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ABSTRACT
In this paper, we derive optimal bidding strategies for a
global bidder who participates in multiple, simultaneous
second-price auctions with perfect substitutes. We first con-
sider a model where all other bidders are local and partic-
ipate in a single auction. For this case, we prove that, as-
suming free disposal, the global bidder should always place
non-zero bids in all available auctions, irrespective of the
local bidders’ valuation distribution. Furthermore, for non-
decreasing valuation distributions, we prove that the prob-
lem of finding the optimal bids reduces to two dimensions.
These results hold both in the case where the number of
local bidders is known and when this number is determined
by a Poisson distribution. In addition, by combining ana-
lytical and simulation results, we demonstrate that similar
results hold in the case of several global bidders, provided
that the market consists of both global and local bidders.
Finally, we address the efficiency of the overall market, and
show that information about the number of local bidders
is an important determinant for the way in which a global
bidder affects efficiency.
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1. INTRODUCTION
In recent years, there has been a surge in the application
of auctions, both online and within multi-agent systems [3,
8, 13, 14, 15]. As a result, there are an increasing num-
ber of auctions offering very similar or even identical goods
and services. In eBay alone, for example, there are often
hundreds or sometimes even thousands of concurrent auc-
tions running worldwide selling such substitutable items1.
Against this background, it is important to develop bidding
strategies that agents can use to operate effectively across a
wide number of auctions. To this end, in this paper we de-
vise and analyse optimal bidding strategies for a bidder that
participates in multiple, simultaneous second-price auctions
for goods that are perfect substitutes.

To date, much of the existing literature on simultane-
ous auctions focuses either on complementarities, where the
value of items together is greater than the sum of the in-
dividual items, or on heuristic strategies for simultaneous
auctions (see Section 6 for more details). In contrast, here

1To illustrate, at the time of writing, over one thousand
eBay auctions were selling the iPod mini 4GB.

we consider bidding strategies analytically and for the case
of perfect substitutes. In particular, our focus is on simul-
taneous Vickrey or second-price sealed bid auctions. We
choose these because they are communication efficient and
well known for their capacity to induce truthful bidding [10],
which makes them suitable for many multi-agent system set-
tings. Within this setting, we are able to characterise, for the
first time, a bidder’s utility-maximising strategy for bidding
in any number of such auctions and for any type of bidder
valuation distribution.

In more detail, we first consider a market where a single
bidder, called the global bidder, can bid in any number of
auctions, whereas the other bidders, called the local bidders,
are assumed to bid only in a single auction. For this case,
we find the following results:

• Whereas in the case of a single second-price auction a
bidder’s best strategy is to bid its true value, this is
generally not the case for a global bidder. As we shall
show, its best strategy is in fact to bid below the true
value.

• We are able to prove that, even if a global bidder re-
quires only one item and assuming free disposal, the
expected utility is maximised by participating in all
the auctions that are selling the desired item.

• Finding the optimal bid for each auction can be an ar-
duous task when considering all possible combinations.
However, for most common bidder valuation distribu-
tions, we are able to significantly reduce this search
space.

• Empirically, we find that a bidder’s expected utility
is maximised by bidding relatively high in one of the
auctions, and equal or lower in all other auctions.

We then go on to consider markets with more than one
global bidder. Due to the complexity of the problem, we
combine analytical results with a discrete simulation in order
to numerically derive the optimal bidding strategy. By so
doing, we find that, in a market with only global bidders,
the dynamics of the best response do not converge to a pure
strategy. In fact it fluctuates between two states. If the
market consists of both local and global bidders, however,
the global bidders’ strategy quickly reaches a stable solution
and we approximate a symmetric Nash equilibrium outcome.

Finally, we consider the issue of market efficiency when
there are such simultaneous auctions. Efficiency is an im-
portant system-wide consideration within multi-agent sys-
tems since it characterises how well the allocations in the



system maximise the overall utility [5]. Now, efficiency is
maximised when the goods are allocated to those who value
them the most. However, a certain amount of inefficiency
is inherent to a distributed market where the auctions are
held separately. In this paper, we measure the inefficiency of
markets with local bidders only and consider the impact of
global bidders on this inefficiency. In so doing, we find that
the presence of a global bidder has a slight, but positive,
impact on the efficiency when the number of local bidders
is known, but is, in general, negative when there exists un-
certainty about the exact number of bidders. Therefore, in-
formation about the market, such as the number of bidders,
plays an important role in the social welfare of the system.

The remainder of the paper is structured as follows. In
Section 2 we describe the bidders and the auctions in more
detail. In Section 3 we investigate the case with a single
global bidder and characterise the optimal bidding behav-
iour for it. Section 4 considers the case with multiple global
bidders and in Section 5 we address the market efficiency
and the impact of a global bidder. Finally, Section 6 dis-
cusses related work and Section 7 concludes.

2. BIDDING IN MULTIPLE VICKREY AUC-
TIONS

The model consists of M sellers, each of whom acts as an
auctioneer. Each seller auctions one item; these items are
complete substitutes (i.e., they are equal in terms of value
and a bidder obtains no additional benefit from winning
more than one item). The M auctions are executed simul-
taneously; that is, they end simultaneously and no infor-
mation about the outcome of any of the auctions becomes
available until the bids are placed2. We also assume that
all the auctions are symmetric, i.e., a bidder does not prefer
one auction over another. Finally, we assume free disposal
and risk neutral bidders.

2.1 The Auctions
The seller’s auction is implemented as a second-price sealed
bid auction, where the highest bidder wins but pays the
second-highest price. This format has several advantages for
an agent-based setting. Firstly, it is communication efficient.
Secondly, for the single-auction case (i.e., where a bidder
places a bid in at most one auction), the optimal strategy is
to bid the true value and thus requires no computation (once
the valuation of the item is known). This strategy is also
weakly dominant (i.e., it is independent of the other bidders’
decisions), and therefore it requires no information about the
preferences of other agents (such as the distribution of their
valuations).

2.2 Global and Local Bidders
We distinguish between global bidders and local bidders.
The former can bid in any number of auctions, whereas the
latter only bid in a single auction. Local bidders are assumed
to bid according to the weakly dominant strategy and bid
their true valuation3. We consider two ways of modelling

2Although this paper focuses on sealed-bid auctions, where
this is the case, the conditions are similar for last-minute
bidding in iterative auctions such as eBay [15].
3Note that, since bidding the true value is optimal for local
bidders irrespective of what others are bidding, their strat-
egy is not affected by the presence of global bidders.

local bidders: static and dynamic. In the first model, the
number of local bidders is assumed to be known and equal to
N for each auction. In the latter model, on the other hand,
the average number of bidders is equal to N , but the exact
number is unknown and may vary for each auction. This
uncertainty is modelled using a Poisson distribution (more
details are provided in Section 3.1).

As we will later show, a global bidder that bids optimally
has a higher expected utility compared to a local bidder,
even though the items are complete substitutes and a bidder
only requires one of them. Nevertheless, we can identify a
number of compelling reasons why not all bidders would
choose to bid globally:

• Participation Costs. Although the bidding itself
may be automated by an autonomous agent, it still
takes time and/or money, such as entry fees and time
to setup an account, to participate in a new auction.
Occasional users may not be willing to make such an
investment, and they may restrict themselves to sellers
or auctions that they are familiar with.

• Information. Bidders may simply not be aware of
other auctions selling the same type of item. Even if
this is known, however, a bidder may not have suffi-
cient information about the distribution of the valua-
tions of other bidders and the number of participat-
ing bidders. Whereas this information is not required
when bidding in a single auction (because of the domi-
nance property in a second-price auction), it is impor-
tant when bidding in multiple simultaneous auctions.
Such information can be obtained by an expert user
or be learned over time, but is often not available to a
novice.

• Risk Attitude. Although a global bidder obtains a
higher utility on average, such a bidder runs a risk
of incurring a loss (i.e., a negative utility) when win-
ning multiple auctions. A risk averse bidder may not
be willing to take that chance, and so may choose to
participate only in a single auction to avoid such a
potential loss.

• Budget Constraints. Related to the previous point,
a budget constrained bidder may not have sufficient
funds to make a loss in case it wins more than one
auction. In more detail, for a fixed budget b, the sum of
bids should not exceed b, thereby limiting the number
of auctions a bidder can participate in and/or lowering
the actual bids that are placed in those auctions.

• Bounded Rationality. As will become clear from
this paper, an optimal strategy for a global bidder is
harder to compute than a local one. A bidder will
therefore only bid globally if the costs of computing
the optimal strategy outweigh the benefits of the ad-
ditional utility.

From the above, we believe it is reasonable to expect a
combination of global and local bidders, and for only a few
of them to be global bidders. In this paper, we analyse the
case of a single global bidder theoretically, and then use a
computational approach to address the case with at least
two such bidders.



3. A SINGLE GLOBAL BIDDER
In this section, we provide a theoretical analysis of the op-
timal bidding strategy for a global bidder, given that all
other bidders are local and simply bid their true valuation.
After we describe the global bidder’s expected utility in Sec-
tion 3.1, we show in Section 3.2 that it is always optimal for a
global bidder to participate in the maximum number of auc-
tions available. Subsequently, in Section 3.3 we discuss how
to significantly reduce the complexity of finding the optimal
bids for the multi-auction problem, and we then apply these
methods to find optimal strategies for specific examples.

3.1 The Global Bidder’s Expected Utility
We use the following notation. The number of sellers (or
auctions) is M ≥ 2 and the number of local bidders is
N ≥ 1. A bidder’s valuation v ∈ [0, vmax] is randomly
drawn from a cumulative distribution F with probability
density f , where f is continuous, strictly positive and has
support [0, vmax]. F is assumed to be equal and common
knowledge for all bidders. A global bid B is a set contain-
ing a bid bi ∈ [0, vmax] for each auction 1 ≤ i ≤ M (the
bids may be different for different auctions). For ease of ex-
position, we introduce the cumulative distribution function
for the first-order statistics G(b) = F (b)N ∈ [0, 1], denot-
ing the probability of winning a specific auction conditional
on placing bid b in this auction, and its probability density
g(b) = dG(b)/db = NF (b)N−1f(b). Now, the expected util-
ity U for a global bidder with global bid B and valuation v
is given by:

U(B, v) = v

��1 − �
bi∈B

(1 − G(bi))

�� − �
bi∈B

� bi

0

yg(y)dy (1)

Here, the left part of the equation is the valuation multiplied
by the probability that the global bidder wins at least one of
the M auctions and thus corresponds to the expected bene-
fit. In more detail, note that 1 − G(bi) is the probability of
not winning auction i when bidding bi, �bi∈B(1 − G(bi))
is the probability of not winning any auction, and thus
1−�

bi∈B(1−G(bi)) is the probability of winning at least one
auction. The right part of equation 1 corresponds to the to-
tal expected costs or payments. To see the latter, note that
the expected payment of a single second-price auction when

bidding b equals � b

0
yg(y)dy (see [10]) and is independent of

the expected payments for other auctions.
Clearly, equation 1 applies to the model with static local

bidders, i.e., where the number of bidders is known and equal
for each auction (see Section 2.2). However, we can use
the same equation to model dynamic local bidders in the
following way:

Lemma 1. By replacing the first-order statistic G(y) with

Ĝ(y) = eN(F (y)−1), (2)

and the corresponding density function g(y) with ĝ(y) =

dĜ(y)/dy = N f(y)eN(F (y)−1), equation 1 becomes the ex-
pected utility where the number of local bidders in each auc-
tion is described by a Poisson distribution with average N ,
i.e., where the probability that n local bidders participate is
given by P (n) = Nne−N/n!.

Proof. To prove this, we first show that G(·) and F (·)
can be modified such that the number of bidders per auction

is given by a binomial distribution (where a bidder’s decision
to participate is given by a Bernoulli trial) as follows:

G′(y) = F ′(y)N = (1 − p + p F (y))N , (3)

where p is the probability that a bidder participates in the
auction, and N is the total number of bidders. To see this,
note that not participating is equivalent to bidding zero. As
a result, F ′(0) = 1 − p since there is a 1 − p probability
that a bidder bids zero at a specific auction, and F ′(y) =
F ′(0) + p F (y) since there is a probability p that a bidder
bids according to the original distribution F (y). Now, the
average number of participating bidders is given by N =
pN . By replacing p with N/N , equation 3 becomes G′(y) =
(1−N/N +(N/N )F (y))N . Note that a Poisson distribution
is given by the limit of a binomial distribution. By keeping
N constant and taking the limit N → ∞, we then obtain
G′(y) = eN(F (y)−1) = Ĝ(y). This concludes our proof.

The results that follow apply to both the static and dynamic
model unless stated otherwise.

3.2 Participation in Multiple Auctions
We now show that, for any valuation 0 < v < vmax, a utility-
maximising global bidder should always place non-zero bids
in all available auctions. To prove this, we show that the ex-
pected utility increases when placing an arbitrarily small bid
compared to not participating in an auction. More formally,

Theorem 1. Consider a global bidder with valuation 0 <
v < vmax and global bid B, where bi ≤ v for all bi ∈ B.
Suppose bj /∈ B for j ∈ {1, 2, . . . , M}, then there exists a
bj > 0 such that U(B ∪ {bj}, v) > U(B, v).

Proof. Using equation 1, the marginal expected utility
for participating in an additional auction can be written as:

U(B∪{bj}, v)−U(B, v) = vG(bj) �
bi∈B

(1−G(bi))−

� bj

0

yg(y)dy

Now, using integration by parts, we have � bj

0
yg(y) = bjG(bj)−� bj

0
G(y)dy and the above equation can be rewritten as:

U(B ∪ {bj}, v) − U(B, v) =

G(bj)

��v �
bi∈B

(1 − G(bi)) − bj

�� +

� bj

0

G(y)dy (4)

Let bj = ε, where ε is an arbitrarily small strictly positive

value. Clearly, G(bj) and � bj

0
G(y)dy are then both strictly

positive (since f(y) > 0). Moreover, given that bi ≤ v <
vmax for bi ∈ B and that v > 0, it follows that v �

bi∈B(1 −

G(bi)) > 0. Now, suppose bj = 1
2
v �

bi∈B(1 − G(bi)), then

U(B ∪ {bj}, v) − U(B, v) = G(bj) 	12v �
bi∈B(1 − G(bi))
 +� bj

0
G(y)dy > 0 and thus U(B ∪ {bj}, v) > U(B, v). This

completes our proof.

3.3 The Optimal Global Bid
A general solution to the optimal global bid requires the
maximisation of equation 1 in M dimensions, an arduous
task, even when applying numerical methods. In this sec-
tion, however, we show how to reduce the entire bid space
to two dimensions in most cases (one continuous, and one
discrete), thereby significantly simplifying the problem at



hand. First, however, in order to find the optimal solutions
to equation 1, we set the partial derivatives to zero:

∂U

∂bi

= g(bi)

��v �
bj∈B\{bi}

(1 − G(bj)) − bi

�� = 0 (5)

Now, equality 5 holds either when g(bi) = 0 or when�
bj∈B\{bi}

(1 − G(bj))v − bi = 0. In the dynamic model,

g(bi) is always greater than zero, and can therefore be ig-
nored (since g(0) = Nf(0)e−N and we assume f(y) > 0).
In case of the static model, g(bi) = 0 only when bi = 0.
However, theorem 1 shows that the optimal bid is non-zero
for 0 < v < vmax. Therefore, we can ignore the first part,
and the second part yields:

bi = v �
bj∈B\{bi}

(1 − G(bj)) (6)

In other words, the optimal bid in auction i is equal to
the bidder’s valuation multiplied by the probability of not
winning any of the other auctions. It is straightforward to
show that the second partial derivative is negative, confirm-
ing that the solution is indeed a maximum when keeping all
other bids constant. Thus, equation 6 provides a means to
derive the optimal bid for auction i, given the bids in all
other auctions.

3.3.1 Reducing the Search Space
In what follows, we show that, for non-decreasing probabil-
ity density functions, such as the uniform and logarithmic
distributions, the optimal global bid consists of at most two
different values for any M ≥ 2. That is, the search space
for finding the optimal bid can then be reduced to two con-
tinuous values. Let these values be bhigh and blow, where
bhigh ≥ blow. More formally:

Theorem 2. Suppose the probability density function f is
non-decreasing within the range [0, vmax], then the following
proposition holds: given v > 0, for any bi ∈ B, either bi =
bhigh, bi = blow, or bi = bhigh = blow.

Proof. Using equation 6, we can produce M equations,
one for each auction, with M unknowns. Now, by combining
these equations, we obtain the following relationship: b1(1−
G(b1)) = b2(1 − G(b2)) = . . . = bm(1 − G(bm)). By defining
H(b) = b(1 − G(b)) we can rewrite the equation to:

H(b1) = H(b2) = . . . = H(bm) = v �
bj∈B

(1 − G(bj)) (7)

In order to prove that there exist at most two different bids,
it is sufficient to show that b = H−1(y) has at most two
solutions that satisfy 0 ≤ b ≤ vmax for any y. To see this,
suppose H−1(y) has two solutions but there exists a third
bid bj 6= blow 6= bhigh. From equation 7 it then follows that
there exists a y such that H(bj) = H(blow) = H(bhigh) = y.
Therefore, H−1(y) must have at least three solutions, which
is a contradiction.

Now, note that, in order to prove that H−1(y) has at most
two solutions, it is sufficient to show that H(b) is strictly
concave4 for 0 ≤ b ≤ vmax. The function H is strictly

4More precisely, H(b) can be either strictly convex or strictly
concave. However, it is easy to see that H is not convex since
H(0) = H(vmax) = 0, and H(b) ≥ 0 for 0 < b < vmax.

concave if and only if the following holds:

d2H

db2
=

d

db
(1 − b · g(b) − G(b)) = − �bdg

db
+ 2g(b)� < 0

By performing standard calculations, we obtain the follow-
ing condition for the static model:

b �(N − 1)
f(b)N

F (b)
+ N

f ′(b)

f(b)
� > −2 for 0 ≤ b ≤ vmax, (8)

and similarly for the dynamic model we have:

b �N f(b) +
f ′(b)

f(b)
� > −2 for 0 ≤ b ≤ vmax, (9)

where f ′(b) = df/db. Since both f and F are positive,
conditions 8 and 9 clearly hold for f ′(b) ≥ 0. In other
words, conditions 8 and 9 show that H(b) is strictly concave
when the probability density function is non-decreasing for
0 ≤ b ≤ vmax, completing our proof.

Note from conditions 8 and 9 that the requirement of non-
decreasing density functions is sufficient, but far from nec-
essary. Although we are as yet not able to make a more
precise formal characterisation, in practice even most den-
sity functions with decreasing parts satisfy these conditions.
Moreover, the requirement for H(b) to be strictly concave is
also stronger than necessary in order to guarantee only two
solutions. As a result, for practical purposes, we expect the
reduction of the search space to apply in most cases.

Given there are at most 2 possible bids, blow and bhigh,
we can further reduce the search space by expressing one
bid in terms of the other. Suppose the buyer places a bid of
blow in Mlow auctions and bhigh for the remaining Mhigh =
M − Mlow auctions, equation 6 then becomes:

blow = v(1 − G(blow))Mlow−1(1 − G(bhigh))Mhigh ,

and can be rearranged to give:

bhigh = G−1 1 − � blow

v(1 − G(blow))Mlow−1 � 1

Mhigh �
(10)

Here, the inverse function G−1(·) can usually be obtained
quite easily. Furthermore, note that, if Mlow = 1 or Mhigh =
1, equation 6 can be used directly to find the desired value.

Using the above, we are able to reduce the bid search
space to a single continuous dimension, given Mlow or Mhigh.
However, we do not know the number of auctions in which
to bid blow and bhigh, and thus we need to search M dif-
ferent combinations to find the optimal global bid. More-
over, for each combination, the optimal blow and bhigh can
vary. Therefore, in order to find the optimal bid for a bid-
der with valuation v, it is sufficient to search along one
continuous variable blow ∈ [0, v], and a discrete variable
Mlow = M − Mhigh ∈ {1, 2, . . . , M}.

3.3.2 Empirical Evaluation
In this section, we present results from an empirical study
and characterise the optimal global bid for specific cases.
Furthermore, we measure the actual utility improvement
that can be obtained when using the global strategy. The
results presented here are based on a uniform distribution
of the valuations with vmax = 1, and the static local bidder
model, but they generalise to the dynamic model and other
distributions (not shown due to space limitations). Figure 1
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Figure 1: The optimal bid fractions x = b/v and corresponding expected utility for a single global bidder with
N = 5 static local bidders and varying number of auctions (M). In addition, for comparison, the solid line in
the right figure depicts the expected utility when bidding locally in a randomly selected auction, given there
are no global bidders (note that, in case of local bidders only, the expected utility is not affected by M).

illustrates the optimal global bids and the corresponding ex-
pected utility for various M and N = 5, but again the bid
curves for different values of M and N follow a very similar
pattern. Here, the bid is normalised by the valuation v to
give the bid fraction x = b/v. Note that, when x = 1, a
bidder bids its true value.

As shown in Figure 1, for bidders with a relatively low
valuation, the optimal strategy is to submit M equal bids
at, or very close to, the true value. The optimal bid fraction
then gradually decreases for higher valuations. Interestingly,
in most cases, placing equal bids is no longer the optimal
strategy after the valuation reaches a certain point. At this
point, a so-called pitchfork bifurcation is observed and the
optimal bids split into two values: a single high bid and
M − 1 low ones. This transition is smooth for M = 2, but
exhibits an abrupt jump for M ≥ 3. In all experiments,
however, we consistently observe that the optimal strategy
is always to place a high bid in one auction, and an equal or
lower bid in all others. In case of a bifurcation and when the
valuation approaches vmax, the optimal high bid becomes
very close to the true value and the low bids go to almost
zero5.

As illustrated in Figure 1, the utility of a global bidder be-
comes progressively higher with more auctions. In absolute
terms, the improvement is especially high for bidders that
have an above average valuation, but not too close to vmax.
The bidders in this range thus benefit most from bidding
globally. This is because bidders with very low valuations
have a very small chance of winning any auction, whereas
bidders with a very high valuation have a high probability
of winning a single auction and benefit less from participat-
ing in more auctions. In contrast, if we consider the utility
relative to bidding in a single auction, this is much higher
for bidders with relatively low valuations (this effect cannot
be seen clearly in Figure 1 due to the scale). In particu-
lar, we notice that a global bidder with a low valuation can
improve its utility by up to M times the expected utility

5Note in Figure 1 that the low bids are significantly higher
than zero at this point. This is because as v approaches
vmax, the low bids have very little impact on the utility and
finding the optimum numerically at this point requires an
extremely high precision.

of bidding locally. Intuitively, this is because the chance of
winning one of the auctions increases by up to a factor M ,
whereas the increase in the expected cost is negligible. For
high valuation buyers, however, the benefit is not that obvi-
ous because the chances of winning are relatively high even
in case of a single auction.

4. MULTIPLE GLOBAL BIDDERS
As argued in section 2.2, we expect a real-world market to
exhibit a mix of global and local bidders. Whereas so far
we assumed a single global bidder, in this section we con-
sider a setting where multiple global bidders interact with
one another and with local bidders as well. The analysis of
this problem is complex, however, as the optimal bidding
strategy of a global bidder depends on the strategy of other
global bidders. A typical analytical approach is to find the
symmetric Nash equilibrium solution [6, 8, 14, 16], which
occurs when all global bidders use the same strategy to pro-
duce their bids, and no (global) bidder has any incentive
to unilaterally deviate from the chosen strategy. Due to
the complexity of the problem, however, here we combine a
computational simulation approach with the analytical re-
sults from section 3. The simulation works by iteratively
finding the best response to the optimal bidding strategies
in the previous iteration. If this should result in a stable
outcome (i.e., when the current and previous optimal bid-
ding strategies are the same), the solution is by definition a
(symmetric) Nash equilibrium.

In more detail, the simulation is based on the observation
that the valuation distribution F of the local bidders cor-
responds to the distribution of bids (since local bidders bid
their true valuation). Therefore, by maximising equation 1
we find the best response given the current distribution of
bids. Now, we first discretize the space of possible valuations
and bids. Then, by performing this maximisation for each
bidder type, where a bidder type is defined by its (discrete)
valuation v, we find a new distribution of bids. Note that
this distribution can include bids from any number of both
global and local bidders, where the latter simply bid their
true valuation. This distribution of bids can then be used
to find a new best response, resulting in a new distribution
of bids, and so on, for a fixed number of iterations or until
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Figure 2: Best response strategy for 2 auctions and 3 global bidders without local bidders (a), and with 10
local bidders (b), averaged over 10 iterations and 20 runs with different initial conditions. The measurements
are taken after an initialisation period of 10 iterations. The error-bars indicate the standard deviation.

a stable solution has been found6.
In what follows, we first describe the simulation settings,

and then apply the simulation to settings with global bidders
only, followed by settings with both global and local bidders.

4.1 The Setting
The simulation is based on discrete valuations and bids. The
valuations are natural numbers ranging from 1 to vmax ∈ N,
where vmax is set to 1000. Each valuation v ∈ {1, 2, . . . , vmax}
occurs with equal probability, equivalent to a uniform valua-
tion distribution in the continuous case. Note, however, that
even though the bidder valuations are distributed uniformly,
the resulting distribution of bids is typically not uniform
(since global bidders typically bid below their valuation).
The number of different bid levels that a bidder is allowed is
set to L ∈ N. Thus, a bidder with valuation v can place the
bids b ∈ {v/L, 2v/L, . . . , v}. For the results reported here,
we use L = 300. The initial state can play an important role
in the experiments. Therefore, to ensure our results are ro-
bust, experiments are repeated with different random initial
bid distributions. In the following, we assume the number
of local bidders to be static and use NG and NL to denote
the number of global and local bidders respectively.

4.2 The Results
First, we describe the results with no local bidders (i.e.,
NL = 0). For this case, we find that the simulation does
not converge to a stable state. That is, when the number
of (global) bidders is at least 2, the best response strategy
keeps fluctuating, irrespective of the number of iterations,
and of the initial state. The fluctuations, however, show
a distinct pattern and more or less alternate between two
states. Figure 2a depicts the average best response strategy
for NG = 3 and M = 2. Here, the standard deviation is a
gauge for the amount of fluctuation and thus the instability
of the strategy. In general, we find that the best response
for low valuations remain stable, whereas the strategy for
bidders with high valuations fluctuates heavily, as is shown
in Figure 2a. These results are robust for different initial

6This approach is similar to an alternating-move best-
response process with pure strategies [7], although here we
consider symmetric strategies within a setting where an op-
ponent’s best response depends on its type.

conditions and simulation parameters.
If we include local bidders, on the other hand, we observe

that the strategies stabilise. Figure 2b shows the simula-
tion results for the same settings as before except with both
local and global bidders. As can be seen from this figure,
the variation is very slight and only around the bifurcation
point. We note that these outcomes are obtained after only
a few iterations of the simulation. The results show that
the principal conclusions in case of a single global bidder
carry over to the case of multiple global bidders. That is,
the optimal strategy is to participate in all auctions and to
bid high in one auction, and equal or lower in the others. A
similar bifurcation point is also observed. These results are
also obtained for other values of M , NL, and NG. Moreover,
the results are very robust to changes to the parameters of
the simulation.

To conclude, even though a theoretical analysis proves
difficult in case of several global bidders, we can approximate
a (symmetric) Nash equilibrium for specific settings using a
discrete simulation in case the system consists of both local
and global bidders. Our experiments show that, even in the
case of multiple global bidders, the best strategy is to bid in
multiple auctions. Thus, our simulation can be used as a tool
to predict the market equilibrium and to find the optimal
bidding strategy for practical settings where we expect a
combination of local and global bidders.

5. MARKET EFFICIENCY
Efficiency is an important system-wide property since it
characterises to what extent the market maximises social
welfare (i.e. the sum of utilities of all agents in the mar-
ket). To this end, in this section we study the efficiency of
markets with either static or dynamic local bidders, and the
impact that a global bidder has on the efficiency in these
markets. Specifically, efficiency in this context is maximised
when the bidders with the M highest valuations in the entire
market obtain a single item each. More formally, we define
the efficiency of an allocation as:

Definition 1. Efficiency of Allocation. The efficiency
ηK of an allocation K is the obtained social welfare propor-
tional to the maximum social welfare that can be achieved in
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Figure 3: Average efficiency for different market set-
tings as shown in the legend. The error-bars indicate
the standard deviation over the 10 runs.

the market and is given by:

ηK = �NT

i=1 vi(K)

�NT

i=1 vi(K∗)
, (11)

where K∗ = arg maxK∈K �NT

i=1 vi(K) is an efficient alloca-
tion, K is the set of all possible allocations, vi(K) is bidder
i’s utility for the allocation K ∈ K, and NT is the total
number of bidders participating across all auctions (includ-
ing any global bidders).

Now, in order to measure the efficiency of the market and
the impact of a global bidder, we run simulations for the
markets with the different types of local bidders. The exper-
iments are carried out as follows. Each bidder’s valuation is
drawn from a uniform distribution with support [0, 1]. The
local bidders bid their true valuations, whereas the global
bidder bids optimally in each auction as described in Sec-
tion 3.3. The experiments are repeated 5000 times for each
run to obtain an accurate mean value, and the final average
results and standard deviations are taken over 10 runs in
order to get statistically significant results.

The results of these experiments are shown in Figure 3.
Note that a degree of inefficiency is inherent to a multi-
auction market with only local bidders [4].7 For example,
if there are two auctions selling one item each, and the two
bidders with the highest valuations both bid locally in the
same auction, then the bidder with the second-highest value
does not obtain the good. Thus, the allocation of items to
bidders is inefficient. As can be observed from Figure 3,
however, the efficiency increases when N becomes larger.
This is because the differences between the bidders with the
highest valuations become smaller, thereby decreasing the
loss of efficiency.

Furthermore, Figure 3 shows that the presence of a global
bidder has a slightly positive effect on the efficiency in case
the local bidders are static. In the case of dynamic bidders,
however, the effect of a global bidder depends on the num-
ber of sellers. If M is low (i.e., for M = 2), a global bidder

7An exception is when N = 1 and bidders are static, since
the market is then completely efficient without a global bid-
der. However, since this is a very special case and does not
apply to other settings, we do not discuss it further here.

significantly increases the efficiency, especially for low val-
ues of N . For M = 6, on the other hand, the presence of
a global bidder has a negative effect on the efficiency (this
effect becomes even more pronounced for higher values of
M). This result is explained as follows. The introduction of
a global bidder potentially leads to a decrease of efficiency
since this bidder can unwittingly win more than one item.
However, as the number of local bidders increase, this is less
likely to happen. Rather, since the global bidder increases
the number of bidders, its presence makes an overall posi-
tive (albeit small) contribution in case of static bidders. In
a market with dynamic bidders, however, the market effi-
ciency depends on two other factors. On the one hand, the
efficiency increases since items no longer remain unsold (this
situation can occur in the dynamic model when no bidder
turns up at an auction). On the other hand, as a result of
the uncertainty concerning the actual number of bidders, a
global bidder is more likely to win multiple items (we con-
firmed this analytically). As M increases, the first effect
becomes negligible whereas the second one becomes more
prominent, reducing the efficiency on average.

To conclude, the impact of a global bidder on the efficiency
clearly depends on the information that is available. In case
of static local bidders, the number of bidders is known and
the global bidder can bid more accurately. In case of uncer-
tainty, however, the global bidder is more likely to win more
than one item, decreasing the overall efficiency.

6. RELATED WORK
Research in the area of simultaneous auctions can be seg-
mented along two broad lines. On the one hand, there is
the game-theoretic analysis of simultaneous auctions which
concentrates on studying the equilibrium strategy of rational
agents [6, 11, 12, 14, 16]. Such analyses are typically used
when the auction format employed in the simultaneous auc-
tions is the same (e.g. there are N second-price auctions or N
first-price auctions). On the other hand, heuristic strategies
have been developed for more complex settings when the
sellers offer different types of auctions or the buyers need
to buy bundles of goods over distributed auctions [1, 2, 9].
This paper adopts the former approach in studying a market
of N second-price simultaneous auctions since this approach
yields provably optimal bidding strategies.

In this case, the seminal paper by Engelbrecht-Wiggans
and Weber [6] provides one of the starting points for the
game-theoretic analysis of distributed markets where buy-
ers have substitutable goods. Their work analyses a market
consisting of couples having equal valuations that want to
bid for a dresser. Thus, the couple’s bid space can at most
contain two bids since the husband and wife can be at most
at two geographically distributed auctions simultaneously.
They derive a mixed strategy Nash equilibrium for the spe-
cial case where the number of buyers is large and also study
the efficiency of such a market and show that for local bid-
ders, the market efficiency is 1 − 1/e. Our analysis differs
from theirs in that we study simultaneous auctions in which
bidders have different valuations and the global bidder can
bid in all the auctions simultaneously (which is entirely pos-
sible for online auctions).

Following this, Krishna and Rosenthal [11] then stud-
ied the case of simultaneous auctions with complementary
goods. They analyse the case of both local and global bid-
ders and characterise the bidding of the buyers and resultant



market efficiency. The setting provided in [11] is further ex-
tended to the case of common values by Rosenthal and Wang
[14]. However, neither of these works extend easily to the
case of substitutable goods which we consider. This case is
studied in [16], but the scenario considered is restricted to
three sellers and two global bidders and with each bidder
having the same value (and thereby knowing the value of
other bidders). The space of symmetric mixed equilibrium
strategies is derived for this special case, but again our result
is more general.

7. CONCLUSIONS
In this paper, we derive utility-maximising strategies for bid-
ding in multiple, simultaneous second-price auctions. We
first analyse the case where a single global bidder bids in
all auctions, whereas all other bidders are local and bid in a
single auction. For this setting, we find the counter-intuitive
result that it is optimal to place non-zero bids in all auctions
that sell the desired item, even when a bidder only requires
a single item and derives no additional benefit from having
more. Thus, a potential buyer can considerably benefit by
participating in multiple auctions and employing an optimal
bidding strategy. For most common valuation distributions,
we show analytically that the problem of finding optimal
bids reduces to two dimensions. This considerably simpli-
fies the original optimisation problem and can thus be used
in practice to compute the optimal bids for any number of
auctions.

Furthermore, we investigate a setting with multiple global
bidders by combining analytical solutions with a simulation
approach. We find that a global bidder’s strategy does not
stabilise when only global bidders are present in the market,
but only converges when there are local bidders as well. We
argue, however, that real-world markets are likely to con-
tain both local and global bidders. The converged results
are then very similar to the setting with a single global bid-
der, and we find that a bidder benefits by bidding optimally
in multiple auctions. For the more complex setting with
multiple global bidders, the simulation can thus be used to
find these bids for specific cases.

Finally, we compare the efficiency of a market with multi-
ple simultaneous auctions with and without a global bidder.
We show that, if the bidder can accurately predict the num-
ber of local bidders in each auction, the efficiency slightly
increases. In contrast, if there is much uncertainty, the effi-
ciency significantly decreases as the number of auctions in-
creases due to the increased probability that a global bidder
wins more than two items. These results show that the way
in which the efficiency, and thus social welfare, is affected by
a global bidder depends on the information that is available
to that global bidder.

In future work, we intend to expand our analysis for mar-
kets with more than one global bidder, and extend the model
to investigate optimal strategies for purchasing multiple units
of an item, and when the auctions are no longer symmetric.
The latter arises, for example, when the number of (aver-
age) local bidders differs per auction or the auctions have
different settings for parameters such as the reserve price.
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