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Abstract As agent system designers we can also define rules of in-
teraction to increase the likelihood of cooperation paksib
Prior research has identified agent behaviors or strate- ties. We are interested in identifying agent behaviorsahat
gies that can develop and sustain mutually beneficial co- low agents to take advantage of cooperation possibilities i
operative relationships with like-minded agents and can re their environments.

sist exploitation from selfish agents. Evolutionary tourna Senetal. [10, 11] have presented behaviors that promote
ments with different Strategies can model scenarios WhereCooperation among homogeneous groups and can resist ex-
agents periodically adopt strategies that are outperforgni  pjoitation by malevolent agents in heterogeneous groups.
others in the population. However, such experiments can besych behaviors can lead to both improved local perfor-
computationally costly and hence it can be difficult to pre- mance for individual agents and effective global perfor-
scribe a strategy choice for a rational agent given environ- mance for the entire system. A restrictive assumption & thi
mental conditions like task distribution, strategy mixiet  |ine of work has been that agents have fixed behaviors. For
population, etc. A preferred approach, and the one pursued example, they have assumed that agents with specified be-
in this paper, is to analytically capture the dynamics of the haviors interact repeatedly over a sustained period of time
strategy mix in the population under an evolutionary tour- and their effectiveness is calculated as function of the to-
nament. Such an analytical model can be used to predictta| cost incurred to complete all assigned tasks. The resul-
the long-range winning strategy, which is the strategy to be tant performance reflects cost incurred for local tasks; cos
preferred given the environmental conditions and the ini- incurred to help other agents with their tasks, and savings
tial strategy distribution. obtained from others when help was received.

A more realistic scenario would be to give an agent the
freedom of choosing from one of several of these behav-
1. Introduction iors and to change its behavior as and when it deems ap-
propriate. An agent may be prompted to adopt a behavior
With the burgeoning of agent based electronic com- if agents using that behavior i§ seen to_ be performing bet-
merce, recommender systems, personal assistant agent€" than qthers. Such a bghawor adoptlon methqd leads to
etc. it is becoming increasingly clear that agent systems@n €volutionary process with a dynamically changing group
must interact with a variety of information sources in an COMposition of agent behaviors [12, 13]. In this paper, we
open, heterogeneous environment. One of the key factorgrésent a mathematical model of the dynamics of the agent
for successful agent based systems (ABSs) of the futurePOPulation. Our goal is to analytically determine the regio
would be the capability to interact with other ABSs and hu- ©f dominance for the different strategies based on the ini-
mans in different social and role contexts and over extendedfial Population composition, environmental conditiorieeli
periods of time. Research in societal aspects of agent be'umber of tasks agents need to accomplish, the evolving cri-
haviors has been relatively scarce [9]. Whereas economid€ra, etc.
models can provide a basis for structuring agent interac- We consider the problem domain where each of the
tions [14], other non-monetary approaches [1, 2, 3, 4, 5, 8,agents are assigned some tasks. The cost of executing a
10] may provide effective solutions in certain situationg task can be reduced or eliminated if help is obtained from
assume that typical real-world environments abouncbin another agent. An agent may be expertof a task type.
operation possibilitiessituations where one agent can help An expertrequires less cost to accomplish a task. After all
another agent by sharing work such that the helping cost ofagents have finished processing their assigned tasks, their
the helper is less than the cost saving of the helped agentrelative performances are tallied. This comprises one eval



uation period, ogeneration of the behaviors adopted. The 2. Adaptation via Reciprocity

behaviors adopted by the agents in the next evaluation pe-

riod is determined by a performance-proportionate scheme A significant body of work by mathematical biologists or
where the probability with which an agent adopts a strat- €conomists on the evolution of altruistic behavior deatbwi
egy increases with the average performance of agents emthe idealized problem called Prisoner’s dilemma [2] orsome
ploying that strategy in the most recent evaluation period. other repetitive, symmetrical, and identical ‘games’. To
Thus, it is likely that more agents are produced with behav- consider a well-known study in this area, Axelrod demon-
iors that generated above-average performance. New agergtrates that a simple, deterministic reciprocal schembeor t
behavior assignments are made as follows: for each agent tit-for-tat strategy is quite robust and efficient in maximiz-
two agents are selected randomly from the population with- ing local utility [2]. Sen criticizes that the simple recjea-

out replacement. Then, of these two selected agents, the betive strategy is not the most appropriate strategy to use in
havior of the one with higher performance is adopted by most real-life situations because most of the underlying as
agentil_ This leads to a propagation of successful behav- sumptions that motivate its use are violated in these situa-
iors or traits. As a result, if a behavior produces better per tions [10].

formance in one evaluation period compared to other be- The evaluation framework used by Axelrod considers an
haviors, we are likely to see more individuals adopting that evolving population composition by allowing propagation
behavior in the next evaluation period. This generational of more successful behaviors and elimination of unsuccess-
scheme is semantically equivalent to every agent periodi_fu| ones. In this paper, we evaluate the variants of exploita
cally selecting its behavior based on the current relatare p  tive and reciprocative behaviors suggested byee [11]
formance of the set of available behaviors. This generation in a generational framework as used by Axelrod [2]. This al-
approach is akin to work on identifying “evolutionary sta- 0ws us to see what behaviors emerge to be dominant or are
ble strategy” [6]. evolutionarily stable.

The goal of this paper is to identify the dominant strate- o ] )
gies under different environmental conditions includingi 3. Probabilistic reciprocity
tial population composition, the frequencies of the tasks a o ) )
signed to the agents and the selection criterion used for pop e now present our probabilistic reciprocity framework
ulation evolution. We present a mathematical analysisefth for deciding whether or not to help another agent. Each
dynamics of the agent population. Using this model we can@gent is assigned to carry oilit tasks. Themth task as-

predict the strategy that will eventually dominate the popu Signed to theth agent/;,, will cost it C;; if the mth task
lation given the initial configuration. is of type j. However, if agent carried out this task to-

gether with its own tasks, the cost incurred for tgsky

Now, it is well-known that if each agent was to perform . , o ,
9 P agentk is Cj’?l (no cost is incurred by agei), where agent

only one task, i.e., the number of interactions between two ™~ , )
agents were at most one, the selfish strategy will dominate IS doing tasks of type If C;; > C}', there exists a coop-
the reciprocative strategy. On the other hand, if the group €ration possibility as aggrhi can help ageni saveC; by

of agents were completely stable, i.e., the agents integfact "CUrTng & cost of only’i*. _ _

with each other infinitely often, the reciprocative strateg e defines;; andW;;, respectively as the cumulative
will dominate the selfish strategy. The switch in dominance SaVings obtained from and extra cost incurred by agent
happens at an intermediate value of the number of taskd"©™M agentk over all of their previous exchanges. Also,
per agent, and is dependent on other environment factorsBit = Sik — Wi is the balance of these exchanges (note
like initial group composition. The goal of our mathemati- that, in generalBy, # —By;). o _

cal analysis and predictive model is to identify this switch  S€n [10] proposes a probabilistic decision mechanism
over point. Using such a predictive model, then, it is possi- that satisfies a set of criteria for choosing when to honor_
ble to generate a decision surface on the number of tasks re@ reguest for help that was described at the end of the previ-
quired for the reciprocative strategy to dominate the other ©US Section. The probability that agénwill carry out task
strategies given the initial strategy distribution in trepp ~ 'is for agent while itis carrying out ts task is given by:
ulation. So, if an agent knows the population configuration 1

and number of tasks then from this analysis it can predict the Pr(ik, j.l) = R TR @)
population configuration after any time period and it can de- I +exp T
cide which strategy will be dominant. whereC¥,_ is the average cost of tasks performed by agent

k, ands andr are constants. This is a sigmoidal probabil-

1 Selection of the best candidate from a set of randomly sslexzndi- ity function (not a probability distribution) where the fro
dates is known aurnament selectioim the genetic algorithms liter-  ability of helping increases as the balance increases and is
ature [7]. more for less costly tasks.
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Figure 1. Probability distribution for accept-
ing request for cooperation.

A sample probability distribution is presented in Fig-
ure 1.5 can be set to a low value to move the probabil-
ity curve left (less inclined to cooperate) or to a high value
to move the curve to the right (more inclined to cooperate).
Initially, By; = 0 for all s and k. At this point the proba-
bility that an agent will help another agent by incurring an
extra cost ofg « C* is 0.5.7 can be used to control the

avg

Another variant of the reciprocative strategy that we have
considered here is as follows [11]:

Earned-Trust based reciprocative agents:While eval-
uating a request for help, these agents consider
balances of only those agents with whom they them-
selves have favorable balances. In place of ugtpg
in Equation 1, a conservatively trusting reciproca-
tive agentk uses)_. ;. p, ~o Bji While calculating
the probability of helping agent. This behav-
ior is an augmentation of the believing reciprocative
agent and was required to counter false balance re-
porting by exploitative agents.

5. Decision surface

5.1. Decision surface formation

In this subsection, our objective is to discuss the math-
ematical analysis of the derivation of decision surfacésuc
that an agent can predict the dominant strategy given the
environmental configuration available to it and without do-
ing any experimentation or exploration in the domain. We
consider theproportion of selfishand proportion of phil-
anthropic agents as the independent variables. These two
variables completely determine the initial strategy distr
tion in the population, because the sum of the proportion of
the three different agents must be one. We want to find out,

steepness of the curve. For a very steep curve approximattor each pair of independent variables, the minimum num-

ing a step function, an agent will almost always accept Co- per of tasks required for the reciprocative strategy to domi
operation requests with extra cost less titan C¥, , but nate the other strategies.

will rarely accept cooperation requests with an extra cost | ot there beV agents in the environment. In the initial

greater than that value. population,(ps, p,, p.) is the proportion of the selfish, phil-

These are the only two “parameters” in the equation 1 gnthropic and reciprocative agents. In this paper, we have
that can be fine tuned to adjust the level of cooperation. Thegnsidered two types of taskipelandtype2 The pro-

other equation variables determine the actual dynamics Ofportion of task typestp: , tp,) is assumed to be equalk.
the agent behaviors. The level of cooperation or the incli- tp1 = tps = 0.5. ’
nation to help another agent is dynamically adapted based Gjyen the proportion of the initial population, one can
on past interactions with that agent. Note that the sigmoid ¢inq out the number of different types of agen&.;, N,

2] D,

is one of several function classes that can be used to répPreéand N, , are the number akciprocative philanthropi(arid

sent a probabilistic reciprocity behavior. selfishagents respectively, which are expert in task type

I =1,2,where,N,; = N xp, xtp;, Ny, = N % p, * tp,
andN;; = N *p, xtp;. We have to predict the evolutionar-
ily dominant strategy given this initial configuration ofeth
agent population and the total number of tasks per agent.
From such a predictive mechanism, we will compute the
minimum number of tasks for which the reciprocative strat-
egy will become the evolutionarily dominant strategy.

] P(i, k,4,1) is the probability that ager#, if it is asked,
Selfish agents:Agents who ask for help but never return .y help agenti for a particular task of type j when agent

favors. Selfish agents can thrive on the benevolence of;. ;5 expert in tasks typg This P(i, k, j, ) is defined as
philanthropic agents. T

4. Set of agent behaviors

In this paper we plan to include the following philan-
thropic, selfish and reciprocative agent types [10]:

Philanthropic agents: Agents that always honor a cooper-
ation request irrespective of past experience.

Reciprocative agents: Agents that use the probabilis-

1 o .
-, if, Kisreciang ={
tic reciprocity scheme described above. :

chl_pxck, —By

14 exp . T

P(i,k, j,1)



= 1,if, kis phil. andj = expression for the former usesnstead ofe — 1 range of
= 0, otherwise, the product (for similar reasons as above).
Let us now consider the expected change of balance be-
The first expression is defined in Equation 1. SinBg; is  tween two reciprocative agentsnd# for a particular task
defined asBy; = S — Wy, for all 4, k, whereS;; and of type [. One can compute the expected savings and ex-
Wi,; are cumulative savings from and extra cost incurred by pected spending of agenfor agentk by
agentk from agenti. Initially, Sy; = 0 andW,; = 0 and
henceBy,; = 0. .
We need to calculat®, (i, k, §, 1), which is the probabil- Sike = Sk + Z Pr(i, 1 k1) x G x pty
ity that for a task of type in the task distribution of agent =1

2

i, agentk, an expert in task typg will be the one to help 2
agent:. This event corresponds to the situation that all the Wi = Wik + Zpl(]@ 1,3,1) * C; 1 * pty
agents asked before agénwvill refuse to help and agerit =1
will help. and hence,
No Bk, = Sik — Wi
Py(i, k, j,0)= [Pr(Lg,a N R(i,a,5,1)) * P(i,k, j,1)],  Using theseB,, values we can again find out the probabil-
a=1,#i . ity of helping for the next task. So, we can calculate the per-
if k is reciprocative formance of an agent as the expected net wealth it will gen-
il » . erate after processing all the assigned tasks. The expected
= Z [Pr(Ly,, N R a, 4, D), net wealth generated by an agent is the total of the expected
a=1,7%i balance with the other agents.

if k is philanthropic

— 0, ifkis selfish @ As we have discussed earlier, at the end of each eval-

uation period, i.e., after every agent completes all thkestas
they are assigned (may be with the help of other agents), the
performances are tallied. At this point, agents will choose
their strategies by the performance-proportionate scheme
discussed in Section 1. This will determine our new ex-
pected population witkip,, p,, p-) as the proportion tuple.
This proportion will be approximated as the probability of
Pr(Lig.oNR(iya,5,1)) = Pr(Ly.q)*Pr(R(i,a, j,1)| L.q) an agent choosing the corresponding strategies.

To illustrate this point we now calculate the expected

whereL; , is the event thak is selected as theth among
the N, ; reciprocative agents that are expert in tasks of type
[, i.e., aftera — 1 reciprocative agents expert in task tyipe
R(i,a,j,1) is the event that all those— 1 agents refuse to
help agent for tasks of typej. So,

where, probability that an agent will adopt reciprocative strgteg
( N, —1 > i.e.p,. Itis defined as,
a—1
Pr(Lg,q) = NN pr = Pr(reci,reci) + Pr(reci,self) * Pr(reci > self)
( ot “ ! > +Pr(reci, philan) * P(reci > philan)
and as agent decisions are independent, where,
( [N *p,] >
a—1 ) ) 2
Pr(R(i,a,5,0)|Ly.a) = tHl(l — P(i,at,4,1)), Pr{reci,reci) = = ( N )
- 2

wherea; is thetth agent selected for asking for help. Now, nd

since all the agents are starting with the same balance ang ’

probabilities to help the other guys it is immaterial in whic [N *p, | | N * potn |

order or who exactly are the agents that are selected before ) ( 1 > ¥ ( 1 )

agentj is selected. Pr(reci, oth) = N
The probabilitiesPr(Lj, ,) are similar to the probability ( 2 )

Pr(Ly,, except that the numerator in the expression for the

former containsV, ; instead ofNV,.; — 1 (this is because for ~ where,oth = selfish or philanthropic. Then the expected

a philanthrop, all the reciprocatives may have already beenvalue of Pr(reci > oth) can be found from the previously

asked). Also, the probability’r(R(i, a, j,1)| Lk,q) is simi- calculated expected performance. Similarly, we can find out

lar to the probabilityPr(RP (i, a, j,1)| Lk .) except thatthe  p, andp; values and determine the expected new strategy




distribution in the population in the next generation. We re
peat this process until the agent population becomes homo-
geneous, i.e., all agents use the same strategy.

So, for a particular initial agent population and number
of tasks available to each agent an expected dominant strat- soo
egy is found. Using this information, in turn, we identifyeth
region of dominance by the different strategies and the de-
cision surface separating them, given environmental facto 300
like number of tasks per agent and the starting strategy dis-
tribution in the population.
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5.2. Analysis of the derived decision surface %% —
06 o4 - ’
. . - . . . 02 0.8 '
In this subsection, we will identify and discuss the deci- TT— /
sion surface that separates the region of dominance of the i proporton of philanthrops

different strategies. We considgroportion of selfisrand
proportion of philanthropagents are the independent vari-
ables. We vary the values of thmoportion of selfishand
proportion of philanthropagents fron.1 to 0.8. We set the
other parameters in the environment as follows:= 60,
8 = 0.8, 7 = 0.9. We have obtained the decision surface
which we will discuss and analyze in this subsection. of tasks within an evaluation period is small, the reciproca
For clearly describing the decision surface, we state thefives will not be able to compensate the initial cost it in-
following two theorems. We are not including the proofs in curred by helping the selfish agents. So, for each pair of ini-
the paper. For the proofs please refer to the following URL: tial proportion of selfish and philanthrops, there will be a

Figure 2. Decision surface separating the re-
gions of dominance of basic reciprocative
and selfish strategies.

www.mcs.utulsa.edu/~sahasa/proofs.pdf ; task number above which the reciprocatives are expected to
be the dominant strategy.
Theorem 1:If both philanthropic and selfish agents are In the first scenario, we model the evolution of a mix of
present in the population, the philanthropic agents will basic reciprocative, selfish and philanthropic agentsidn F
always be dominated by the selfish agents ure 2, we show the decision surface separating the region

of dominance of the reciprocative and the selfish strategies
For any point above the surface, reciprocative is the domi-
nant strategy. Note that the dark region signifies the empti-
Since the philanthropic agents help others without con- ness of the poing.g.the point(0.8, 0.5, ) does not exist as
sidering their nature it is impossible for them to dominate the sum of proportions has to be less than or equal to one.
the other strategies, as we have shown in Theorem 1. BuiVe observe that as the proportion of selfish agent in the ini-
their presence help the exploitative agents to dominate thetial population is increased, while keeping the proportion
environment. Since, the selfish agents always exploit theof philanthrops constant (this implies a decrease in the ini
philanthropic agents, in the presence of selfish agents thdial proportion of reciprocative agents), it takes morekas
performance of the philanthropic agents deteriorate $arp for the reciprocative to ultimately dominate the populatio
and the agents adopt other strategies. Also, as stated in TheA similar trend is observed when the philanthrop propor-
orem 2, in the presence of philanthropic agents of different tion is increased keeping the selfish proportion constant.
expertise, a reciprocative agent cannot perform better tha  To demonstrate the expected evolution of the population
the selfish agents. Only after the philanthropic strategy be over a single evolutionary run, we plot the proportion of
comeextinct does the reciprocatives have any chance of the three different strategies over different evaluatien p
dominating the selfish agents. Within each evaluation pe-riods in Figure 3. Here the proportion of philanthrops are
riod, the reciprocatives initially help the selfish agemida 0.2 with the rest of the population equally divided among
expects help from them. It takes some time for them to rec- selfish and reciprocative agents, and the number of tasks is
ognize the selfish agents and stop helping them. Once the re400. After two evaluation periods the floor value of the ex-
ciprocative agents stop helping the selfish agents, thslselfi pected number of philanthrops become zero. In the pres-
needs to do all of the work by themselves and incur more ence of philanthrop agents, the expected performance of the
cost compared to the reciprocatives who will be better off selfish agents was better than that of reciprocative agents
by exchanging help among themselves. But, if the numberas they were exploiting the philanthrops. But after the phi-

Theorem 2in the presence of philanthropic agents, recip-
rocative agents cannot dominate the selfish agents



it takes much fewer tasks for tlearned trust basececip-

60 — rocative agents to dominate the selfish agents compared to
that required by the basic reciprocative agents for the same
50 - 7 initial proportions of selfish and philanthropic agents.

% reciprocatives

g or i 6. Conclusion and future work

S 301 ] In this paper, we have presented an analytical model for

E predicting the mix of different strategy distributions end

E 201 selfish 7 an evolutionary scheme. Such an evolutionary scenario cap-

- tures the dynamic of agents periodically adopting strategi

10 | philanthropic e that have been providing larger payoff in the current en-
vironment. Our goal has been to identify the evolutionar-
o I ily dominant strategy given the starting strategy disttiiu
c 1 2 3 4 5 6 7 89 and the number of tasks to be performed per iteration be-
evaluation periods . . . .

. ) fore agents reconsider changing their strategies. Ouytnal
Figure 3. Expected number of agents of dif- ical model helps us to predict the dominant strategy given
ferent types over evaluation periods. Initial this information. More importantly such predictive anadys
proportion of selfish and philanthrops are 0.4 allows us to construct a decision surface separating region
and 0.2 respectively and number of tasks is of dominance of selfish and reciprocative strategies. As are
400. sult, a rational agent can choose the most beneficial syrateg

for the long run given the initial strategy profile in the pop-
ulation and the assigned task load.
lanthrops die off, expected performance of the reciproca-  aAg an extension of this work, we have planned to run a
tives becomes dominant and more agents are expected tget of simulations to evaluate the accuracy of our predicted
adopt reciprocative strategy. After about six evaluatien p  population mix and the tasks required before reciprocative
riods the expected number of selfish agents drop down tOstrategies dominate.
zero leaving reciprocatives as the dominant strategy.
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