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ABSTRACT: This paper concerns itself with
the problem of aggregation of preference
functions associated with a group of agents for
the purpose of making a decision. We suggest
a formulation for the overall preference
function, the mediation rule, which makes use
of concepts drawn from the fuzzy subset
literature. In particular we use the idea of a
linguistic quantifier to formulate the overall
preference function. We also consider the the
situation where there exists a priority over the
agents with respect their power in getting their

preferred solution

1. Introduction

An issue that is of considerable interest in
E-commerce and other distributed systems is
the selection of a solution acceptable to a
collection agents when each agent has their own
preferences among the set of alternative
possible solutions [1-3]. The process of
finding such a solution can be seen as a kind of
group decision making involving these agents.
This class of problems have a long history in
the economic literature. We particularly note
the work of Arrow [4], Nash [5] and the classic
work by Luce and Raiffa [6]. In the fuzzy set
literature one finds a considerable body of
literature devoted to the closely related problem
of multi-criteria aggregation starting with the
classic work of Bellman and Zadeh [7].
Rosenchein and Zlotkin [8] have presented a
comprehensive work discussing this issue from
the distributed systems multi-agent point of
view. A number of authors have looked at this
from a philosophical point of view [9, 10].

Our pragmatic object here is to try to
develop machinery to help in the electronic
mediation between these multiple agents. We
use the term mediation to distinguish it from
negotiation. Whereas negotiation can be a

dynamic process our concern here is with a
more narrowly focused, although closely
related, activity, that of combining agent
preferences. At a formal level the goal here is
to provide for the intelligent aggregation of the
individual agent preference functions to obtain a
group preference function to form the bases of
selecting a solution from among a collection of
possible solutions. We note that the
aggregation technology presented here can be a
part of a more complex negotiation process.
The spirit of the technology presented here
draws heavily upon the fuzzy multicriteria
aggregation point of view initiated by Bellman
and Zadeh [7].

2. Multi-Agent Preference Aggregation

Our point of departure here is a collection
of n agents and a set of X alternatives from
among which we must select one. We assume
each agent has a preference function Aj over the
set X such that for each alternative x the value
Aj(x) € [0, 1] indicates the degree to which
agent i is satisfied with this alternative. In the
case of just a single agent the problem of
finding a solution from among the possible
alternatives is easily solved by just selecting the
alternative that best satisfies the single agent's
preference function. In the multiple agent
environment the situation is more complex.
Here each alternative can be viewed as an n
tuple (or n vector) whose components are the
satisfactions to the individual agents. Our task
of choosing a best alternative then is to select
among these vectors. This is generally a
difficult task, for accept in the special case
where one vector dominates all the others the
choice is not clear. Here we shall take a
different approach. We shall associated with
each alternative a scalar value Val(x) and then
compare these alternatives by simply comparing



these scalar values.
Using this we can associate with each

alternative x € X a value

Val(x) = F(A1(x), A2(x), , An(x))
indicating the degree to which alternative x
satisfies the group of agents. Once having
calculated Val(x) for all the alternatives in X we
then select, as our optimal alternative, the
alternative x* which satisfies Val(x*) =

Maxxe X[ Val(x)].

One feature of this type of approach where
each alternative is separately scored and then
these alternative scores compared is that it has
the property of what Arrow [4] called
indifference to irrelevant alternatives.
Definition: Let DP indicate some decision
procedure. Let X be a set of alternative
solutions being considered. Let DP(X) be the
optimal choice under DP over the set X of
alternatives. Let y be an additional alternative

notin X. Let X' = X U {y}, the addition of y to
X. The decision procedure DP is said to have
the property of indifference to irrelevant
alternatives if DP(X) is either DP(X) or y.
With this property the addition of y doesn't
cause us to select some other element in X. The
feature precludes the strategy of adding of an
alternative to X with the purpose of helping
some already available alternative. We note that
it is the fact that Val(x) doesn't depend on the
overall satisfaction of any alternative other than
x that guarantees the property of indifference to
irrelevant alternatives. We say F is pointwise.
Another feature desired of any function F is
what Arrow [4] calls positive association of
group and individual values. This feature can
be seen as essentially requiring that F is
monotonic. That is if x and y are two
alternatives and Aj(x) > Aj(y) for all j then

FA1x), , An()2F(A1(y), ,An())

Beyond being pointwise and monotonic the
choice of the form for F models the mediation
systems imperative for aggregating the
preferences of the individual agents to obtain
some group preference. Thus a fundamental
problem that arises in this task is to provide an
ability to use F to represent different types of
mediation rules that be used to formulate a
group preference function from individual
preference functions.

Starting with the classic work of Bellman
and Zadeh [7] fuzzy logic has been used as a
tool to develop and model multicriteria and
group decision problems. In this framework
individual agents preference function can
viewed as fuzzy subsets over the space of
solution alternatives and fuzzy set operators are
used to aggregate the individual agent
preferences to form the overall group
preference function. The choice of operators
used to aggregate these individual agent
preferences reflect the choice of a mediation
rule. As originally suggested by Bellman and
Zadeh the agents preferences can be combined
by the use of an intersection operation which
implicitly implies a requirement that all the
agents must be satisfied by a solution to the
problem. Here we are imposing the condition
that any individual agent can doom a solution.
Each agent has the power to totally reject an
alternative. As suggested by Bellman and
Zadeh if the relationship is that we desire all
agents be satisfied then we can use Val(x) =
Min;j[A;j(x)]. This is a reflection of the fact this
situation is essentially modeling an “anding”
between the preference functions. That is here
the overall group satisfaction Val is modeling a
desire to satisfy A and Ay and ........ and A,

As noted by Yager [11] this condition of
may not always be the appropriate relationship
for combining the agents preferences. For as
we noted this is a very strong imperative, any
agent can unilaterally doom any alternative.
Other mediation rules can be considered where
all agents need not be satisfied and thereby
relaxing this unilateral control. For example an
acceptable solution may be obtained if most of
the agents are satisfied. Furthermore other
considerations can be included in the process.
Do some agents have priority over others? Are
some agents more important than others? In
this work we look at an approach to the
formulation of these softer aggregation rules
which we call quantifier guided
aggregations. This approach allows a natural
language expression of the quantity of agents
that need to agree on an acceptable solution. As
we shall see the Ordered Weighted Averaging
(OWA) operator [11] will provide a tool to
implement these kinds of aggregations [12].



3. OWA Operators

In order to be able to formally model these
quantifier guided aggregations we shall use the
class of aggregation operators called Ordered
Weighted Averaging (OWA) operators
introduced by Yager [11].
Definition: An aggregation operator F: [ — [
is called an Ordered Weighted Averaging
(OWA) operator of dimension n if it has
associated with it a weighting vector W =
'WiWs . . W, such that

1. wj € [0, 1]
n

2. Z wj = 1
=1

and where with bj being the jth largest of the
a;.we have

An essential feature of this aggregation is
the reordering operation, a nonlinear operation,
that is used in the process. In the OWA
aggregation the weights are not associated
directly with a particular argument but with the
ordered position of the arguments. If id is an
index function such that id(j) is the index of the
jth largest of the a; the we can express

The following example illustrates the usage
of these operators.
Example: Assume F is an OWA operator of
dimension four with weighting vector such that

w1 =04,wy=0.2,w3=0.1and wq =0.3.

If we desire to evaluate F(0.5, 1, 0.8, 0.9) then
we assign

by =1,bp=009,b3=0.8and by =0.5
and F(0.5, 1, 0.8, 0.9) = (1) (0.4) + (0.9) (0.2)
+ (0.8) (0.1) + (0.5) (0.3) = 0.81.

In [11] Yager shows that OWA aggregation
has the following properties:

(1) Commutativity: The indexing of the
arguments is irrelevant

(2) Monotonicity: If a; > ﬁi for all i then

(3) Idempotency: F(a,...a) = a.

(4) Boundedness
Max;[aj] 2 F(a, ......, ap) = Min;[a;]

We note that these conditions imply that the
OWA operator is a mean operator. The OWA
operators can also be seen as providing a
generation of alpha trimmed means [13].

The form of the aggregation is very
strongly dependent upon the weighting vector
used. In [14] Yager investigate various
different families of OWA aggregation
operators. A number of special cases of
weighting vector are worth noting. The

weighting vector W™ defined such that wp=1
and wj =0 forall j # 1 gives us the aggregation
F*(ay, ..., ap) = Max;[aj]. Thus W™ provides
the largest possible aggregation. The weighting
vector W, defined such that wy =1 and w; =0
for i # n gives us the aggregation Fx(aq,...ap) =
Min;[aj]. This weighting provides the smallest
aggregation of the arguments.

The weighting vector W A defined such that

wj = % for all i gives us the simple average

n
Fa(ay,...ap) = %Z a;.

i=1
The weighting vector WK defined such that

wk = 1 and w; =0 for 1 # k gives us F(ay,...ap)

= by where by is the kth Jargest of the aj.

Another class of OWA aggregation is
called the Olympic operator, in this case

w] =wp =0and wj = Here we are

eliminating the extreme scores.

In [11] Yager associated with any OWA
aggregation a measure which he called its
attitudinal character. In particular, if we have a
weighting vector W of dimension n then this
attitudinal character is defined as

A-C(W) =

- )W;.

It is easy to show that th1s measure lies in the
unit interval. Furthermore it was shown in [11]

that A—-C(W™) = 1, A-C(Wyye) =0.5 and
A-C(W) = 0. In the framework of multi-

agent preference this can be seen as being
inversely related to an individual agent’s power



in rejecting an alternative. Thus A-C(W) =0
indicates that any individual agent can
unilaterally doom an alternative. As A—C(W)
moves from zero to one the individual agents
power of rejection decreases, more agreement is
needed to doom an alternative. In this
framework we shall characterize a mediation

rule with weighting vector W by
n

U-D(W) =1 - A-C(W) = ﬁZ (i - )w;
-1 &
where U-D can be seen as an 1acronym for
Unilateral Dooming.

4. Quantifier Guided Aggregation

Assume we are faced with a decision
problem in which we have a group of n agents
whose preferences are to be considered in the
decision. We denote these agents as Aj, ...,
A;,. For any possible solution x we assume we
have available the degree to which it is
satisfactory to any of the agents. We shall
denote these scores as Aj(x) and assume they
lie in the unit interval, [0, 1]. In this framework
A; can be viewed as a fuzzy subset over the set
of alternatives. In order to determine the
appropriateness of a particular alternative x as
the solution to our problem we must aggregate
its satisfaction to the individual agents to find
some overall single value to associate with the
alternative, the group satisfaction. This
aggregation process constitutes a process of
mediation between the agents. In order to
obtain this overall evaluation some information
must be provided about the form of a mediation
rule used to implement the aggregation of the
agents preference functions.

In a their classic work Bellman and Zadeh
[7] suggested an approach to this type of
individual preference aggregation problem
which uses

Agg(A1(x), A(X),.....Ap(x)) = Min; [Aj(X)].

Essentially, this approach is assuming a form of
mediation in which we require that all the
agents be satisfied by an acceptable solution.
One then selects, as the best solution, the
alternative with the highest aggregated value.

In the above in formulating our overall
aggregation function we have essentially
implemented the following linguistic agenda for

our mediation rule
All agents must be satisfied by an acceptable
solution.

As we noted in many situations the
requirement that all agents be satisfied is to
strong. Examples of alternative and perhaps
more reasonable mediation rules would be

Most agents must be satisfied by an
acceptable solution.

At least about half the agents must be

satisfied by an acceptable solution.
The above statements are examples of what we
call quantifier guided aggregations. In
these statements the underlined terms are
examples of what Zadeh [15] called relative
linguistic quantifiers.

In natural language we find many examples
of relative linguistic quantifiers. These objects
are exemplified by terms such as all, most,
many, at least half, some and few. In [15]
Zadeh suggested a formal representation of
these linguistic quantifiers using fuzzy sets. He
suggested that any relative linguistic quantifier
can be expressed as a fuzzy subset Q of the
unit interval, I. In this representation for any

proportion y € I, Q(y) indicates the degree to

which y satisfies the concept conveyed by the
term Q. In applications to quantifier guided
aggregation we mainly use a special class of
these linguistic quantifiers called Regular
Increasing Monotone (RIM) quantifiers. These
types of quantifiers have the property that as
more agents are satisfied our overall satisfaction
can't decrease. Formally these quantifiers are
characterized in the following way: 1. Q(0) =0,
2. Q(1)=1and 3. Q(x) = Q(y) if x >y.

Examples of this kind of quantifier are all,

most, many, at least .

The quantifier for all is represented by the
fuzzy subset Q, where Q.(1) = 1 and

Q. (x) =0 for all x # 1. The quantifier any is

defined as Q™(0) = 0 and Q*(x) = 1 for all

x # 0. Both of these are examples of RIM
quantifiers.

Having introduced the OWA aggregation
operator we are now in a position to describe
the process of quantifier guided aggregation.
Again consider that we have a collection of
Ajq ....., Ay of agents. These agents have their



preferences represented as a fuzzy subset over
the set of alternatives X. In the process of
quantifier guided aggregation a group
mediation protocol is expressed in terms of a
linguistic quantifier Q indicating the proportion
of agents whose agreement is necessary for a
solution to be acceptable. This structure
constitutes the rule for automated mediation.
The form of mediation implicit in this approach
is
Q agents must be satisfied by an acceptable
solution,

where Q is a quantifier.

The formal procedure used to evaluate this
decision function is expressed in the following.
The quantifier Q is used to generate an OWA
weighting vector W of dimension n. This
weighting vector is then used in an OWA
aggregation to determine the overall evaluation
for each alternative. For each alternative the
argument of this OWA aggregation is the
degree of satisfaction of that alternative to each
of the agents, A;(x), 1= 1....n. Thus the process

used in quantifier guided aggregation is as
follows:
(I) Use Q to generate a set of OWA
weights, w1,....wp
(2) For each alternative x in X calculate
the overall evaluation
D(x) = F(A1(x), Ay(X),.....Ap(X))
The procedure [12] used for generating the
weights from the quantifier is
wi=Q() - Q=1
fori=1...n
Because of the nondecreasing nature of Q it
follows that wj = 0. Furthermore from the

regularity of Q, Q(1) = 1 and Q(0) = 0, it
follows that X; w;j = 1. Thus we see that the

weights generated are an acceptable class of
OWA weights.

The use of a RIM quantifier to guide the
aggregation essentially implies that the more
agents satisfied the better the solution. This
condition seems to be one that is naturally
desired in multi—agent mediation. Thus most
quantifier guided aggregation would seem to be
based upon the use of these types of
quantifiers.

5. Importance Weighted Quantifier Guided
Aggregation

In this section we turn to the problem of
multi-agent mediation based on quantifier
guided aggregation in environments in which
the agents involved in the mediation have
differing importances associated with them. In
this environment we shall again assume we have
a set of n agents whose preference are again
expressed as fuzzy subsets A; over the space of
alternative solutions X. In introducing
quantifier guided aggregation we considered
our mediation rule to be the statement Q
agents are satisfied by x. We now additionally
assume that we can associate with each agent a
value Vj indicating the importance of that agent
in this mediation process. We shall consider
the Vj's to lie in the unit interval Vj € [0, 1].
We make no restrictions on the total value of
importances, that is they need not sum to one.

In this case, with importances, we modify
the mediation rule to be

Q important agents must be satisfied by an
acceptable solution.

In the following we describe the procedure to
evaluate the overall satisfaction of alternative x.
First we note for a given alternative x we have a
collection of n pairs (Vj, Aj(x)). The first step

in this process is to order the Aj(x)'s in

descending order. Thus we let bj be the jth
largest of Aj(x), bj = ajq(j)- Furthermore, we let
U denote the importance associated with the

agent that has the jth largest satisfaction to x, uj
= Vid(j)- Thus if A5(x) is the largest of the
Aj(x) then b] = A5(x) and uy = V5. At this
point we can consider our information
regarding the alternative x to be a collection of n
pairs (uj, bj) where the bj's are in descending
ordering.

Our next step is to obtain the OWA weights
associated with this aggregation. We obtain
these weights as follows

wJ—Q< OF Q( L

where S; = Z uand T = Z uy, the total

k= =1
sum of 1 1mp0rtances Having obtalned the



weights we can now calculate the evaluation

D(x) associated with x, D(x) = Z bJ WJ(X)
=1

We emphasize that the welghts “used in this
aggregation will generally be different for each
x. This is due to the fact that the ordering of
the Aj's will be different and in turn lead to
different uj's.

It can be shown in the special case where
Q(r) = r, the unitor quantifier, this approach
leads to the ordinary weighted average D(x) =

1 Z Ai(x) Vi .

The following example illustrates the
application of the above method
Example: Assume we have two alternatives x
and y. We shall assume four agents A, Ap,

A3, A4. The importances associated with these
agents are V1 =1, V) =0.6, V3 =0.5, V4 =
0.9. We assume the satisfaction to each of the
agent by alternative x is given by the following

A1(x) =07 Axx)=1 A3(x) =05
A4(x) = 0.6

A1(y)=06 Axy)=03 A3(x) =09
Ag(x) =1

We shall assume the quantifier guiding this
aggregation to be most which is defined by

Q(r) =r2 We first consider the aggregation for
x. In this case the ordering of the agent
satisfaction give us

by
Ay 1 0.6
N 07 .1
A4 0.6 0.9
A3 0.5 0.5

We note T = Z u;=3. Calculating the

weights assoc1ated with x, which we denoted
wj(x), we get

w1(x) =Q<M>-Q<§> = (0.2)2 - 0 = .04,
wo(x) = Q(16) Q(Oé)—zs 04 =24
w3(x) = Q(25> Q<16> 69- .28 =41,

W4<x):<i)-Q@>=1- 69 =31

In this case D(x) —Z wi(x) bi = (.04)(1) +

(.24)(.7) + (41)(.6) + ( 31)( 5) = .609.

To calculate the evaluation for y we proceed as
follows. In this case the ordering of the agent
satisfaction is

b oy
Ayg 1 0.9
A3 09 05
Aq 06 1
A> 03 06

The weights associated with the aggregation
are: wi(y) = 0.09, wa(y) = 0.13, w3(y) = 42

and wg(y) = 0.36. We calculate D(y) =

Z wi(y) bi = (09)(1) + (.13)(.9) + (:42)(.6)

Y ( 36)(.3) = .567
Hence in this example x is the preferred
alternative.

6. Prioritized Agent Aggregation

In this section we consider the situation in
which the information about the importances of
the individual agents is captured by a
prioritization of the agents with respect to their
importance in the mediation process. We note
that in [16] we have looked at this problem in
considerable detail. Simply speaking by saying
agent A has a higher priority then agent Ay
we are mean to indicate that we are not willing
to tradeoff satisfaction to agent A for a gain in

satisfaction to agent A,. National security

interests generally take a priority over economic
concerns. In many decision problems the
preferences of the agent responsible for safety
and security often are of the highest priority.
Another example is in the domain of air travel,
decisions that tradeoff savings in gasoline cost
at the expense of passenger safety are not
acceptable. In many organizations a natural
priority exists based upon the position of the
individual in the organization.  This
prioritization can naturally transfer over to the
agents representing the individual. This
concept of prioritization can be seen as a
reflection of the fact the higher priority agents
have more power to doom an alternative they



are not happy with.

As we shall see in this work, when
calculating the group satisfaction to an
alternative one method [16] of including
priority type information in the mediation
process is by associating with lower priority
agents importance weights that are related to the
alternatives satisfaction to higher priority
agents. This of course means that these
induced importance weights are alternative

dependent. Let us formally look at this model.
Our point of departure here is a group of n
agents and a basic mediation rule Q agents
must satisfied by an acceptable solution.
However here we have an additional constraint
of a prioritization of the agents. Here rather
then having agent importances captured by
some prescribed weights associated with each
of the agents we have a prioritization over the
set of agents indicating their priority with
respect to considering their preferences.
Formally we assume we have a priority
ordering in which p(j) is the index of the agent

with the jth highest priority. Thus Ap(1) >

Ap(z) > > Ap(n). Using this notation we let

Gj= {Ap(i)(x)li =1toj}, it is the scores under

alternative x of the agents with j highest

priorities. We shall also find it convenient to

denote Saty(Gj;) = Min [A,;)\(X)], the
x ( J) D=1 toj[ p(1)( )]

degree of satisfaction to all the j highest priority
agents.

In [16] it was suggested that an appropriate
form for the multi-agent aggregation function in
this environment is

D(x)= ), w;Satx(Gj)
j=1

D(x) == '21 wj. :N{i?oj[Ap(i)(x)]
j=

where w;j = Q(%) —Q(JTI).

Let us investigate the properties of this
formulation with respect its modeling the
prioritization of agents in the framework of
using the OWA aggregation method.

As suggested in [16] we can consider the

Min (x
=1 O]
as a kind of importance weight associated with
the jth highest priority agent Ap(j). Using this
we get

term aj = Satx[Gj-1]! =

D(x)= ), w; Satx(Gj)
j=1
D(x) =), wj (Satx(Gj-1) A Ap(j ()]
j=1

D) = ), wj (0§ A ApG)()
j=1

J .
Here we observe that the importance

associated with the jth highest priority agent is
equal to the minimal degree of satisfaction of all
the higher priority agents. This provides a
useful insight into the nature of agent
prioritization. In particular we see that this
hierarchical prioritization of the agents acts so
that an agent can't contribute to the overall
aggregated score unless all the agents with
higher priorities are satisfied. Thus this
formulation works to enforce our desire that we
don't want to allow tradeoffs in satisfactions
between higher priority agent and lower priority
lower until some degree of satisfactions to
higher priority agents is obtained.
As we see in the case of two agents where

D(X) =W] Ap(l)(X)
+ W2 (Ap(1)(X) A Ap2)(X))
the ability of the lower priority agent Ap(2) is

constrained by the satisfaction to the higher
priority agent Ap(l)' To simply illustrate this

=l

we consider the neutral case where w) = wyp =

L h
o ere

1 1
D(X) —2 Ap(l)(X) + 3 (Ap(l)(X) A Ap(z)(X))
We see that if Ap(l)(x) is a small value even if
Ap(z)(x) is a large value the second term in the

summation can’t contribute to improving the
value of D(x). Here then lack of support for
alternative x by the higher priority agent dooms
it to low overall support regardless of what the
second agent believes. We summarize the
essential idea of this below

IHere we assume by convention that where j = 1 we
have Gj- 1= & and Saty,[J] = 1.



Agent 1 for x Agent 2 for x Overall for x

Small Anything Small
Large Small % Large
Large Large Large

The important implication here is that the higher
priority agent can block any solution, although
not necessarily guarantee its success. Its power
to guarantee success is is related to the OWA
weights w| and wp. For example if wi =1
then the higher priority agent can both
guarantee success and failure of an alternative.
Let us look at some features of this type of
aggregation.
Observation: For any weighting vector W if
the highest priority agent is the least satisfied,
this is the overall aggregated value, D(x) =
Ap()
Justification: If Ap(l)(x) = Minj[Aj(x)] then

SatX[Gj] = ; :N{I?OJ[Ap(l)(X)] = Ap(l)(X) for

all j and hence D(x) = i Wj Saty [Gj] =
j=1
Ap(1)®) '
More generally we also see that since
Saty[Gj] < i =h/{1?oj[Ap(i)(x)] < Ap(l)(x)) then

n
D(x) = Z W; Satg [ GJ] SAP(I)(X), the
j=1
aggregated value is never larger than the
satisfaction to the highest priority agent.
We observe that if the weights are such that

wq=1,wj=0forallj#q, then
n

D(x) = } W Satx[Gjl = Satx[Gq]
i=1

D(x) =, Min Ap@ !

It is the least degree of satisfaction to any of the
q highest priority agents. When q = 1, our
desire is to satisfy any agent, thus D(x) =
[Ap(l)(x)], the score of the highest priority

agent. If q = n, then we are required to satisfy
all the agent and we get D(X) = Min;j[A;j(X)].
While our formal methodology for multi-
agent mediation is based on the OWA operator
we believe the fundamental ideas presented here
for addressing the issue of prioritization of
agents by introducing importances related to the
satisfaction by higher priority criteria transcend

this choice of methodology and is applicable to
other approaches to modeling multi-agent and
group decision making
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