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Abstract

In this paper we are concerned with decision making
in autonomous agents and, in particular, the tradeoff be-
tween the optimal solution provided byMDPs and the more
tractable approximation provided by theBDI model. In or-
der to establish the relative performance of the approaches
for the TILEWORLD domain, we have to first find approxi-
mations for the optimalMDP solution, and we demonstrate
that even these approximations out-perform theBDI model
for small domains. However, for large domains these ap-
proximations are less effective and theBDI approach per-
forms better.

1. Introduction

For any autonomous agent, whether a softbot playing a
computer game [2], a web spider [16], or a robot playing
soccer [8], the key thing it has to do is to decide what to
do next [23]. As a result, the problem of establishing the
best mechanism by which an agent can make this decision
has been widely studied, and a number of approaches have
been formulated. We can distinguish two broad classes of
approach.

One class is that ofdescriptiveapproaches—approaches
that are based on analysing the way that people or ani-
mals make decisions. These approaches include, for exam-
ple, the belief/desire/intention (BDI) approach [5] and the
behaviour-based approach [3]. Such approaches have often
led to agent architectures which support the development of
agents that use the approach to decision making. For exam-
ple, one can look at thePRS [9] as an architecture forBDI

decision making, and the subsumption architecture [6] as an
architecture for behaviour-based [3] decision making.

Another class is that ofprescriptive approaches—
approaches which attempt to identify the optimal deci-
sion. These are typically based around decision theory
[15], and one family of approaches within this class, a fam-
ily that is currently the subject of much research inter-
est, is the family of Markov decision processes (MDPs)
[14].

Since theBDI model, and implementations thereof, have
been widely used by agent developers, it is interesting to
ask about the quality of the decisions that the model makes.
It seems natural that this will depend upon the exact nature
of the task, and this was experimentally validated by Kinny
and Georgeff [10]. In particular Kinny and Georgeff showed
that the performance of an agent depended upon the speed
with which its environment changed, the amount of infor-
mation the agent has at its disposal, and the likelihood of its
actions having their intended effect.

Another of Kinny and Georgeff’s findings was that the
performance of the agent depended upon how often, broadly
speaking, it considered whether it had made the right deci-
sion (its commitment strategyin the language of theBDI

model). Following up on this, Schut and Wooldridge [17,
18, 19] considered a range of methods for making this meta-
level decision about whether the last decision was still a
good one, even using anMDP model [20] to optimise it.

All of this work, however, has only been able to com-
pare different commitment strategies relative to one another
rather than with any notion of what the optimum perfor-
mance is. All that we know is that, as a heuristic approach,
the BDI model is likely to be sub-optimal. We just don’t
knowhowsub-optimal. The trade-off, the reason we may be
prepared to accept this sub-optimality, is that theBDI model
is presumably much more tractable than an optimal solu-
tion, but since nobody has looked at the optimal solution,
this is only a hypothesis.

Our aim in this paper is to investigate the trade-off.



Building on that of [20], we take the problem studied by
both Kinny and Georgeff and Schut and Wooldridge, and
provide a solution using anMDP. This can be considered op-
timal in a decision-theoretic sense (though other notions of
optimality are possible). In fact, it turns out that, as hypoth-
esized, theMDP solution is intractable for interesting-sized
versions of the problem, so we have to resort to some novel
approximations in order to make a meaningful comparison
with BDI. We then provide comparisons between theMDP

approximation and theBDI model for two different-sized
versions of theTILEWORLD.

This paper is organized as follows: in Section 2, we
present an introduction to theBDI architecture,MDPs, and
then theTILEWORLD domain we will use for our experi-
ments. Section 3 introduces two approaches to approximate
MDP solutions which we need to adopt for theTILEWORLD,
Section 4 discusses the experimental setup, and Section 5
gives our results. Finally, Section 6 summarizes our find-
ings and discusses future work.

2. Background

Before we describe our contribution, we first describe the
BDI architecture,MDPs, and then theTILEWORLD domain
(and the way we can use theBDI architecture andMDPs to
provide agents with a solution to it).

2.1. The BDI Model

The BDI model has its roots in the philosophical tradi-
tion of understandingpractical reasoning[5]. This type of
reasoning can be described as the process of deciding what
actions to perform in order to reach a goal. Practical reason-
ing involves two important processes: decidewhatgoals to
try and reach, andhow to reach them. The first process is
known asdeliberation, and the second asmeans-endsrea-
soning.

The practical reasoning process can be broken down into
a number of basic components; the following are in general
part of aBDI model [22]:

• A set of currentbeliefs, which represents the informa-
tion the agent currently has about its environment.

• A belief revisionfunction, which takes a perceptual in-
put and the agent’s current beliefs and, based on this,
determines the new set of beliefs.

• An option generationfunction, which determines the
options available to the agent based on the current
beliefs about the environment and its currentinten-
tions. This function represents the agent’s means-ends
reasoning–the process of deciding how to achieve in-
tentions. It maps a set of beliefs and a set of intentions
into a set ofdesires.

• A set ofcurrent options, which represents the agent’s
possible courses of action.

• A filter function, which represents the agent’sdeliber-
ationprocess, and which determines the agent’s inten-
tions based on its current beliefs, desires, and inten-
tions.

• A set of current intentions, which represents the
agent’s current focus,i.e., those states to which it is
committed to arrive.

• An action selectionfunction, which determines an ac-
tion to perform based on the current intentions.

The desired behavior will have an impact on how each of
these components is implemented. Such variety in possible
implementations causes this architecture to be considereda
familyof models, rather than a rigid design method.

2.2. Markov Decision Processes

We are concerned with the problem of choosing opti-
mal actions in complexstochasticenvironments, in other
words environments in which actions have asetof possi-
ble effects, each having aprobability of occurrence associ-
ated with it. Thesetransition probabilitiesdepend only on
the state and the action carried out, not on the agent’s previ-
ous history, and we will assume that agents always knowex-
actly what state they are in. Markov decision processes are
one approach to decision making in this kind of environ-
ment.

A Markov decision process can be formally defined [11]
as a tupleM = (S, A, T, R, β), where:

• S is a finite set ofstatesof the environment.

• A is a finite set ofactions.

• T : S × A → Π(S) is thestate transition function. It
gives, for each state and action performed by the agent,
a probability distribution over states (T (s, a, s′) is the
probability of ending in states′, given that the agent
started in states and performed actiona).

• R : S × A → RI is thereward function, which gives
the expected immediate reward gained by the agent for
taking each action in each state.

• 0 < β < 1 is a discount factor. This factor is used
to represent that a reward obtained in the future is less
valuable than an immediate one. Its use ensures that
the reward obtained by a policy is not unbounded, and
that the algorithm used to calculate the utilities con-
verges.

The problem is, then, to find the best way to behave
given this model of the environment. The same problem has
been addressed in AI asplanning, but the consideration of
stochastic domains forces us to depart from the traditional



model and compute solutions in the form ofpoliciesinstead
of action sequences (plans). A policy is a complete map-
ping from states to actions; once a policy is calculated, it is
trivial to decide what to do. The agent’s decision function
is represented explicitly by the policy: it describes a sim-
ple reflex agent.

One way to obtain an optimal policy isvalue iteration
[14], which basically calculates the utility of each state us-
ing dynamic programming techniques, and then uses these
values in the selection of an optimal action for each state.
Because actions have no guaranteed effect, the calculation
of utilities is not straightforward, but can be done to any de-
gree of accuracy by using an iterative procedure.

The main drawback of algorithms for directly solving
MDPs, is their intractability for even relatively small prob-
lems. A naı̈ve approach for finding an optimal policy (one
which tries every possible combination) would beO(|A|n),
wheren is the number of steps in the decision problem. This
would preclude exhaustive search even for small values of
|A| andn.

In the dynamic programming approach [14], the cost of
calculating the utility of one state isO(|A|), and therefore
the whole computation isO(n|A||S|), or O(|A||S|) if dis-
counting is used. So, in general, each iteration of the value
iteration algorithm takesO(|A||S|)2 steps. The number of
iterations required to reach an optimal policy can be proved
to be bounded above by a polynomial in|S|, |A|, B, and
1/(1−β), whereB is used to designate the maximum num-
ber of bits needed to represent any numerator or denomina-
tor of β, or one of the components ofT or R. As a lower
bound, value iteration has a worst case run time that grows
faster than1/(1 − β) [11, 21].

2.3. The TILEWORLD Domain

The TILEWORLD testbed [13] is a grid environment oc-
cupied by agents, tiles, holes, and obstacles. The agent’s ob-
jective is to score as many points as possible by filling up
holes, which can be done by pushing the tiles into them. The
agent can move in any direction (even diagonally); the only
restriction is that the obstacles must be avoided. This envi-
ronment isdynamic, so holes may appear and disappear ran-
domly in accordance to a series of world parameters, which
can be varied by the experimenter.

Because this environment, though simple to describe, is
too complex for most experiments, we adopted the sim-
plified testbed used in [10, 18]. The simplifications to the
model are: tiles are omitted, so an agent can score points
simply by moving to a hole; agents have perfect, zero-cost
knowledge of the state of the world; and agents build cor-
rect and complete plans for visiting a single hole (they do
not plan tours for visiting more than one hole). This domain,
although simplistic, is useful in the evaluation of the effec-

tiveness of situated agents. One of its main advantages is
that it can be easily scaled up to provide difficult and un-
solvable problems.

A BDI agent for theTILEWORLD can be easily imple-
mented. The agent’s beliefs consist of its perceptions of the
locations of holes in the world. Various parameters dictate
how accurate these beliefs are:accessibility(how many po-
sitions the agent can see from where it is standing),dy-
namism(how many steps the world takes for each step of
the agent),planning cost(how many steps the agent must
spend in order to build a plan), and the agent’sintention
reconsiderationstrategy. This last parameter is one of the
most important because it has a great influence on how ef-
ficient the agent will be; if intentions are reconsidered too
often or too soon, this will lead to a waste of effort [24].

The next component,desires, can be seen under this
model as possible plans leading to a selected goal. In our
case, any series of actions leading from the agent’s current
position to a hole constitutes a desire. On the other hand, an
intention is a desire selected in order to reach a goal. The
agent will select one such intention, and will use it to fill
holes in the best possible way. Intention reconsideration in
this domain corresponds to the frequency in which the agent
revises its plans:cautiousagents reconsider after each ac-
tion taken, whilebold ones wait until the current plan is
completed to build a new one.

The computational costs associated to this model are
low: plans can be built in time linear in the size of the world,
and there is no off-line cost because all of the processing is
done during execution time. However, this does not mean
that BDI agents arealwaysefective: the burden lies at the
agent’sreconsideration strategy, which can lead the agent
to wasted efforts if it is sub-optimal.

For anMDP model, the world is modelled by taking into
accounteverypossible action ineverypossible state. For
the simplifiedTILEWORLD, this means that for a world of
sizen (that is, ann × n grid) there is a set of 8 actions,
n2 possible positions for the agent, and2n2

possible config-
urations of holes. This last number is obtained by consid-
ering that every position in the grid may contain a hole or
not. A statein this world consists of a pair(P, H), where
P = (i, j), 0 ≤ i, j ≤ n− 1, andH represents a given con-
figuration of holes on the grid. Therefore, the total number
of states in this case isn22n2

; Table 1 presents the num-
ber of states for some values ofn.

These values show that even for a very smallTILE-
WORLD, the MDP model requires an intractable amount of
resources (both time and space) in order to compute an op-
timal policy. The limit for the tractability of direct calcula-
tion seems to be atn = 4, or n = 5 for a computer with
reasonable resources, which is well below what is possible
in theBDI model. Even with the many techniques that have
been proposed for solvingMDPs (for example [1, 4]) that



n Number of states
3 4,608
4 1,048,576
5 838,860,800
6 2,473,901,162,496
7 ≈ 1016

8 ≈ 1021

9 ≈ 1026

10 ≈ 1032

Table 1. The number of states in the TILE-
WORLD

are more efficient than the direct calculation, intractabil-
ity is going to be an issue. For example, the state reduc-
tion reported in [12] is less than a factor of 1000. Impres-
sive though this is, it will not permit the solution to be scaled
to the7 × 7 TILEWORLD. This is one reason why theBDI

model is interesting—it can easily handle much larger ver-
sions of theTILEWORLD with little problem.

However, these tractability issues don’t mean that the
MDP model cannot be used at all. The “explosion” in the
number of states, as we have seen, depends largely on the
amount of holes that can be present at a given moment, and
this gives us a means of approximating the solution by pre-
tending that there are fewer holes than there really are.

3. Approximate solutions

In this section we describe some techniques that we have
examined as a way to approximate theMDP for intractable
sizes of theTILEWORLD. We believe that these are interest-
ing not only because of their role in our experiments, but
also because similar approaches may be useable in other
applications ofMDPs. So far as we know, existing tech-
niques for obtaining approximate solutions ofMDPs [1] take
a rather different approach.

3.1. Reducing State Information

One possible way of keeping the computation of poli-
cies within acceptable bounds is to consider areduced state
space. This means that the agent will no longer have com-
plete information regarding the current state of the world,
i.e., the current state will behashedinto one of the states in
the reduced space. Of course, this will generally mean that
the agent will no longer be able to select the optimal ac-
tion in each step. The action taken by the agent will be opti-
mal with respect to the reduced state space, and sub-optimal
with respect to the full state-space in general. Nevertheless,
if the hashing is a good one, the action will approximate
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Figure 1. An example 7× 7 TILEWORLD config-
uration

the optimal action for the full state space. This hashing can
be done in a variety of ways trading-off between number of
states and optimality. The following sections describe these
proposals.

3.1.1. The Closest Hole The agent is only aware of the
closest hole. Even though it is simple, this strategy cannot
ensure good results because an agent will not be able, for
example, to decide between two closest holes as in Figure 1
(n = 7). Here, even though (2,2) and (6,6) are both the clos-
est to the agent, (2,2) is the best option because it is close to
a group of holes. This behavior is captured by value itera-
tion (position (2,2) will have a greater utility than (6,6)), but
will be ignored by the closest hole approach, which effec-
tively suffers from a version of the horizon effect—it can-
not “see” far enough to pick the better solution. However,
the advantage is that the number of states is onlyn4, which
is much smaller than the full state space.

3.1.2. The k Closest Holes The agent keeps track of the
k closest holes. The parameterk can be varied in order to
trade efficiency against cost:k = 1 yields the previous ap-
proach, whilek = n2 is the general case discussed above.
This generalization is meant to deal with the difficulties that
arise fork = 1, pushing back the search horizon, but still
suffers from cases like that in Figure 2 (n = 7, k = 4)
where the agent will regard the four closest holes as equal
and will have to make a random choice among them, even
though they all have different utilities. Here, the number of
states grows ton2

∑k

i=1 Cn2

i ≤ n22n2

, whereCn
k repre-

sents the number of combinations of sizek taken from a set
of sizen.

3.1.3. Local Density In a variation on the previous solu-
tion, the agent keeps track of thek closest holes along with
additional information regarding thelocal density(in terms
of holes) of the area in which the hole lies. This informa-
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Figure 2. Another example 7 × 7 TILEWORLD

configuration

tion can be used to make the right decision in cases like that
of Figure 2.

The local density for a given position(i, j) that contains
a hole can be calculated as the sum of theinfluenceof every
other hole in the world, where the influence is a value ob-
tained as the product of the hole’s reward and the inverse of
the distance that lies between it and(i, j). More formally,
thedensityof position(i, j) is

Di,j =
∑

(s,t)∈H, (s,t) 6=(i,j)

R′
s,t

1

Dist(i,j),(s,t)

whereH is a set of ordered pairs containing the location of
every hole in the grid,R′ is thereward functionon states,
and Dist(i,j),(s,t). In this approach, the number of states
is the same as in the previous section because the size of
the hashed state space has not changed, only the way the
hashing is done. The calculation of the density information
yields the additional cost. The distance between holes and
the reward function on states can be calculated inO(1), so
the complete density information foronestate can be ob-
tained inO(n2).

3.2. Using Optimal Sub-solutions

When reducing state state information we are pretend-
ing the problem is simpler than it is without changing its
size. We can also just pretend the problem is smaller than it
really is, making use of the solution to the biggest version
of the problem that we can compute. One approach to do-
ing this uses four4 × 4 grids to make up a new7 × 7 grid,
which will be referred to as themoving window. This can be
done by putting the four grids together so they overlap one
row; we will call these sub-gridsA, B, C, andD (see Fig-
ure 3). This7×7 grid is a “moving window” because it fol-
lows the agent’s moves, representing the limit of its percep-
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Figure 3. The moving window in the 7×7 TILE-
WORLD

tion. The agent occupies the center (i.e., the SE corner ofA,
the SW corner ofB, the NE corner ofC, and the NW cor-
ner of D), and it will only be aware of the holes that fall
inside this window. For example, if the agent is in the cen-
ter of the grid, then it has full accessibility; now, if it moves
North one position, it will not be able to see the holes to the
far South.

The new policy is built using the solved4× 4 sub-grids.
For each state, the agent will have four possibly different
suggestions (one for each4 × 4), given by the policies:

πi(s) = arg max
a

∑

t

Ti(s, a, t)Ui(t)

wherei = A, B, C, D, Ti is the state transition function for
grid i, andUi is the utility function on states for gridi. The
best action is then the one that has the highest expected util-
ity:

π∗(s) = πi(s)

for somei such thatπi(s) = ti, whereUi(ti) = ui and there
is nouj such thatπj(s) = tj , Uj(tj) = uj , anduj > ui.

The computational cost of this approach is not signifi-
cantly greater than the cost of solving an MDP for aTILE-
WORLD of size4 × 4. Because the policy is built from the
policy for a 4 × 4, the only difference lies in execution
time, where the hashing and the selection of the best ac-
tion among the four suggested take place. The hashing can
be done inO(n2) because each position must be tested to
see if it falls inside the moving window; the execution time
of both operations are clearly inO(1).

4. Experimental details

We have carried out some initial experimental investi-
gation into the approximations described above. We started
from the experimental framework developed by Schut [17],



Figure 4. Results for the BDI model, 7×7 TILE-
WORLD

using his implementation of theTILEWORLD and the adap-
tive BDI model [20] in JACK Intelligent Agents [7], and
writing our own MDP solver. We then ran theBDI model
and a selection of theMDP approximations (k closest holes
for k = 1, 2, 3—each with and without the local density
information—and the moving window) for a range of dif-
ferent values of dynamism. For each value of dynamism we
ran 20 iterations of the same model. Initially, the experi-
ments were carried out in a7 × 7 TILEWORLD. The final
results, however, are obtained from a generalization of the
previous experiments, where the agents occupy a20 × 20
TILEWORLD in order to see how the different models re-
spond to growing state spaces.

5. Results

At this preliminary stage of our work, we have run two
sets of experiments. The first consider a relatively small,
7 × 7 TILEWORLD to investigate the behaviour of the ap-
proximations introduced above on an example that is a little
larger than that soluble by the current best approximations.
The second examines a much larger,20 × 20, TILEWORLD

to see how the approximations fare on a much larger exam-
ple.

5.1. A small example

The results for the7 × 7 TILEWORLD are best sum-
marised by Figure 4 to 7. We will explain each of these in
turn. Figure 4 shows our replication of Schut’s experiments.
This shows that as the world becomes more dynamic, that is

Figure 5. Results for the “one hole” MDP ap-
proximation, 7 × 7 TILEWORLD

the holes appear and disappear with greater frequency, the
effectiveness of the agent (measured as the proportion of all
the holes that appear that the agent reaches) falls. This is to
be expected—after a point many of the holes tend to dis-
appear before the agent can reach them. Using theBDI ap-
proach the agent periodically has to replan. When this hap-
pens the agent pauses for a certain number of timesteps.
These are the values ofp that generate the three different
curves.

Figure 5 shows the performance of one of ourMDP ap-
proximations, in this case thek = 1 closest holes model,
with and without local density information. Interestingly
the local density information seems to detract from the per-
formance of the model (the same trend was observed for
all the approximations). The general shape of the curves is
the same as for theBDI model. Figure 6 shows the perfor-
mance of all theMDP approximations against one another.
Though the relative performance of the models varies with
dynamism, thek = 3 nearest holes approximation seems to
consistently outperform the others1.

Finally, figure 7 makes a comparison between the best
performing MDP approximation and Schut’sBDI model.
This shows that theMDP model outperforms theBDI model
even when theBDI model doesn’t have to spend any time re-
planning, and thus outperforms the best known solution to
theTILEWORLD.

These results indicate two things. First of all our ap-
proximations are sufficient to allow a naive approximate ap-

1 Clearly we need to run further experiments to establish if this really is
the case.



Figure 6. Comparing the MDP approximations
for the 7 × 7 TILEWORLD

proach to solving the underlying problem as anMDP to be
stretched to a world somewhat larger than would otherwise
be soluble using state of the art techniques. Second, these
approximations are sufficiently good that even though we
know they are unable to give optimal performance, they out-
perform the best existing approach based on theBDI model.
(This, of course, is not surprising, but it is pleasing that the
approximations work reasonably well—it suggests that they
may be a reasonable proxy for the unobtainable gold stan-
dard for this size of problem).

5.2. A Larger Example

As we have seen in the results so far, theMDP approx-
imations consistently make better decisions than theBDI

agent when the size of the world is small. However, observ-
ing the way in which they are built, we can see that the qual-
ity of these approximations can only deteriorate as the size
of the world becomes larger. The final results we will report
in this work show this for aTILEWORLD of size20 × 20.

The agents in this case are based on the same models as
in the previous experiments, except that they were adapted
to occupy larger worlds. This is where the heuristic ap-
proach embodied by theBDI model pays off. Because it
is not trying to be exact, theBDI agent is able to see ev-
ery square in the grid—the model scales with no problems.
However, this is not true for theMDP agent. Constrained
to be an exact model, the largest grid we can solve for the
MDP agent with a complete model is the same4 × 4 as be-
fore. As a result, the best we can do in this case is to give
the MDP agent is to implement it as a7 × 7 “moving win-

Figure 7. Comparing the BDI model with the
best MDP approximation for the the 7× 7 TILE-
WORLD

dow” (with the 7 × 7 made up of four overlapping4 × 4
grids), thus limiting it to being able to see just3 cells in all
directions. Alternatively we can use the other approxima-
tions to the7 × 7 model that we discussed above.

Figure 8 shows a summary of the results for the20 × 20
TILEWORLD. We have selected theBDI planning cost2
curve as a representative of the heuristic model, and for the
MDP model used the “moving window” based on the 4 over-
lapping4 × 4 grids and the3 hole reduced state space ap-
proximations. As the figure clearly shows, theBDI model
now outperforms theseMDP approximations. For low val-
ues of dynamism, theBDI model is far superior and is never
worse than theMDP approximations. As dynamism reaches
extreme values, the effectiveness of the agents becomes
close; this is due to the online planning cost that theBDI

agent must pay and the fact that the holes are now disap-
pearing before the agent can reach them. Finally, we note
that the twoMDP approximations are almost equivalent in
this case. This is due to the fact that the differences in their
implementations make little impact in a large environment.

The important thing to note here is that the20 × 20
TILEWORLD is enormously larger than anything that can be
solved by the even the most powerful exact and approximate
techniques for solvingMDPs. We believe that this shows that
theBDI model has a place in the armory of every agent de-
signer since it makes it possible to build agents that perform
better than those based on an optimal but insoluble, and thus
necessarily badly approximated, model. Even existing ap-
proximations for solvingMDPs will fail before some large
problems that are soluble using theBDI model.



Figure 8. Comparing the BDI model with the
best MDP approximation for a 20 × 20 TILE-
WORLD

6. Conclusions and future work

Though this work is preliminary, one can tentatively con-
clude that there is a tradeoff between theMDP andBDI mod-
els. For small worlds, theMDP approach—effectively giv-
ing an agent a complete conditional plan—outperforms the
BDI approach even if the agent has a full set of linear plans
that it switches between (which is the case we model when
p = 0). While not surprisingper se, since we are compar-
ing a heuristic approach with decision-theoretic optimality,
it is interesting that even an approximation to theMDP so-
lution succeeds in this way. However, when the size of the
world becomes larger, the performance of theMDP approxi-
mations becomes poorer, and the heuristic nature of theBDI

planner is able to deal with the increase in world size with-
out difficulty.

There are a number of directions in which we are taking
this work. First of all, we need to carry out further experi-
ments to flesh out the results we have presented here. Sec-
ond, we acknowledge that the approximations we are us-
ing are somewhat crude, and it will be interesting to see if
the results for more sophisticated techniques, like PolCA
[12] are qualitatively the same. Of course, we will still not
be able to solve the larger examples directly, but we may be
able to take an exact solution to a6×6 TILEWORLD and use
that to create a better moving window solution to a20 × 20
world. It seems unarguable that the solutions we obtain will
be qualitatively the same for smallTILEWORLDs, but the
situation for larger worlds is unclear (especially since the
BDI model can handle much larger worlds as well).

Finally, we are interested in establishing the formal cor-
respondance betweenMDP andBDI models. We have estab-
lished that there is a tradeoff between them, but in order to
make a choice of which to use (especially when the choice
is between approximation toMDP andBDI for a moderately
sized problem) we would like to know more exactly what
the tradeoff is.
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