanding the nature of coalitions and coalition forma- ity of a goal set with respect to some coalition is co-
tion [8, 9, 7]. Conventional coalitional games (with trans- o complete. In general we will simply state results with-

ferable payoff) assign to each potential coalition a numeri o\ hresenting detailed proofs. The reader interesteddin su

value, corresponding to utility that could be distributed ig referred to a more extensive version of this paper [3]. We
among coalition members if the coalition chose to cooper- gnq yith a brief discussion of related work and some con-
ate. Given such models, solution concepts such as the corg| ;sions.
attempt to predict which coalitions might form, by consid-
ering the potential payoff an agent could get from joining Notation: We useT and L to denote the Boolean con-
different coalitions: a coalition is viewed as being “stbl  stants “true” and “false”. For a propositional formula
if the members of that coalition have no incentive to defect ®(x;, ..., X,) over the variableX, = (xi,...,%), given
and join any other coalition [5, pp.258-259]. Z C Xy, we denote byp[Z] the result of evaluating un-

In [10], we introduced a variation of coalitional games der the instantiation := T if x; € Z, % := L if x ¢ Z.
called Qualitative Coalitional Gameg$QcCGs). In aQcCg, In addition to the standard Boolean operations of con-
each agent is assumed to have a set of goals: an agent iginction (A), disjunction {/), implication &-), and nega-



tion (—), we use the binary exclusive-or operation, denoted

by @. We usually omit the conjunction symbaol) in for-
mulae, for example writingty) to abbreviates A ¢). Some
familiarity with computational complexity theory is as-
sumed [6].

2. QCGPs

As noted abovepcGs were introduced as an abstract model

We first comment on some aspects of these definitions,
in particular the relationship between the agents, goal set
and feasibility function represented by the propositidoal
mulaW. It should be noted that, in principlg; thefunction
described by? (Ag, G) could beanypropositional function,

e.g. we do not assunaepriori that monotonicity conditions

hold such a$y [C, G'] = T implying fy[C',G'] = T when-
everC C C'. To allow such generality may well seem to

be rather excessive, however, there are a number of reasons

of scenarios in which an agent, having some set of goals ofwhy we proceed in this way. Firstly, it is certainly the case

which it would like to realise at least one, may have to coop-

that such latitude does not preclude any subsequent consid-

erate with other agents in order to bring this about [10]. The eration of restrictions such as monotonicity, i.e. our fakm

characteristic function of conventional coalitional ganie
replaced inQccs by a function which allocates to every
coalition a set of choices, where each choice intuitively co

ism does notoseany expressive power by being general.
A second reason concerns rather subtle technical issues tha
would need to be addressed were only feasibility functions

responds to one way that the coalition could choose to co-meeting given criteria to be employed. A full elaboration of
operate. Each choice is then associated with a set of goalsthis point would be out of place in the context of the present

the intuition being that if the coalition chose to cooperate

paper and so we merely comment that these arise in describ-

this way, then the associated set of goals would be achieveding instances ofRcGrs in decision problems: if we wish

Here, we extend thecG model by assuming that agents
havepreferencesver goals.

Definition 1 A Qualitative Coalitional Game with Prefer-
encegQCGP) is a2n + 3-tuple:

F:<G7Ag:G1:"'aena\Il7[>1 [>I’l>:

e G =1{0i,...,9m} is a(finite, non-empty) set gfoals

e Ag= {1,...,n}is a (finite, non-empty) set @fgents

e G; C Gis the set ohcceptable goafer agentie Ag;

¢ U s a propositional logic formula defined over the vari-
ables Ag= (a;,...,a,) and G= (g, ...,0m), represent-
ing thecharacteristic functioof the game: for every coali-
tion C C Ag and goal set GC G, we havel[C,G'| = T if
one of the choices for coalition C is goal set G

e > C G x Gj is a partial order over Grepresenting i's
preference relatigrso that g >; g, indicates that i would
rather have goal g satisfied than goal g

where:

P

We assume that; is presented as a directed acyclic
graph D;, so that forming the transitive closure of this
graph’s adjacency matrix will yield a matr* for which
Di[g1, 8] = T ifand only if g i Ge.

A set of goals®' satisfiesagent if G' N G; # 0. We say
G’ is feasiblefor coalitionC if this goal set corresponds to
one of the choices o, i.e., if ¥[C,G'] = T. ForC C Ag,
let X (C) denote the set of subsets®fthat are both feasi-
ble for C and satisfy every member Gf

X(C) = {G'CG|¥CGC|=TAA\GNG #0}
iec
If X(C) # 0, then we say that is successful (since it has

at least one feasible choice that would result in an individ-
ual rational outcome for each of its members). Rét de-

to consideronly thosefy (Ag, G) that satisfy some prop-
erty then it is reasonable to insist thitAg, G) — the repre-
senting formula — can be easiylidatedas defining such
functions. For a more detailed (and rather technical) discu
sion of such representation issues with respect to monotone
feasibility functions, we refer the interested reader 19, [1
pp. 13—-171. Finally, as regards the specific case of mono-
tone feasibility functions, it is interesting to note there
strong indications suggesting that the decision problems w
consider forgcGrs would not become any easier if such
a restriction were imposed: of the nilgeG related deci-
sion problems in [10] for which monotone variants are ex-
amined, in all but two cases the complexities of the gen-
eral and monotone forms are identical, i.e. problewrs
complete,DP-complete, etc. in the general case remain so
in the monotone variant. In only one instance does mono-
tonicity result in a polynomial time decision process for a
problem whose unrestricted form is intractable.

Of course, in practice “almost all’ of the>""" pos-
sible definitions off (Ag, G) will be of no interest either
by reason of their being unlikely to occur in a realistic
context or because the shortest form@laequivalent to
f(Ag, G) has excessive length. We also note that the man-
ner in which¥ arises may vary considerably depending
on the exact scenario being modelled within an associated
QCGP. Thus, sometimes it may happen that the relationship
between agents and their associated goals suffices in itself
to define¥; in others external factors may influence how
¥ (or more accuratelfy the associated propositional func-
tion) is formed. In order better to appreciate this distmrct
consider the following two examples.

note the set of all goals sets which both satisfy and are fea-1  The page numbers are for the technical report version ¢f fitd the

sible for some coalition ifi": X' = Uccag X'(C).

journal version which is in press at the the time of writing.



Example 1 A set of students have to select project topics
from a given collection. Each project can be allocated to

at most one student and students have preferences over th

subset of projects they would be prepared to undertake.

Example 2 We have a set of students and collection of

2.VieC, HriEG'ﬁGi,VSEG”ﬂGi: ribis.

\éVe say that Gveakly preferghe goal set Gto G", written
!—c G"if

1. G € X(C).

project topics as in Example 1, and the same model of pref- 2. Vi€ C, Vs € G"NG;, 3 e G NG : rivis.
erences. The allocation control is, however, complicated | —c G this indicates that for each e C there is

by two additional factors: each project may be undertaken

asingle goal r; € G' N G thati ranks higher tharev-

by severalstudents, e.g. as a team working exercise; there ery oneof the goalss, that it could have satisfied within

are external considerations governing whether an individ-

G".If G ¢ G" this indicates that for eadhe C no mat-

ual student (or team of students) is seen as suited to underigr which goals € G' N Gi thati may have the possibil-

take particular projects, e.g. some may require background

in certain specialist fields, some may be considered “too
easy” or “too demanding” for specific classes of student.

In both examples we hawkg = {s;,..., S} correspond-
ing to the student set an@ = {py,...,pm} the pool of

available projects so th&; and the associated partial or-
der>; defines the subset whichis prepared to undertake

ity of realising, it can identify some goal € G' N G; that it
would rather achieve. We note that the goalGéis notre-
quired to be in the set'(C), although as a member af*
it must belong toY' (S) for at least one coalitio§ C Ag.

Our formulations ofG’ being preferred t&" by C cap-
ture the idea tha®' is a set of a goals that are feasible for
and satisfyC, i.e.,G' € X(C), whereas for each membier

and preferences over these. Now in Example 1 there are £ C, G either fails to satisfy at all or any goak € G

number of ways in which one could defidgAg, G): for
example, by?[C,G'] = T if and only if there is an injec-
tive mappingg C — G’ with which 5(a) € G; for
eacha € C, i.e.G is feasible if it allows eacls to be
allocated a project in their target set. It is clearly theecas
that such¥ depend solely on the specified s&s In con-
trast, with Example 2, knowin@; may not suffice to allow

that can be realised withi@"” can be outranked by a goal
ri € G'NG;: the difference betweestrongandweakprefer-
ence is that in the former case at least pmaust be present
in G'NG; that is preferred teverygoals € G'NG, whereas
in the latter case differemt can be used depending on the
goal chosen withirG".

In terms of the scenario outlined in Example 2, for a set

¥ to be given: the presence of the additional factors colours©f studentssS, having feasible choice®, andP’, P ¢ P,

which G' may be feasible for a give@. It is worth noting
that Example 2 gives rise to a number of non-trivial strate-
gic issues: suppose a final allocation of projects to stident
is to be generated by requiring individuasg, to specify

indicates that for each student $ there is somesingle
project in the poolP’ that is considered to be preferable
to any option that would satisfy them in A In contrast,
P ~c P, indicates that no matter which projects given

projects,P;. Now it cannot beknownif P; C G; (although,
presumablyP; N G; # #), and thus if individuals know how

project inP' they would rather be allocated.
Before proceeding with some further properties of these

the allocation algorithm operates, coalitions may be able t "elationships we extend our preference concepts to apply

form that ensure those within it are given their most pre- 10 setsof coalitions. While our principal interest lies in the

ferred choice by including “false preferences” in their re- CaseR = 2 for C C Agsince this forms the basis for our

turnsP;. One aim underlying our formulation afcGrs is concepts of stability and core, the definition below is given

to provide methods by which such possibilities can be anal-in terms of arbitrary (non-empty) se& € 2%9.

ysed. To avoid excessive repetition we use the relational sym-
Given aQcGPT, we can extend the concept of an agent's POl > to indicate either or -

preference§ to that of eoalition’s. We preser_1t two defini-  pefinition 3 Given asetof coalitionsR. C 29 the binary

tions and discuss how these are relate_d._ Itis, of course, therelationshipr over ¥(R) = UcerX(C) is defined as

case that a number of methods for_ deﬂnmg_preferences bew/> . G if for some coalition Ce R it holds that Gr> G

tyveensetsfrom an u_nderlylng basis of par’qal order relq- If G' > G" we say that Gstrongly/weaklydominatess”

tion have been considered before, e.g. [4] gives an overviewyith respect toR, noting that G > G" implies there is

of such extensions in one context, and we make no claim togome Ce R for which G strongly/weakly dominates’G
have originated the methods below. with respect to C.

Definition 2 For C C Ag and G, G € X", we say that C
strongly prefershe goal set Gto G”, written G ¢ G” if

The following Lemma summarises some key properties of
the relations-¢c andJc.

1. G e X(C). Lemma 1



a. If G Or G" then G =% G"; the converse, however,
does not always hold.

b. If R = {C}, (i.e., contains exactly one coalition), then
>x induces a partial order ovel’(C).

c. If R satisfies the property that for every pdic, D} of
coalitions inR, CN D # 0 then for all{G',G"} €
X (R) at most one of G>r G" and G’ >z G’ hold,
i.e., > is asymmetric.

Proof: We omit all but the proof of (a), concerning which
it is immediate from the definitions th& Tr G” implies

G = G". To see that the converse may fail to hold, con-
sider the followingQCGP

Ag = {ai}

G = {91792;93;94}

G = G

U = a < ((91A0)D(92A0))
b1 = {0i1>102, O3>1 04}

Then {01,095} >{a} {%, 04} sinceg outranksg,
and g; outranksg,. It is not the case, however, that

{91,095} Tga;y {92,904} since gi is not strictly pre-
ferred tog, andgs is not strictly preferred tas,. (]

From Lemma 1(b), the following subsets&{C) are well-
defined for any coalition.

Definition 4 For any C C Ag, themaximal strongly pre-
ferred goal sets with respect @ denoted.~(C), are de-
fined through

17(C) = {G' € X(C) | VG" € X(C), G" #c G'}.

For any C C Ag, themaximal weakly preferred goal sets
with respect ta€C, denoted.™ (C), are defined through

1~ (C) = {G' € X(C) | VG" € X(C), G" #c G'}.

In the event ofi=(C) = u”~ (C) we write simplyu(C).

We note from this definition tha®’ € X' (C) \ u>(C) im-
plies there is som&"” € p>(C) such thaG" >¢c G'.

In informal terms, the sets of goal seits(C) andu~ (C)
describe theoptimal outcomes that could be realised by a
coalition, C, with respect to each of the orderingsand
=:if G’ € p>(C) then not only isG’ a feasible and sat-
isfying choice forC (by virtue of u> (C) being a subset of
X(C)), in addition,G' cannot be outranked by any other
feasibly satisfying choice fo€. Certainly, in the event that
C couldsucceed, i.eX(C) # 0, one would expect it to

3. The Core and Stability

In this section we introduce some solution concepts in re-
spect of the preferred goal sets. These solution concepts ar
closely based on the corresponding concepts from coopera-
tive game theory [5].

Definition 5 LetT be aQcG G = (G,Ag, Gy, ..., Gy, ¥)
with preference relation$4, ... ,>,). For a coalition CC
Ag, thestrong coreof C, denoted: - (C) is the set

{G' € 47(C) | YC' c C,¥G" € X(C'), G" 2o G'}.

For a coalition CC Ag, theweak coreof C, denoted:™ (C)
is the set

{G' € 4= (C) | YC' c C,¥G" € X(C'), G" #c G}

Again, if it is the case thgt= (D) = p~ (D) for all D € 2¢
we refer simply to theoreof C denoting this:(C).

These notions of coalitional core describe one motivation
for a coalition,C, to remain intact in order to bring about
a givenG' € p>(C). For suppose it were the case ti&it
did not belong to the se&™(C), i.e. was not an element
of the core as we have defined it above. Certai@lgs it
stands cannot do better than to bring about the5eince
G’ is one of its optimal outcome choices, however, the fact
thatG' ¢ «™(C), indicates that there is sonstrict sub-
set ofC' of C that has good reason to sece@écan realise
some choices” that its members prefer to those goals that
can be achieved withi@'. Thus, by analogy with the clas-
sical quantitative view of the core, we might say that the
“pay-off” that the members o€’ achieve by bringing out
G" is better than they would receive as part®n bring-
ing aboutG'. Our formulation of coalitional core above,
not only gives rise to the obvious decision question for a
coalition C and feasibly satisfying goal s&' of whether
G' € k7 (C), but also motivates a rather more subtle issue:
that of whetheC cansucceed and withveryfeasibly satis-
fying outcome folC in its core, i.e. whethet’ (C) = x> (C)
with X(C) # (. For Qcars within whichC has the latter
property,C may safely bring abownyof its feasibly satis-
fying outcomes(’, being sure that the coalition intact can-
not do “any better” than achiew® andthat no strict sub-
setC’ can realise outcomes it would prefer, and thence has
no “rational” incentive to break away. We address both of
these questions in Section 4.

A coalition attempting to realise son@®& € p~(C) \
k% (C) may be undermined via som@ C C forming
to bring about that goal s&®’ which attests to the non-

seek to bring about one of its optimal outcomes, i.e. somemembership o6’ in k> (C). Our next definitions introduce

elementG’ € x> (C). From such a perspective the issue of
whetheragivels’ € X (C) also belongs ta> (C) becomes

another class of methods through whieimay be “at risk”
in attempting to realis&’ € X(C). In these we consider

a decision question of some interest and is one whose comsomesetof coalitionsR in order to define notions of a col-

plexity we address in Section 4.

lection of feasible outcom@;, beingstable



Definition 6 For R C 2*9and) C X(R), we say thafy
is internally stable with respect to the set of coalitigtisf

VG',G" € Y, -3C € R for which G >c G"” or G" >c G'.

The set) is externally stable with respect to the set of coali-
tionsR if

VG e X(R)\YV,3G" e YandCe Rs.t. G' >c G.

The sef) is stable with respect to the set of coalitioRsif
it is both internally and externally stable with respectRo

Definition 7 For R C 29 and) C X(R), we say that
a subsefy of X(R) is anadmissible goal set with respect
to R if Y is internally stable with respect t® and for ev-
ery @ € X(R)\ Y, ifthereis a coalition Cc R for which
GP >c G for G% € Y then there is some'Ge Y and coali-
tion D € R for which G >p GP. An admissible goal sét

is maximal with respect t® if no strict superset oy is ad-
missible.

Notice that everystable setwith respect toR is also a
maximaladmissible goal set with respect 10; however,

the converse does not always hold. For example, conside

R = {C, D, E}, whose members are pairwise disjoint; fur-
thermore suppose we have three goal &f8 ¢ X (C),
G € X(D) andG'® € X(E). It may be the case that

G eGP »p GP > GO,

If X(R) = {G©,GP), G®1, then the maximal admissi-

G'>cG" if G' € X(C) and3C' O C for which G’ € X(C')
so thatx(C) — the core of C —is
{G'eX(C)|VC' cC,VG" e x(C), G" oG}

Thenk(C) # 0 if and only if C is both minimal and suc-
cessful.

Proof: If k(C) # (0 thenitis certainly the case th@tis suc-
cessful since:(C) C X'(C). It must also be the case, how-
ever, thaC is minimal: for otherwise we have son@ c C
with X(C') # 0 so that for anyG” € X(C') we have
G" > G for everyG' € X(C) contradictingx(C) # 0.
Similarly if C is both successful and minimal then the for-
mer yieldsX' (C) # 0 while the latter indicates that for ev-
eryC' C C, we haveY(C') = () hencex(C) = X(C) # 0
as required. [

We note that we could restrict notions of stability and ad-
missibility to the case where the underlying set of coalisio
R is simply2A9, i.e., the set of all possible coalitions. There

are, however, some disadvantages of this. Although it is cer

tainly the case any sgt C X' that is internally stable with
respect t@”9 will also have this property with respect to any
subset of the set of coalitio® = {C | Y N X(C) # 0},

it may be the case that we wish to regard some goal sets
as internally stable (with respect to a given set of coali-
tions R) that could not be considered as such in terms of
the set2”9, i.e., if Y is internally stable foR® with some

ble subset is the empty set; however, this is not externallyC C Ag, it does not necessarily have this property with re-
stable: in fact this system has no stable set. This possibil-spect to anyD ¢ C. Similarly, as regards our definitions

ity motivates the following.

Definition 8 The set of coalition®R C 229 is coherenin
theQcGpl, if every) C X (R) that defines a maximal ad-
missible set with respect 8 is a stable set with respect to
R.

The setsY(R) and concepts of core and stability introduced
in Definitions 5, 6 are analogous to the idearmputation
core, and stability in classical coalitional games, cfg6¢-
tion 14.2].

of external stability and admissibility, using origy = 249,
will view some ) is externally stable (or admissible) that
do not have this property with respect to a given coalition
C or even2®. For example, we may hayg C X'(2°) but
with someG" € X'(2°) \ Y for which no goal se€' € Y
and coalitionD € 2€ givesG' >p G” (hence) is not ex-
ternally stable with respect to the set of coaliti@%} even
thoughG' >,45 G': the latter preference being exhibited by
someD ¢ C.

In total, the choice oR = 29 may be too restrictive sen-

AS an aside, we note that the definition of the core of a Slbly to consideinternal Stablllty, but rather too general to

succesful coalition differs from the (non-preference mpde
view of [10] in which “core” of a coalitionC, is non-empty

if and only if X(C) # @ andfor all strict subset€’ of C,
we haveX(C') = (). Suppose, however, we allow defini-
tions of >¢ to beindependentf the preference relations
(>1,...,>p): then definings(C) with respect to these we

can capture the interpretation of [10], as shown in the fol-

lowing easy lemma.

Lemma 2 LetT be aQcGpand define a preference rela-
tion for coalitionsC C Ag by

use as a basis faxternalstability.

We introduce some further notation prior to proving
some basic properties of these structures.7Ear 29, we
define the sets

P (R) = {YCX(R)|Yisinternally stable w.r.tR}

" (R) = {¥Y C X(R)|Yisexternally stable w.r.iR}
d”(R) = F(R)NH>(R)

"(R) = {Y C X(R)|Yis maximally admissible w.r.iR}

Thus,o™ (R) defines the set of all stable goal sets with re-
spect toR.



3.1. Properties of Stable Sets and the Core

is the following, which asserts that there in@n-emptysta-
ble set of goal sets within theccp I if and only if some

The relationships between these sets are summarised in thgoalition has a feasible and satisfying goal set.

next lemma.
Lemma 3 ForanyR C 249,
a. t”(R) Ct2(R)
b. n7(R) Cn~(R)
c. " (R)Nn~(R) Co™(R) C 7 (R)Nn~(R).

Proof: The proofs of (a) and (b) follow directly from
Lemma 1(a): ifyY € ¢~ (R) then for anyG', G" € Y
andD € R, by definition, neithelG’ =p G"” norG” »p

G’ hold, thus neitheilG’ Op G” nor G’ p G, i.e,

Y € +“(R). Similarly Y € n(R) indicates that for each
G' € X(R)\Y we have som&" € Y andD € R for which
G" Op G, which givesG” »p G’ and thusy € n~ (R).
Finally, (c) is immediate from (a), (b), and the definition of
o™ (R). [

Theorem 1 LetI’ be aQCcGP

c ).

There existsR C 2”9 for whicha™(R) # {#} if and only
if there exists some coalition C Ag for whichX'(C) # 0.

Proof: (=) SupposeC C Agis such thatt'(C) # §. From
Lemma 1(b), the sgi* (C) is well-defined and non-empty.
From Lemma 5" (C) is a stable set with respect @
Thus if for someC C Ag, it holds thatt'(C) # () then we
identify R C 249, i.e., R = {C}, for whicho™(R) # 0.
(<) Supposeér C 2A%s such that™ (R) # {0}, and lety
be a stable set with respect to the set of coalitiBnBy def-
inition, Y € X(R) = Uger A(C), and thugy # § im-
plies that for som& C Ag, X' (C) # 0. '

Regarding:” (C) for C C Ag, we observe that parts (b—d) One of the main points of interest regarding Theorem 1 is
of our next result can be seen as an analogous result to [Sthat it allows the computational complexity of the followin

Proposition 279.2].

Lemma4 Forany CC Ag,
a. x”(C) C k7(C) C 47 (C) C ™ (C).
b. Forevery) € ¢ (2),x>(C) C ).

c. IfY andZ are distinct sets im™ (2€) then) ¢ Z and
Zg).
d. If k> (C) € o> (2°) theno™ (2€) = {k>(C)}.

Proof: Omitted. ]

Lemma5 o> ({C}) = {u~(C)}.

Proof: Thatu™(C) is a stable set w.r€ is immediate from
the definition ofu™ (C): if {G',G"} € u>(C) then cer-
tainly neitherG' >c G” norG" >c G’ hold and, thusy™ (C)

is internally stable w.r.tC. In addition if we consider any
G' € X(C) \ u*(C) then sinceG’ ¢ u™(C) there must be
someG" € u”>(C) for which G” >c G’ establishing that
u” (C) is externally stable w.r.C. To see that> (C) is the
unigue stable set w.r€, it suffices to observe that from ex-
ternal stabilityu™(C) C Y forany) € o> ({C}), which
suffices to ensure uniqueness. [

We note that Lemma 5 indicates thatery QCGP hasat
least one subset df° which is stable. This set may, of
course, simply be the empty set: in the ev€nt Ag hav-
ing no satisfying and feasible goal set, i.&(C) = 0, then
1" (C) = @ which is stable. Sincg™ (C) is the unique max-
imal admissible set with respect @ it follows that in ev-
ery QcGpthe set of coalition® = {C} is coherenfor ev-

decision problem to be determined exactly.

NON-TRIVIAL STABLE SET: (NTS9
InstanceQCGP(G,Ag, Gy, ...,Gn, ¥, b1, ..., >n).
Question Does there existsR C 249 and
Y C X(R) such thay # @ and) € o> (R)?

Corollary 1 NTSSis NP-complete.

Proof: From Theorem 1, an instange= (G,>,...,>p)

of NTssis accepted if and only if some coalition is success-
ful, i.e., NTSSis equivalent to deciding i is accepted as
instance of the problemoN-EMPTY GAME (the comple-
ment of the problereMPTY GAME which accepts instances
G of Qcas for which no coalition succeeds). The decision
problemeMPTY GAME was shown to be ce-complete in
[10, Theorem 35], and thus its complement decision prob-
lem —NON-EMPTY GAME — is NP-complete. This suffices

to deduce thatiTssis alsoNP-complete. [

We note, in passing, that from [10, Corollary 36] it is im-
mediate thanTssremainsnP—complete even if we restrict
instances to those which are coalition monotonic, i.e. for
which ¥ (Ag, G) has the property that #[C,G'] = T and

C C Dthen¥[D,G'] = T also.

While thenp-hardness ol TSsis perhaps unsurprising,
itis less obvious that the problem belongsito Theorem 1,
however, provides a decision methodipthat obviates any
requirement to consider sets of coalitioRsC 2”9 and sets
of goal sety C 2 whose size is superpolynomialiin-m,
by characterising the existence of non-empty stable sets in

ery C C Ag. Another interesting consequence of Lemma 5 terms of the existence of successful coalitions.



3.2. Optimal Goal Sets

The maximal preferred sets #* (C) — provide one ap-

proach to defining what is meant by a goal set being opti-

mal for a coalitionC: if G’ € x> (C) then there is no choice
G" € X(C) that will resultineverymember ofC being able

to strictly improveupon the goals is realise withi@'. An-
other widely studied concept of optimality is of course that
of Pareto optimality[5, p.305].

Definition 9 A goal set G ¢ X(C) is Pareto optima{with
respect toc) if for all other G’ € X(C), should it be the
case that for some i in C there is a goalr G N G; which
is strictly preferred to every; &£ G' N G;, then there is some
§ € G' N Gj which is strictly preferred to every € G" N
G;. A goal set G € X(C) is Pareto optima(with respect
to ¢) if for all other G € X'(C), should it be the case
that for some ie C for every s € G' N G; there is some
ri € G N G for which > 5, then there is someg C in
which: for every y € G N Gj there existsjse G' N G; with

S bj .

ThusG' is a Pareto optimal goal set for a coaliti@nif it

is feasible for and satisfies each membeCobut for any
other goal set3” that is feasible and satisfi€3, if some
agent can realise a more preferred goal v@th this will

be at the expense of another agent having to accept a goal

that it prefers less to its optimal goals with@i. We note
the distinction betwee@' being Pareto optimal and a max-
imal preferred goal set (with either or 1 as the underly-
ing preference relations). As counterpartgto, let

¥ (C) = {G' € X(C) | G is Pareto optimal w.ri-c}

Itis notnecessarily the case that (C) = > (C), although

it is easily shown via the respective definitions that for ev-
eryQcaGpand coalitionC C Ag, we haver™ (C) C u>(C).
Consider, however, the following.

Example 3 Let T be aQcgpwith Ag = {a;, &}, G =

{01,02,03}, G1 = {01,082}, G2 = {03}, >1 = {0 >1 G2},
>o = 0, and ¥ (Ag, G) = a;a:03(0h V g2). For thisQCGPit
is easily checked that

— {{91793}:
X(C) _{ j

Furthermore,

p~({a, a})

{92,05}} if C={a;,a}
if C;é{al,ag}

p”({an, a})
X({ar, a})
{{91,0:}, {92,0:}}

On the other hand, the Pareto optimal sets are
m~({a, a}) = 77 ({a1, a2}) = {{91, 0: }}

In both cases strict subsets;df ({a;, a2 }) which also con-
tains {g2,093}. The goal sefg;,gs} strictly improves the

goal that can be realised by, ag; >; g2) but does not
leave a lesssatisfied than before. Thus for this example

m({ar,a}) C p({ar, a}).

4. Decision Problems forocGrs

We now consider four decision problems associated with
QCGPs. Although in principle one could define distinct vari-
ants of these in terms of the two different preference rela-
tionships —3 and > — this turns out to be unnecessary. For
the complexity classifications that we prove, all the lower
bound results, (i.e., hardness proofs), construct instafur
whichG' OJc G” if and only if G’ ¢ G" for every coali-
tion C. For upper bounds arguments, (i.e., membership of a
given class), it is easily verified given@cGr, coalitionC,
and goal set§&', G” that the test&' ¢ G" andG' ¢ G"
can both be accomplished easily. The one exception arises
in the result proved in Theorem 4 Cacompleteness result
for which establishing membership this a non-trivial ar-
gument involving differing constructions dependent on the
exact preference relation employed.

The first problem we consider is that of whether a set of
goals is in the core of a coalition.

CORE MEMBERSHIR (CM)
InstanceQCcGP(G,Ag, Gy, ...,Gn, ¥, by, ...
coalitionC C Ag, goal setlG' C G.
QuestionlIs G’ € k> (C)?

9 [>n>,

Theorem 2 cM is coNP-complete.
Proof: cMis in coNPsinceG' € x> (C) if and only if

VG', DC C(G € X(C)and—(G" >p G)

That is, if G satisfies and is feasible f&@, and is not
dominated by any other goal s&’ with respect to any
subset ofC. We note that ifG' ¢ x> (C) (and hence can-
not belong to the core) then it will be dominated by some
G" € p>(C) with respect toC. By quantifying over all
subsets ofC, i.e., not simply strict subsets, this case is de-
tected. To complete the proof, we use a reduction ftom
SAT. Let ®(xq,...,%,) be an instance afNSAT. We form
an instancél's, C, G') of cm for whichG' € x> (C) if and
only if ®(xy,. .., Xn) is unsatisfiable.

The QcGp 111) hasAg = {ai,...
{g7.9".g""} so thatG =
function ¥ (Ag, G) is given as

(AT ag™ (=g ) (~g") )
(mant1)®(ai (g V =07), ..., an(gn

The preference relation contains exactly two elements:
{g" »i g™i», gt > gmin}. Finally we setC = Ag and
G' = UM!{g™} to form the instancél's, C, G') of CM.

aan;an+1}' G =
UM Gi. The characteristic

V g ))



We note thatG’ Jc G” if and only if G' =¢ G" for
all C C Ag, and hence:™ (C) = x=(C) for every coali-
tion C. Now, G' = U {g™"} € k(Ag) if and only if
®(xq, ..., %) is unsatisfiable. ]

The result of Corollary 2(a), indicates one potential diffi-
culty for C considering whether or not to reali§#. Al-
though given¥(Ag, G) it may be efficiently checked (in
terms of the formula size) th@t[C, G'] = T and thaG' sat-
isfies each member @, unless significant computational

The next problem we consider is whether or not a goal effort is expended, it may not be clear as to whetBeis a

set is maximally preferred by a coalition, i.e., whethes thi

“best” outcome achievable b§. In the same way, even if

goal set both satisfies every member of the coalition, andthis is guaranteed, Theorem 2 presents further difficuities
there is no other goal set that satisfies the coalition that isthatC's realisation ofG’ is subject to the threat @' c C

strictly preferred by it.

MAXIMAL GOAL SET: (MGS)
InstanceQCGP(G,Ag,Gy,...,Gn, ¥,p>q, ...
coalitionC C Ag, goal selG' C G.
Questionls G' € > (C)?

In addition, we consider the problem of determining
whether a goal set is Pareto optimal.

7[>ﬂ>1

PARETO OPTIMAL GOAL SET. (PO)
InstanceQcGP(G,Ag,Gy,...,Gn, ¥, by, ...
coalitionC C Ag, goal selG' C G.
QuestionIsG' € 7> (C)?

Corollary 2

,[>n>,

a) MGsis coNP-complete.
b) Pois coNP-complete.

Proof: For (a), membership is immediate from the fact that
(T, C,G') is accepted as an instancenés if and only if:

G' € X(C) and for eachG", if G" € X(C) then it is not
the case tha&"” >¢ G/, a test easily accomplished by a co-
NP algorithm. For (b), membership is established from the
relation(I", C,G') is accepted as an instancerd if and
only if: G’ € X(C) and for allG"” C G for whichG" ¢
X(C):

(JieCands e G' NG withsir, Vri € G NG)
(3 € Candrj e G'NGjwithrjpj 5, Vs € G'NG))

=

An identical reduction fromuUNSAT serves to prove co-

NP-hardness in both cases. We use a similar reduction from

instancesb(xy, ..., X,) of UNSAT as that of Theorem 2 but
with Ag = {ai,...,an}, Gi, »i as before and’(Ag, G) in
I's given by

(_/\ agf““(wf)(w%)) V ®(ai (g V=0i ), - 8n(th V-G )

We setC = AgandG' = U, {g™in}. Itis clearly the case
thatG' € X (Ag). Furthermore by a similar argument to that
of Theorem 2¥(Ag) = {G'} if and only if ®(x,...,X,)

is unsatisfiable. As we noted earli#(C) containing a sin-
gle goal set indicates that this set is maximal, i.ey(€).
EquallyG' is Pareto optimal if and only i®(X;, ..., Xs) iS
unsatisfiable. [

forming to realise a set of outcomes that it prefers to those
offfered inG' if G’ ¢ k™(C). In this way a coalitionC
may face a non-trivial strategic choice in planning whether
to bring about a given choic&': namely, if C should ig-
nore the possibility thaG’ may not be “optimal” thereby
avoiding the significant computational effort that might be
required to validates’ € p™(C) but, in doing so engen-
dering both the risk tha®’ could be improved upon and
the possibility that some strict subs&tmay secede on the
grounds thatG' ¢ x> (C). Of course such considerations
would be redundant if one could guarantee battC) #

—C cansucceed —an&'(C) = k> (C) —every feasibly sat-
isfying set of outcomes is optimal and not subject to attack
by any strict subset of. Such questions form the basis of
the problem we introduce &ore Completenesés might

be expected, this turns out to be complete for a complex-
ity class —DP the class of languages expressible as the in-
tersection of a language mP with a language in coP —
considered to be “harder” than eithep or co-NP.

We note that via near identical constructions to those of
Theorem 2 and Corollary 2 it is a trivial matter to show that
given(T', C) the problem of deciding’(C) = u(C) is co-
NP-complete: use the construction of Corollary 2 together
with the observation that for this constructioti(Ag)| = 1,
(thence givingt (C) = u(C)), if and only if @ is unsatisfi-
able.

Our observations earlier that the sets of Pareto optimal
goal sets for a given coalitio@ may be astrict subsebf
the set of maximally preferred coalitions f@; motivates
the following decision problem

MAXIMAL ONLY GOAL SET : (MOGS)

InstanceQCGP(G,Ag, Gy, ...,Gn, ¥,>1,...,>n),
CCAg G CG.
QuestionIsG' € p>(C) \ 7> (C)?
Theorem 3 MOGSis DP—complete.
Proof: Omitted. 1
To conclude, consider the following problem.
CORE COMPLETENESS(CC)
InstanceQCGP(G,Ag, Gy, ...,Gn, ¥, >1,...,>n),

C C Ag.
Questionls k> (C)

X(C)andX(C) # 0?



Thus, cc is concerned with the question of wheth@r
is successfuand every feasible goal set that satisfies each
member ofC is in the core. The proof of this result is omit-
ted: theDP-hardness proof is straightforward, but establish-
ing membership oDP involves a rather elaborate construc-
tion, for which we do not have space here.

Theorem 4 ccis DP-complete.

5. Discussion & Further Work

The model of Qualitative Coalitional Games with Prefer-
ences that we have introduced has largely been considere
with respect to “classical” concepts from Game Theory, e.g.
we have formulated analogues of “core”, “stability”, and
“minimality”. While the fact that it is possible sensibly to
define such concepts faycGrs provides some indication
that the formalism is sufficiently powerful, the investigat
of, say, solution concepts RCGPs that originate indepen-
dently of game-theoretic ideas would be of some interest.
We note also that our analysis of decision problems aris-
ing from QCGPRs has concentrated on issues of computa-
tional complexity, and less so on “positive” algorithmic as
pects. Thus, to choose just two examples from the many
guestions that may merit further study, we have: whether
there are classes of propositional function for which those
decision questions that are intractable in general, admit e
ficient algorithms; and, the examination of feasible negoti
tion mechanisms by which coalitions with particular preper

ties can be encouraged to form. We note several points abou

the first of these. Although we have not provided details, the
reductions used to obtain our hardness results, typicedly p
cede by constructing the feasibility functioh, in aQccp

via a propositional formulap presented as part of a hard
satisfiability related decision problem. It is, of course|
known that there are a number of restricted classes of for-
mula whose associated satisfiability problems range from
bordering on the trivial, e.g. monotone and Horn clause for-
mulae, to allowing polynomial-time algorithms, e.gcR+

of a coalition,C, “succeeding” depends not only on there
being a set of goalsy’, for which ¥[C,G'] = T but also

on the requirement for such a set to sati€fyFor the de-
cision problems we have examined above, suchi@s, it
open whether one can exploit these requirements to con-
struct proofs of intractability for special cases.

6. Conclusions & Related Work

We have introduced Qualitative Coalitional Games with
Preferences, a variation of Qualitative Coalitional Games

hich agents are assumed to have preferences over goals.
é)\//e defined a number of solution concepts for such games,
established some properties of these solution concepts, an
investigated their computational complexity.

Probably closest to our work is that of Conitzer and
Sandholm, who investigated the complexity of determin-
ing non-emptiness of the core in a subclass of conventional
coalitional games [2]. By assuming superadditivity, they
were able to derive a succinct representation of character-
istic functions, and proved that determining non-empsnes
of the core assuming this representation wascomplete,
irrespective of whether or not utility was transferabld- Bi
bao and colleagues derived a number of complexity results
for other subclasses of cooperative games by interpreting
these games over combinatorial structures of various kinds
(e.g., minimal spanning trees) [1].

A number of approaches to coalition structure genera-
Eion and related problems have been described in the lit-
erature [8, 9, 7]. For example, Shehory and Kraus devel-
oped algorithms for coalition structure formation in which
agents were modelled as having different capabilities, and
were assumed to benevolently desire some overall task to
be accomplished, where this task had some complex struc-
ture [8, 9]. Sandholm and colleagues developed algorithms
to find optimal coalition structures within some given ra-
tio boundk of optimal [7].

formulae. Hence we can raise two related questions of some\Cknowledgements

interest: are there restricted classes of formula whichiadm
efficient algorithmic solutions for any of the decision prob

The work reported in this paper was carried out with the

lems addressed in this article: and to what extent do suchSUPPOrt OfEPSRCGrant GR/R60836/01.

classes allow descriptions of “realistigt Gpcontexts.

If we consider the (non-preference) model@fcs as
introduced in [10] the answer to the first of these questions
seems far from clear: we noted earlier thatdarcs impos-
ing a monotonicity condition, in general, has no effect on
a problem’s computational complexity. Similarly there are
some indications to suggest that restricting the propsii
formulae forQcas to be Horn clause forms may fail to re-
sult in tractable instances. The principal reason why elass
of formulae with efficient satisfiability methods, do not al-
ways Yield similar efficiencies fopcas, is that the concept
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