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Abstract

Prior research has identified agent behaviors or strate-
gies that can develop and sustain mutually beneficial co-
operative relationships with like-minded agents and can re-
sist exploitation from selfish agents. Evolutionary tourna-
ments with different strategies can model scenarios where
agents periodically adopt strategies that are outperforming
others in the population. However, such experiments can be
computationally costly and hence it can be difficult to pre-
scribe a strategy choice for a rational agent given environ-
mental conditions like task distribution, strategy mix in the
population, etc. A preferred approach, and the one pursued
in this paper, is to analytically capture the dynamics of the
strategy mix in the population under an evolutionary tour-
nament. Such an analytical model can be used to predict
the long-range winning strategy, which is the strategy to be
preferred given the environmental conditions and the ini-
tial strategy distribution.

1. Introduction

With the burgeoning of agent based electronic com-
merce, recommender systems, personal assistant agents,
etc. it is becoming increasingly clear that agent systems
must interact with a variety of information sources in an
open, heterogeneous environment. One of the key factors
for successful agent based systems (ABSs) of the future
would be the capability to interact with other ABSs and hu-
mans in different social and role contexts and over extended
periods of time. Research in societal aspects of agent be-
haviors has been relatively scarce [9]. Whereas economic
models can provide a basis for structuring agent interac-
tions [14], other non-monetary approaches [1, 2, 3, 4, 5, 8,
10] may provide effective solutions in certain situations.We
assume that typical real-world environments abound inco-
operation possibilities: situations where one agent can help
another agent by sharing work such that the helping cost of
the helper is less than the cost saving of the helped agent.

As agent system designers we can also define rules of in-
teraction to increase the likelihood of cooperation possibili-
ties. We are interested in identifying agent behaviors thatal-
low agents to take advantage of cooperation possibilities in
their environments.

Senet al. [10, 11] have presented behaviors that promote
cooperation among homogeneous groups and can resist ex-
ploitation by malevolent agents in heterogeneous groups.
Such behaviors can lead to both improved local perfor-
mance for individual agents and effective global perfor-
mance for the entire system. A restrictive assumption in this
line of work has been that agents have fixed behaviors. For
example, they have assumed that agents with specified be-
haviors interact repeatedly over a sustained period of time
and their effectiveness is calculated as function of the to-
tal cost incurred to complete all assigned tasks. The resul-
tant performance reflects cost incurred for local tasks, cost
incurred to help other agents with their tasks, and savings
obtained from others when help was received.

A more realistic scenario would be to give an agent the
freedom of choosing from one of several of these behav-
iors and to change its behavior as and when it deems ap-
propriate. An agent may be prompted to adopt a behavior
if agents using that behavior is seen to be performing bet-
ter than others. Such a behavior adoption method leads to
an evolutionary process with a dynamically changing group
composition of agent behaviors [12, 13]. In this paper, we
present a mathematical model of the dynamics of the agent
population. Our goal is to analytically determine the region
of dominance for the different strategies based on the ini-
tial population composition, environmental conditions like
number of tasks agents need to accomplish, the evolving cri-
teria, etc.

We consider the problem domain where each of the
agents are assigned some tasks. The cost of executing a
task can be reduced or eliminated if help is obtained from
another agent. An agent may be anexpertof a task type.
An expertrequires less cost to accomplish a task. After all
agents have finished processing their assigned tasks, their
relative performances are tallied. This comprises one eval-



uation period, orgeneration, of the behaviors adopted. The
behaviors adopted by the agents in the next evaluation pe-
riod is determined by a performance-proportionate scheme
where the probability with which an agent adopts a strat-
egy increases with the average performance of agents em-
ploying that strategy in the most recent evaluation period.
Thus, it is likely that more agents are produced with behav-
iors that generated above-average performance. New agent
behavior assignments are made as follows: for each agenti,
two agents are selected randomly from the population with-
out replacement. Then, of these two selected agents, the be-
havior of the one with higher performance is adopted by
agenti1. This leads to a propagation of successful behav-
iors or traits. As a result, if a behavior produces better per-
formance in one evaluation period compared to other be-
haviors, we are likely to see more individuals adopting that
behavior in the next evaluation period. This generational
scheme is semantically equivalent to every agent periodi-
cally selecting its behavior based on the current relative per-
formance of the set of available behaviors. This generational
approach is akin to work on identifying “evolutionary sta-
ble strategy” [6].

The goal of this paper is to identify the dominant strate-
gies under different environmental conditions including ini-
tial population composition, the frequencies of the tasks as-
signed to the agents and the selection criterion used for pop-
ulation evolution. We present a mathematical analysis of the
dynamics of the agent population. Using this model we can
predict the strategy that will eventually dominate the popu-
lation given the initial configuration.

Now, it is well-known that if each agent was to perform
only one task, i.e., the number of interactions between two
agents were at most one, the selfish strategy will dominate
the reciprocative strategy. On the other hand, if the group
of agents were completely stable, i.e., the agents interacted
with each other infinitely often, the reciprocative strategy
will dominate the selfish strategy. The switch in dominance
happens at an intermediate value of the number of tasks
per agent, and is dependent on other environment factors
like initial group composition. The goal of our mathemati-
cal analysis and predictive model is to identify this switch
over point. Using such a predictive model, then, it is possi-
ble to generate a decision surface on the number of tasks re-
quired for the reciprocative strategy to dominate the other
strategies given the initial strategy distribution in the pop-
ulation. So, if an agent knows the population configuration
and number of tasks then from this analysis it can predict the
population configuration after any time period and it can de-
cide which strategy will be dominant.

1 Selection of the best candidate from a set of randomly selected candi-
dates is known astournament selectionin the genetic algorithms liter-
ature [7].

2. Adaptation via Reciprocity

A significant body of work by mathematical biologists or
economists on the evolution of altruistic behavior deals with
the idealized problem called Prisoner’s dilemma [2] or some
other repetitive, symmetrical, and identical ‘games’. To
consider a well-known study in this area, Axelrod demon-
strates that a simple, deterministic reciprocal scheme or the
tit-for-tat strategy is quite robust and efficient in maximiz-
ing local utility [2]. Sen criticizes that the simple reciproca-
tive strategy is not the most appropriate strategy to use in
most real-life situations because most of the underlying as-
sumptions that motivate its use are violated in these situa-
tions [10].

The evaluation framework used by Axelrod considers an
evolving population composition by allowing propagation
of more successful behaviors and elimination of unsuccess-
ful ones. In this paper, we evaluate the variants of exploita-
tive and reciprocative behaviors suggested by Senet al.[11]
in a generational framework as used by Axelrod [2]. This al-
lows us to see what behaviors emerge to be dominant or are
evolutionarily stable.

3. Probabilistic reciprocity

We now present our probabilistic reciprocity framework
for deciding whether or not to help another agent. Each
agent is assigned to carry outT tasks. Themth task as-
signed to theith agent,tim, will cost it Cij if the mth task
is of type j. However, if agentk carried out this task to-
gether with its own tasks, the cost incurred for taskj by
agentk is Ckl

j (no cost is incurred by agenti), where agent
k is doing tasks of typel. If Cij > Ckl

j , there exists a coop-
eration possibility as agentk can help agenti saveCij by
incurring a cost of onlyCkl

j .
We defineSik andWik respectively as the cumulative

savings obtained from and extra cost incurred by agenti

from agentk over all of their previous exchanges. Also,
Bik = Sik − Wik is the balance of these exchanges (note
that, in general,Bik 6= −Bki).

Sen [10] proposes a probabilistic decision mechanism
that satisfies a set of criteria for choosing when to honor
a request for help that was described at the end of the previ-
ous section. The probability that agentk will carry out task
tij for agenti while it is carrying out its tasktkl is given by:

Pr(i, k, j, l) =
1

1 + exp
Ckl

j
−β∗Ck

avg−Bki

τ

, (1)

whereCk
avg is the average cost of tasks performed by agent

k, andβ andτ are constants. This is a sigmoidal probabil-
ity function (not a probability distribution) where the prob-
ability of helping increases as the balance increases and is
more for less costly tasks.
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Figure 1. Probability distribution for accept-
ing request for cooperation.

A sample probability distribution is presented in Fig-
ure 1.β can be set to a low value to move the probabil-
ity curve left (less inclined to cooperate) or to a high value
to move the curve to the right (more inclined to cooperate).
Initially, Bki = 0 for all i andk. At this point the proba-
bility that an agent will help another agent by incurring an
extra cost ofβ ∗ Ck

avg is 0.5.τ can be used to control the
steepness of the curve. For a very steep curve approximat-
ing a step function, an agent will almost always accept co-
operation requests with extra cost less thanβ ∗ Ck

avg, but
will rarely accept cooperation requests with an extra cost
greater than that value.

These are the only two “parameters” in the equation 1
that can be fine tuned to adjust the level of cooperation. The
other equation variables determine the actual dynamics of
the agent behaviors. The level of cooperation or the incli-
nation to help another agent is dynamically adapted based
on past interactions with that agent. Note that the sigmoid
is one of several function classes that can be used to repre-
sent a probabilistic reciprocity behavior.

4. Set of agent behaviors

In this paper we plan to include the following philan-
thropic, selfish and reciprocative agent types [10]:

Philanthropic agents: Agents that always honor a cooper-
ation request irrespective of past experience.

Selfish agents:Agents who ask for help but never return
favors. Selfish agents can thrive on the benevolence of
philanthropic agents.

Reciprocative agents:Agents that use the probabilis-
tic reciprocity scheme described above.

Another variant of the reciprocative strategy that we have
considered here is as follows [11]:

Earned-Trust based reciprocative agents:While eval-
uating a request for help, these agents consider
balances of only those agents with whom they them-
selves have favorable balances. In place of usingBki

in Equation 1, a conservatively trusting reciproca-
tive agentk uses

∑

j 6=i∧Bkj>0
Bji while calculating

the probability of helping agenti. This behav-
ior is an augmentation of the believing reciprocative
agent and was required to counter false balance re-
porting by exploitative agents.

5. Decision surface

5.1. Decision surface formation

In this subsection, our objective is to discuss the math-
ematical analysis of the derivation of decision surface such
that an agent can predict the dominant strategy given the
environmental configuration available to it and without do-
ing any experimentation or exploration in the domain. We
consider theproportion of selfishand proportion of phil-
anthropic agents as the independent variables. These two
variables completely determine the initial strategy distribu-
tion in the population, because the sum of the proportion of
the three different agents must be one. We want to find out,
for each pair of independent variables, the minimum num-
ber of tasks required for the reciprocative strategy to domi-
nate the other strategies.

Let there beN agents in the environment. In the initial
population,〈ps, pp, pr〉 is the proportion of the selfish, phil-
anthropic and reciprocative agents. In this paper, we have
considered two types of tasks:type1and type2. The pro-
portion of task types〈tp1, tp2〉 is assumed to be equal,i.e.
tp1 = tp2 = 0.5.

Given the proportion of the initial population, one can
find out the number of different types of agents.Nr,l, Np,l

andNs,l are the number ofreciprocative, philanthropicand
selfishagents respectively, which are expert in task type
l = 1, 2, where,Nr,l = N ∗ pr ∗ tpl, Np,l = N ∗ pp ∗ tpl

andNs,l = N ∗ps ∗ tpl. We have to predict the evolutionar-
ily dominant strategy given this initial configuration of the
agent population and the total number of tasks per agent.
From such a predictive mechanism, we will compute the
minimum number of tasks for which the reciprocative strat-
egy will become the evolutionarily dominant strategy.

P (i, k, j, l) is the probability that agentk, if it is asked,
will help agenti for a particular taskt of typej when agent
k is expert in tasks typel. ThisP (i, k, j, l) is defined as,

P (i, k, j, l) =
1

1 + exp
Ckl

j
−β∗Ck

avg−Bki

τ

, if, k is reci andj = l



= 1, if, k is phil. andj = l

= 0, otherwise,

The first expression is defined in Equation 1. Since,Bki is
defined asBki = Ski − Wki for all i, k, whereSki and
Wki are cumulative savings from and extra cost incurred by
agentk from agenti. Initially, Ski = 0 andWki = 0 and
henceBki = 0.

We need to calculateP1(i, k, j, l), which is the probabil-
ity that for a task of typej in the task distribution of agent
i, agentk, an expert in task typel, will be the one to help
agenti. This event corresponds to the situation that all the
agents asked before agentk will refuse to help and agentk
will help.

P1(i, k, j, l)=

Nr,l
∑

a=1, 6=i

[Pr(Lk,a ∩ R(i, a, j, l)) ∗ P (i, k, j, l)],

if k is reciprocative

=

Nr,l
∑

a=1, 6=i

[Pr(Lp
k,a ∩ Rp(i, a, j, l))],

if k is philanthropic
= 0, if k is selfish (2)

whereLk,a is the event thatk is selected as theath among
theNr,l reciprocative agents that are expert in tasks of type
l, i.e., aftera − 1 reciprocative agents expert in task typel.
R(i, a, j, l) is the event that all thosea − 1 agents refuse to
help agenti for tasks of typej. So,

Pr(Lk,a∩R(i, a, j, l)) = Pr(Lk,a)∗Pr(R(i, a, j, l)|Lk,a)

where,

Pr(Lk,a) =

(

Nr,l − 1
a − 1

)

(

Nr,l + Np,l

a

)

and as agent decisions are independent,

Pr(R(i, a, j, l)|Lk,a) =

a−1
∏

t=1

(1 − P (i, at, j, l)),

whereat is thetth agent selected for asking for help. Now,
since all the agents are starting with the same balance and
probabilities to help the other guys it is immaterial in which
order or who exactly are the agents that are selected before
agentj is selected.

The probabilitiesPr(Lp
k,a) are similar to the probability

Pr(Lk,a except that the numerator in the expression for the
former containsNr,l instead ofNr,l − 1 (this is because for
a philanthrop, all the reciprocatives may have already been
asked). Also, the probabilityPr(R(i, a, j, l)|Lk,a) is simi-
lar to the probabilityPr(Rp(i, a, j, l)|Lk,a) except that the

expression for the former usesa instead ofa − 1 range of
the product (for similar reasons as above).

Let us now consider the expected change of balance be-
tween two reciprocative agentsi andk for a particular task
of type l. One can compute the expected savings and ex-
pected spending of agenti for agentk by

Sik = Sik +

2
∑

l=1

P1(i, l, k, l) ∗ Ci,l ∗ ptl

Wik = Wik +

2
∑

l=1

P1(k, l, i, l) ∗ Ci,l ∗ ptl

and hence,
Bik = Sik − Wik.

Using theseBik values we can again find out the probabil-
ity of helping for the next task. So, we can calculate the per-
formance of an agent as the expected net wealth it will gen-
erate after processing all the assigned tasks. The expected
net wealth generated by an agent is the total of the expected
balance with the other agents.

As we have discussed earlier, at the end of each eval-
uation period, i.e., after every agent completes all the tasks
they are assigned (may be with the help of other agents), the
performances are tallied. At this point, agents will choose
their strategies by the performance-proportionate scheme
discussed in Section 1. This will determine our new ex-
pected population with〈ps, pp, pr〉 as the proportion tuple.
This proportion will be approximated as the probability of
an agent choosing the corresponding strategies.

To illustrate this point we now calculate the expected
probability that an agent will adopt reciprocative strategy
i.e.pr. It is defined as,

pr = Pr(reci, reci) + Pr(reci, self) ∗ Pr(reci ≥ self)

+Pr(reci, philan) ∗ P (reci ≥ philan)

where,

Pr(reci, reci) =

(

⌊N ∗ pr⌋
2

)

(

N

2

)

and,

Pr(reci, oth) =

(

⌊N ∗ pr⌋
1

)

∗

(

⌊N ∗ poth⌋
1

)

(

N

2

)

where,oth = selfish or philanthropic. Then the expected
value ofPr(reci ≥ oth) can be found from the previously
calculated expected performance. Similarly, we can find out
pp andps values and determine the expected new strategy



distribution in the population in the next generation. We re-
peat this process until the agent population becomes homo-
geneous, i.e., all agents use the same strategy.

So, for a particular initial agent population and number
of tasks available to each agent an expected dominant strat-
egy is found. Using this information, in turn, we identify the
region of dominance by the different strategies and the de-
cision surface separating them, given environmental factors
like number of tasks per agent and the starting strategy dis-
tribution in the population.

5.2. Analysis of the derived decision surface

In this subsection, we will identify and discuss the deci-
sion surface that separates the region of dominance of the
different strategies. We consider,proportion of selfishand
proportion of philanthropagents are the independent vari-
ables. We vary the values of theproportion of selfishand
proportion of philanthropagents from0.1 to 0.8. We set the
other parameters in the environment as follows:N = 60,
β = 0.8, τ = 0.9. We have obtained the decision surface
which we will discuss and analyze in this subsection.

For clearly describing the decision surface, we state the
following two theorems. We are not including the proofs in
the paper. For the proofs please refer to the following URL:
www.mcs.utulsa.edu/˜sahasa/proofs.pdf :

Theorem 1:If both philanthropic and selfish agents are
present in the population, the philanthropic agents will
always be dominated by the selfish agents.

Theorem 2:In the presence of philanthropic agents, recip-
rocative agents cannot dominate the selfish agents.

Since the philanthropic agents help others without con-
sidering their nature it is impossible for them to dominate
the other strategies, as we have shown in Theorem 1. But
their presence help the exploitative agents to dominate the
environment. Since, the selfish agents always exploit the
philanthropic agents, in the presence of selfish agents the
performance of the philanthropic agents deteriorate sharply
and the agents adopt other strategies. Also, as stated in The-
orem 2, in the presence of philanthropic agents of different
expertise, a reciprocative agent cannot perform better than
the selfish agents. Only after the philanthropic strategy be-
comeextinct, does the reciprocatives have any chance of
dominating the selfish agents. Within each evaluation pe-
riod, the reciprocatives initially help the selfish agents and
expects help from them. It takes some time for them to rec-
ognize the selfish agents and stop helping them. Once the re-
ciprocative agents stop helping the selfish agents, the selfish
needs to do all of the work by themselves and incur more
cost compared to the reciprocatives who will be better off
by exchanging help among themselves. But, if the number
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Figure 2. Decision surface separating the re-
gions of dominance of basic reciprocative
and selfish strategies.

of tasks within an evaluation period is small, the reciproca-
tives will not be able to compensate the initial cost it in-
curred by helping the selfish agents. So, for each pair of ini-
tial proportion of selfish and philanthrops, there will be a
task number above which the reciprocatives are expected to
be the dominant strategy.

In the first scenario, we model the evolution of a mix of
basic reciprocative, selfish and philanthropic agents. In Fig-
ure 2, we show the decision surface separating the region
of dominance of the reciprocative and the selfish strategies.
For any point above the surface, reciprocative is the domi-
nant strategy. Note that the dark region signifies the empti-
ness of the pointe.g.the point〈0.8, 0.5, ∗〉 does not exist as
the sum of proportions has to be less than or equal to one.
We observe that as the proportion of selfish agent in the ini-
tial population is increased, while keeping the proportion
of philanthrops constant (this implies a decrease in the ini-
tial proportion of reciprocative agents), it takes more tasks
for the reciprocative to ultimately dominate the population.
A similar trend is observed when the philanthrop propor-
tion is increased keeping the selfish proportion constant.

To demonstrate the expected evolution of the population
over a single evolutionary run, we plot the proportion of
the three different strategies over different evaluation pe-
riods in Figure 3. Here the proportion of philanthrops are
0.2 with the rest of the population equally divided among
selfish and reciprocative agents, and the number of tasks is
400. After two evaluation periods the floor value of the ex-
pected number of philanthrops become zero. In the pres-
ence of philanthrop agents, the expected performance of the
selfish agents was better than that of reciprocative agents
as they were exploiting the philanthrops. But after the phi-
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lanthrops die off, expected performance of the reciproca-
tives becomes dominant and more agents are expected to
adopt reciprocative strategy. After about six evaluation pe-
riods the expected number of selfish agents drop down to
zero leaving reciprocatives as the dominant strategy.

In the second scenario, we find out the decision surface
separating the dominant regions of theearned trust based
reciprocatives and the selfish agents (see Figure 4). In this
case, the decision surface is lower than that in Figure 2, i.e.,
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Figure 4. Decision surface separating the re-
gions of dominance of earned trust based re-
ciprocative and selfish strategies.

it takes much fewer tasks for theearned trust basedrecip-
rocative agents to dominate the selfish agents compared to
that required by the basic reciprocative agents for the same
initial proportions of selfish and philanthropic agents.

6. Conclusion and future work

In this paper, we have presented an analytical model for
predicting the mix of different strategy distributions under
an evolutionary scheme. Such an evolutionary scenario cap-
tures the dynamic of agents periodically adopting strategies
that have been providing larger payoff in the current en-
vironment. Our goal has been to identify the evolutionar-
ily dominant strategy given the starting strategy distribution
and the number of tasks to be performed per iteration be-
fore agents reconsider changing their strategies. Our analyt-
ical model helps us to predict the dominant strategy given
this information. More importantly such predictive analysis
allows us to construct a decision surface separating regions
of dominance of selfish and reciprocative strategies. As a re-
sult, a rational agent can choose the most beneficial strategy
for the long run given the initial strategy profile in the pop-
ulation and the assigned task load.

As an extension of this work, we have planned to run a
set of simulations to evaluate the accuracy of our predicted
population mix and the tasks required before reciprocative
strategies dominate.
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