
An Algorithmic Approach to Specifying and Verifying
Subgame Perfect Equilibria

Frank Guerin
Department of Computing Science, King’s College,

University of Aberdeen, Aberdeen AB24 3UE, Scotland.

f.guerin@abdn.ac.uk

ABSTRACT
Game theory is a popular tool for designing interaction protocols
for agent systems. It is currently not clear how to apply this to open
agent systems. By “open” we mean that foreign agents will be free
enter and leave different agent systems at will. This means that
agents will need to be able to work with previously unseen proto-
cols. There does not yet exist any agreement on a standard way in
which such protocols can be specified and published. Furthermore,
it is not clear how an agent could be given the ability to use an ar-
bitrary published protocol; the agent would need to be able to work
out a strategy for participation. To address this we propose a ma-
chine readable language in which a game theory mechanism can be
written in the form of a program. Enabling agents to automatically
determine the game theoretic properties of an arbitrary game is dif-
ficult. Rather than requiring agents to find the equilibrium of the
game, we propose that a recommended equilibrium strategy profile
will be published along with the mechanism; agents can then check
the recommendation to decide if it is indeed an equilibrium. We
present an algorithm for this decision problem. It is hoped that this
work could eventually contribute to interoperability in open agent
systems.

1. INTRODUCTION
Game theory is a popular tool for designing interaction protocols

for agent systems. It allows a sort of social engineering for agents;
we can design the rules of a system so that the agents will have an
incentive to reach the outcome we desire. All of this rests on the
assumption that the rules of the system and their game theoretic
properties are common knowledge amongst the agents. This is fine
if we are designing a closed system, where we (the agent designer)
know the rules, and we program the agents with knowledge of the
game they will be participating in. It is currently not clear how to
extend this work to open agent systems. By “open” we mean that
foreign agents will be free enter and leave different agent systems
at will. This means that agents will need to be able to work with
previously unseen protocols. There does not yet exist any agree-
ment on a standard way in which such protocols can be specified
and published. Furthermore, it is not clear how an agent could be
given the ability to use an arbitrary published protocol; the agent
would need to be able to understand the rules and to work out a
strategy for participation. Thus our area of work is in providing
the theoretical infrastructure needed to enable game theory mecha-
nisms to be employed in open multi-agent systems. This amounts
to specifyingandverifyingthe mechanisms in a way appropriate for
agents. In this paper we will restrict our attention to pure strategy
subgame perfect Nash equilibria in games of complete information.

Firstly, for specification, we will need a machine readable lan-
guage in which a game theory mechanism can be written in the

form of an agent interaction protocol, and published for agents to
inspect. This would allow the workings of the protocol to be made
public so that (i) the behaviour of agents enacting the protocol can
be tested to determine if they are complying with the published
rules; (ii) agents can inspect the published specification to deter-
mine its properties and hence their best strategy. For the machine
readable language, we propose an algorithmic representation, as it
is likely to be the most succinct way to represent most types of
games. A protocol written in this language constitutes a specifi-
cation of behaviour for agents, and they can be tested for compli-
ance as in (i); however, this kind of compliance testing is relatively
straightforward and has been discussed elsewhere [4, 7, 15, 16].
Our focus will be on point (ii).

To determine the best strategy for participation, an agent should
“solve” the game to find the equilibrium strategies. Computing
Nash equilibria is an open problem [12] and can be difficult [5,
17]. The solution proposed here is to include, with the specifi-
cation of the protocol, the designer’s recommended strategy; the
recommendation should of course be an equilibrium of the game.
Because trust is an issue in open systems, agents will need to ver-
ify for themselves that the published recommendation is indeed an
equilibrium. This brings us to the idea ofverification for mecha-
nisms.

Given a published game and strategy profile, an agent will need
a procedure to determine if it is in his interest to follow the recom-
mended strategy. This is a much simpler problem than finding an
equilibrium from scratch. Essentially, it is the difference between
(i) checking every possible combination of values for a set of pa-
rameters, and (ii) checking every possible value of one parameter
while all others are held constant, and repeating this process for
each parameter. The first is exponential in the number of param-
eters, while the second is polynomial. The number of parameters
here corresponds to the number of players in the game, and the pos-
sible values of each parameter correspond to the strategies agents
can play.

The main contribution of the paper is an algorithm which can
take, as input, an algorithmic representation of (i) a game and (ii) a
strategy for each agent, and decide if the strategies are a subgame
perfect Nash equilibrium of the game. It is hoped that this work
could eventually contribute to interoperability in open agent sys-
tems, allowing agents to participate in foreign institutions and to
understand the rules there.

Section 2 describes the syntax and program semantics of SMPL
(Simple Mechanism Programming Language), a machine readable
language for publishing both games and strategies. In section 3.1
we build on this program semantics, and define the game repre-
sented by an SMPL program. Section 4 shows how subgame per-
fect Nash equilibrium can be defined and presents the algorithm

for deciding if a published strategy profile is an equilibrium of a
published game. Section 5 looks at related work, and Section 6
concludes with a discussion of the limitations of the work and di-
rections for future work.

2. SMPL: SIMPLE MECHANISM
PROGRAMMING LANGUAGE

This section presents the syntax and semantics for SMPL (Sim-
ple Mechanism Programming Language). It is copied from the
Simple Programming Language (SPL) of Manna and Pnueli [9],
with some modifications. We do not directly give a semantics to
SMPL in terms of games; instead we first describe a standard pro-
gram semantics for SMPL, in terms of the sequences of states it
could produce, then in the next section (Section 3) we use the pro-
gram semantics to describe the game represented by the SMPL pro-
gram. SPL was chosen as the basis for our approach for two rea-
sons: firstly it is a theoretical language, and hence extremely simple
(as opposed to using Java, for example); secondly, it was originally
designed for specifying reactive systems, hence it is well adapted
to modular specification, where it is important to keep track of the
communications passed between each module, and the variables
local to each particular module. Space constraints force the pre-
sentation here to be terse; a reader not familiar with this style of
semantics may wish to consult the original. To help the reader to
get a feel for the language, Figure 1 gives a very simple example
of an SMPL program describing the classic prisoners’ dilemma in-
volving two agents and the principal, as in the following normal
form representation:

1 (Cooperate) 2 (Defect)

1 (Cooperate) −1,−1 −6, 0
2 (Defect) 0,−6 −3,−3

The messages exchanged are simple integers. Agent1 chooses an
integer,1 or 2, and sends it to the principal. The principal reads
input channelαP,1, storing the result in the variableplyr1. He then
informs agent2 that it is his turn, reading agent2’s action into
plyr2. Finally the utilities are calculated and sent to the special
channelαU,P .

2.1 SMPL Syntax
A program has the following syntax:

P ::

[
Ag1 ::

[
declaration; [`1: S1; ˆ̀1:]

]
‖ . . .

‖ AgP ::
[
declaration; [`P : SP ; ˆ̀

P :]
]]

It consists of a number ofmodulesrepresenting each of the agent
processes. EachAgi is an identifier for an agent in the game and
eachSi is a statement which may itself be composed of other state-
ments. Label̀ i is the location of part of theprogram control vari-
able just before execution of the statementSi, andˆ̀

i is its location
just after. It is required that the module of exactly one agent will
begin with achoosestatement. The final agent (AgP above) has a
special status and is known as theprincipal; no choosestatements
may appear in his module.

A declaration is a sequence ofdeclaration statementswith the
following syntax:

< own in | own out | local > variable, . . . , variable: typewhereϕi

Statements in the program may only refer to variables declared in
the declaration. Initial values for variables may be specified by the
optional assertionwhereϕi. Keyword local is for variables used
by this program, not accessible to any other agent. Keywordsown

Ag1 ::

 local a : integer wherea = 0
own out αP,1 : channel[1..] of integer[
`0: choosea 1..2; `1: α1,P ⇐ a : `2

]

∥∥∥ Ag2 ::

local b : integer whereb = 0
own in α2,P : channel[1..] of integer
own out αP,2 : channel[1..] of integer[
m0 : await|α2,P | > 0;
m1 : chooseb 1..2; m2 : αP,2 ⇐ b : m3

]

∥∥∥ AgP ::

local plyr1, plyr2: integer where
plyr1 = plyr2 = 0

own in αP,1, αP,2 : channel[1..] of integer
own out αU,P , α2,P : channel[1..] of integer

p0 : await|αP,1| > 0; p1 : αP,1 ⇒ plyr1
p2 : α2,P ⇐ 0;
p3 : await|αP,2| > 0; p4 : αP,2 ⇒ plyr2
p5 : if plyr1 = 1 ∧ plyr2 = 1

then p6 : αU,P ⇐ 〈−1,−1〉
p7 : if plyr1 = 1 ∧ plyr2 = 2

then p8 : αU,P ⇐ 〈−6, 0〉
p9 : if plyr1 = 2 ∧ plyr2 = 1

then p10 : αU,P ⇐ 〈0,−6〉
p11 : if plyr1 = 2 ∧ plyr2 = 2

then p12 : αU,P ⇐ 〈−3,−3〉 : p13

Figure 1: A simple game of two agents playing prisoners’
dilemma.

in andown out are for asynchronous communication channels for
input and output respectively. A channel is a variable whose value
is a list of integers. We identify channel variables as follows:αi,j

will be an input channel for agenti and an output channel for agent
j; i.e. only agenti can read from this channel, and only agentj
can write to it. Each non-principal agenti must have an output
channelαP,i to send messages to the principal; agenti may also
have an input channelαi,P on which to receive messages from the
principal. Finally, the principal must have a special channelαU,P

which he can write to once at the end of the game, to determine
the utility received by all agents. There are no other channels. We
allow no communication channels between other individual agents;
everything must go through the principal. This is because we need
to have a global history of the game to uniquely identify a game
state, and that will come from all of the messages received by the
principal.

Basic Statement Description

u := e assignment: assign valuee to variableu
chooseu c1..c2 choosea value in the interval for variableu
await c wait for Boolean expressionc
α ⇐ e sendexpressione on channelα
α ⇒ u receiveon channelα and store in variableu
if c then S1 conditionalstatement
elseS2

if c then S1 one branch conditionalstatement
S1; . . . ; Sk concatenation: sequential execution
while c do S repetitionof s

Statements may be basic or compound. A compound statement
is enclosed in parentheses[. . .] when it is a sub statement of a larger
statement except when the compound statement has a line to itself.
Sub statements within concatenation statements are separated by
semicolons which we omit if there is a line break.

2.2 SMPL Program Semantics
The semantics are defined via a transition system. The transi-

tion system has variables corresponding to the program’s variables,
and it has transitions which describe how those variables change
as program statements are executed. The program will identify a
transition system, and the transition system will define the possible
sequences of states it could produce. Thus the semantics of a pro-
gram is given in terms of possible sequences of states (of variables)
it could produce.

A program identifies a unique transition system〈V, Θ, T 〉. The
variables come from a universal set of typed variablesV, called
the vocabulary. From this we can construct expressions (such as
x + 3y + 4), atomic formulae (such as(x + 3y) > 7) andAsser-
tions (such asx > y ∧ y < 4). A states is an interpretation ofV,
assigning each variableu ∈ V a values[u] over its domain.V ⊆ V
is the set of system variables: one of these is the control variableπ
which represents the location of the next statement to be executed,
the remainder represent program variables.π is an(n + 1)-tuple,
wheren is the number of agents in the program (+1 for the prin-
cipal); π has one part of its tuple to point to the location within
each agent’s module. The initial conditionΘ is a conjunction of all
initial values for variables (appearing inwhere clauses), an empty
value for all channels (α = λ) and the control variable equal to
the set of entry locations for each agent. If a states of the system
satisfies the assertionΘ, then it is a state from which the system
can start running.T is a set of transitions including one transition
corresponding to each statement in the program, as follows. Note
that primed values refer to the value in the successor state, and the
• symbol is used to add an element to one end of a list; for example
α′ = α • e means that the value ofα in the successor state will be
equal to what it was previously, but withe appended to the end.

SMPL Statement Transition Relation

u := e m(`, ˆ̀) ∧ u′ = e ∧ p(Y − {u})

chooseu c1..c2 m(`, ˆ̀) ∧ p(Y − {u}) ∧
c2∨

c=c1

u′ = c

await c m(`, ˆ̀) ∧ c ∧ p(Y)

α ⇐ e m(`, ˆ̀) ∧ α′ = α • e ∧ p(Y − {α})
α ⇒ u m(`, ˆ̀) ∧ |α| > 0∧

α = u′ • α′ ∧ p(Y − {u, α})
if c then `1: S1 [m(`, `1) ∧ c ∧ p(Y)] ∨

[m(`, ˆ̀) ∧ ¬c ∧ p(Y)]
if c then `1: S1 [m(`, `1) ∧ c ∧ p(Y)] ∨

else`2: S2 [m(`, `2) ∧ ¬c ∧ p(Y)]
while c do [`1: S ` :] [m(`, `1) ∧ c ∧ p(Y)] ∨

[m(`, ˆ̀) ∧ ¬c ∧ p(Y)]

This assumes that̀ is the statement’s label and̀̂ its post-label.
The abbreviationm(` , ˆ̀) means a move of control from location
` to locationˆ̀; i.e. the part ofπ which now points tò will sub-
sequently point tồ , and all other parts ofπ remain the same. The
abbreviationp(U) means that all variables in the setU are not
changed by this transition.Y is the set of non control variables,
so V = {π} ∪ Y . Each transition maps each state onto a set of
possible successor states. If a transitionτ maps a states to a non-
empty set of possible successor states thenτ is enabled ons, if it
mapss to the null set then the transition is disabled on states. The
transitions in the system tell us how one state can move to the next.
A transition istakenat states if the next state is related tos by the
transition.

A sequence of states (possibly infinite)s0, s1, s2, s3, . . . is called
a computation of the programP (which identifies our transition

system) ifs0 satisfies the initial conditionΘ and if each statesj+1

is accessible from the previous statesj via one of the transitionsT
in the system. If it is a finite computation then there will be a final
statesn which has no successor state. A computation is a sequence
of states that could be produced by an execution of the program.
For example, playing the equilibrium path for the program of Fig-
ure 1 would produce the following sequence of states:

{〈`0, m0, p0〉, λ, λ, λ, λ, 0, 0, 0, 0} →
{〈`1, m0, p0〉, λ, λ, λ, λ, 2, 0, 0, 0} →
{〈`2, m0, p0〉, 2, λ, λ, λ, 2, 0, 0, 0} →
{〈`2, m0, p1〉, 2, λ, λ, λ, 2, 0, 0, 0} →
{〈`2, m0, p2〉, 2, λ, λ, λ, 2, 0, 2, 0} →
{〈`2, m0, p3〉, 2, 0, λ, λ, 2, 0, 2, 0} →
{〈`2, m1, p3〉, 2, 0, λ, λ, 2, 0, 2, 0} →
{〈`2, m2, p3〉, 2, 0, λ, λ, 2, 2, 2, 0} →
{〈`2, m3, p3〉, 2, 0, 2, λ, 2, 2, 2, 0} →
{〈`2, m3, p4〉, 2, 0, 2, λ, 2, 2, 2, 0} →
{〈`2, m3, p5〉, 2, 0, 2, λ, 2, 2, 2, 2} → . . . →
{〈`2, m3, p13〉, 2, 0, 2, 〈−3,−3〉, 2, 2, 2, 2}

Where each state gives the values of variables in this order:
{π, αP,1, α2,P , αP,2, αU,P , a, b, plyr1 , plyr2}.

Control is initially at the start of each agent’s module and channels
are empty (λ).

Given a fixed decision for each agent’s choice points, an SMPL
program should produce a single computation; otherwise it is not a
valid SMPL program. This means that at any state, all the agents,
except one, should be at anawait statement, or should have termi-
nated. This restriction ensures that we have a unique history of the
system corresponding to a single state of the game. Furthermore, a
valid SMPL program must have no infinite computations; this en-
sures that all games represented by SMPL programs are finite. The
program should also have a unique start state.

3. REPRESENTING GAMES AND
STRATEGIES

This section makes use of the SMPL semantics to define the
Game represented by an SMPL program. Essentially this involves
stepping through the states of the SMPL program (as defined by
the SMPL program semantics) until achoosestatement is encoun-
tered, at which point a game node is created, and then the process
of stepping through the program states continues.

3.1 The Game Represented by a Program
Since each node in a game tree has a unique history of actions

taken to reach it, the tree can be represented by the set of histories.
We will use the terms node and history interchangeably. Each ac-
tion corresponds to a message sent to the principal in our case. If
we can extract the possible message histories from the SMPL pro-
gram, then we can use them to represent the game. We can also
use the messages sent and received by non-principal agents to de-
termine the history apparent to them, and hence the game nodes
which they cannot distinguish (information sets).

A history tupleH in a system ofn agents (+principal) is a tuple
〈h0, h1, . . . , hn〉 whereh0 is the global history: an ordered list
of the messages received by the principal, and each otherhi is the
communication history apparent to agenti; i.e. an ordered list of
the messages sent and received byi. We will refer to individual
elementshi asH[i].

Let takeTransition describe an interpreter function; it takes in
an SMPL program state and an SMPL program and it returns the
state reached after taking a single transition. This can be used to
perform any transition in the system except for the transition cor-

algorithm : runGame runs the SMPL program
inputs : prog : program
outputs :s: terminal state, h0: terminal node,

Inf : information set data
〈s, m, A, H〉 := initialState(prog)
Inf := {〈m, H[m], H[0], A〉}
repeat

selecta ∈ A # nondeterministic selection
〈s, m, A, H〉 := takeAction(s, m, a, H, prog)
Inf := Inf ∪ {〈m, H[m], H[0], A〉}

until terminal(s, prog) = True
return 〈s, H[0], Inf 〉

Figure 3: Algorithm: runGame

responding to achoosestatement, because the transition system
has no way to know what action an agent has taken. The algo-
rithm takeAction (Figure 2) handles the agent’s choice, updating
the system variable appropriately; it then steps through the transi-
tions usingtakeTransition, until it meets achoosetransition, at
which point it stops and returns the current system state, the his-
tory, and the identity of the agent who needs to choose. The al-
gorithm additionally updates histories every time a communication
statement is about to be executed. If it is something read by the
principal then it is added toP ’s historyH[0], and also the sender’s.
If it is something read by another agenti then it is only added toi’s
historyH[i].

Note that because we are writing an algorithm to interpret an-
other program, we have two sets of variables. To avoid confusion,
variables describing the state of the programprog will be prefixed
by “s.” for examples.u means the variableu within the program
prog . Variables without prefixes are part of our algorithm, and not
prog .

The terminal function returnsTrue if the state passed as the
first parameter is a terminal state of the program passed as the sec-
ond parameter; it returnsFalse otherwise. A terminal state is one
where no location in the control variable is pointing to achoose
statement, and no transition is enabled; i.e. the program is not wait-
ing for any agent to make a choice.

Figure 3 shows a tiny algorithm that runs the game to find the
global histories and apparent histories produced by all possible
computations. The only reason for not putting this together with
the previous algorithm is that we want to usetakeAction alone
later. This algorithm includes nondeterministic choice, so it can
give several possible answers.

TheinitialState function will take a game program as a param-
eter and will return a 4-tuple:s, the initial state of the game pro-
gram; m, the agent who has the move;A, the set of actions to
choose from;H, the initial history tupleH = 〈[], [], . . . , []〉. The
utility(s) function returns the utility of a terminal states; this is a
simple matter of looking at the value of the channelαU,P , within
s.

DEFINITION 3.1. An SMPL programprog represents the fol-
lowing finite extensive form gameG = 〈T, U, I, M〉:

• The game treeT is the set{h0 | 〈m, hm, h0, A〉 ∈ Inf where
〈 , , Inf 〉 = runGame(prog)}; i.e. we take all the possi-
ble outputs from running the algorithmrunGame on prog ,
this means taking all possible choices for the nondetermin-
istic selection of an action; then from the 3-tuples returned,
we look at the finalInf and we collect all the global histories
h0 that are in there. These are all the possible nodes of the
game. A nodehs is a successor node of a nodehp iff hp is a

prefix of hs and its length is one less. The set of all succes-
sors of a node is given by the functionS. Nodes having an
empty set of successors are termedterminal.

• The utility functionU gives the utility of a terminal node;
it is obtained by first creating a set of tuples which relate a
terminal node to its corresponding terminal program state.
Φ = {〈h0, s〉 | 〈s, h0, Inf 〉 = runGame(prog)}.
U(h0) , utility(s) where〈h0, s〉 ∈ Φ.

• The information set functionI maps each nonterminal node
to the set of nodes in the same information set as it; it is
obtained by unifying all possibleInf sets.

I = {〈m, hm, h0, A〉 | 〈m, hm, h0, A〉 ∈ Inf and
〈 , , Inf 〉 = runGame(prog)}.

I(h0) , {n | 〈m, hm, n, A〉 ∈ I and〈m, hm, h0, A〉 ∈ I}.

• The mover functionM maps each game node to the agent
who has the move at that node; it is given byM(h0) , m
such that〈m, , h0, 〉 ∈ I.

Note that an SMPL program can only represent a game of per-
fect recall. This is because the history apparent to an agenti is used
specify agenti’s information sets. It is assumed that the apparent
history determines what game nodes agenti can distinguish be-
tween. Hence it is impossible to specify a game which would place
two nodes, with the same apparent history, in different information
sets. Neither is it possible to have the principal artificially send ex-
tra messages to agenti to make the history different; the idea of
publishing the game is that the entire SMPL program is available
for inspection by any participant, hence agenti would be aware
that the extra messages it received did not affect the game state.
Apart from this restriction, SMPL can be used to represent any
finite imperfect information game (this follows from the Turing-
completeness of SMPL).

3.2 The Strategy Represented by a Program
For a given game, a strategyσi is a function mapping each in-

formation set owned by agenti to an action. A restricted version of
the SMPL syntax can be used to write astrategy program:

strat i ::

 in history : array [1..] of integer;
out action : integer;
declaration; S

The program must have exactly one input (for the history) and

one output (for the action taken). As an example, the following is
the equilibrium strategy for agent1 in the game of Figure 1.

strat1 ::

 in history : array [1..] of integer;
out action : integer;
action := 2

It is rather simple because there is only one contingency in which
the agent is called on to act. Now letrun denote a function that can
interpret the program passed as the first parameter, and run it on
the input passed as the second parameter, returning the program’s
output.

DEFINITION 3.2. Let the SMPL programprog represent a game,
and letI be the set of tuples〈m, hm, h0, A〉 describing its mover,
apparent history, global history and action set as in Definition 3.1.
Letstrat i be some strategy program such that for all inputsh where

algorithm : takeAction returns the program state after an agent makes a choice
inputs : s: state, m: mover, a: action, H: history tuple, prog : program
outputs : s: resultant state, n: mover, A: actions available, H: history tuple
`0:= s.π[m], where`0 points to a statement

of the form`0: chooseu c1..c2 `1:
andu is a state variable ofs

let s.u := a # Set value of state variable u to action a.
let s.π[m] := `1: # mth component of s.π to point to `1:
repeat # At this point exactly one transition is enabled

if The enabled transition relation contains # (we never have more than one enabled,
an atomic formula of the form # one is always enabled after a choose)
αP,i = u′ • α′P,i # Note: all these variables belong to s.
wherei is some agent andP is the principal.

then H[0] := H[0] • s.u′ # Update global and apparent histories
H[i] := H[i] • s.u′ fi # with action received by Principal

if The enabled transition relation contains
an atomic formula of the form
αi,P = u′ • α′i,P # Update apparent history

then H[i] := H[i] • s.u′ fi # with action received by i
s := takeTransition(s, prog)

until s has no successor state
if terminal(s, prog) then A := {}
else n:= the positive integer such that # Now one of the locations in s.π

s.π[n] points to a statement # must point to a choose statement.
of the formchoosev d1..d2

A := {a | a is an integer in the range d1..d2} fi
return 〈s, n, A, H〉

Figure 2: Algorithm: takeAction

〈i, h, n, A〉 ∈ I: strat i terminates1 andrun(strat i, h) ∈ A. Then
we say thatstrat i, describes a strategyσi for agenti in the game
represented byprog, where for each noden in the game tree such
that 〈i, h, n, A〉 ∈ I :
σi(I(n)) = run(strat i, h).

A profile of strategies is represented byStrat = 〈strat1, strat2,
. . . stratc〉, wherec is the number of agents; it is a tuple of strat-
egy programs, one for each agent. We will refer to the individual
elements asStrat [i].

4. VERIFYING SUBGAME PERFECT
NASH EQUILIBRIA

The following is the standard definition of a SPNE [2]. It is first
necessary to define an NE. Strategy profileσ is a NE if, for all
playersi,

ui(σi, σ−i) ≥ ui(si, σ−i) for all si ∈ Si

ui(. . .) the utility obtained by agenti if the strategies . . . are
played in the game.

σi the strategy inσ which is to be played by agenti.
σ−i the strategies inσ which are to be played by all

other players (not playeri).
Si the set of possible strategies for agenti.

Strategy profileσ is a SPNE if the restriction ofσ to G is a NE
of G for every subgame G. A subgame is any branch of the game
tree which starts at a singleton information set and does not cut any
information set.

We now look at an alternative definition in our framework, and
then prove its equivalence. We extend the domain of the utility

91This of course makes the language of strategy programs unde-
cidable, but there should be no problem in determining that cases
of practical interest are in the language.

functionU to all nodes of the game tree. For a nonterminal noden,
U(n) = U(n • σ(I(n))); i.e. n’s utility is the same as the utility
of the successor node reached by taking the action recommended
by the strategy profile. An agenti’s utility at a noden is U(n)[i];
if all agents followσ, then this is the utility this agent can expect to
get once noden is reached. A simple inductive proof on the length
of histories shows that this is true. Take the longest histories as
the base case. Now the inductive step: ifU correctly describes the
expected utility for all nodes of lengthl, then it must also be correct
for nodes of lengthl-1. This is clear because all of the successors
of anl-1 node, being of lengthl, have a correctU , and theU at an
l-1 node is simply copied from its successor node byσ, which is
what is expected to be played.

We define the functionmaxU (n) as follows: if n is terminal
thenmaxU (n) = U(n); if n is nonterminal then:

for i = M(n) : maxU (n)[i] = max
m∈S(n)

(
maxU (m)[i]

)
for i 6= M(n) : maxU (n)[i] = maxU (n • σ(I(n)))[i]

Again, the same type of simple inductive proof can show that
maxU (n)[i] is the maximum utility that agenti can expect to get,
once noden is reached, if all other agents follow the strategiesσ
and agenti takes optimal actions at each node. Information sets
do not matter here because the agent knows the strategies of other
agents, so he knows exactly which node he will be at in any in-
formation set. It is possible that the value ofmaxU (. . .)[i] at two
nodes, in an information set belonging to agenti, may each be rely-
ing on different actions being taken in that set; this is not a problem
becausemaxU (. . .)[i] for the closest common ancestor will take
on the value of only the greatest of these two, and so it is a value
that really is achievable for agenti without requiring the agent to
act differently at two nodes in an information set.

Requirement 1 (for strategy profileσ and a gameG) For all
agentsi, and for all game nodesn which are the root of some
proper subgame ofG (i.e. n is in a singleton information set, and
the subgame which starts there does not cut any ofG’s information
sets),maxU (n)[i] ≤ U(n)[i].

CLAIM 4.1. A strategy profileσ is a subgame perfect Nash equi-
librium (SPNE) for a gameG iff Requirement 1 holds.

Proof The “if” part (by contradiction): Assume Requirement 1
holds, butσ is not a SPNE forG. Sinceσ is not a SPNE, there must
exist a proper subgameGs of G and a strategysi, for some agenti,
such that for the restriction ofsi andσ toGs, ui(si, σ−i) > ui(σ).
Let r be the root node ofGs. The value ofmaxU (r)[i] cannot be
less than the value ofui(si, σ−i) in the restriction toGs, because
maxU derives from optimal actions, and these cannot be worse
than si’s actions. The value ofU(r)[i] is equal to the value of
ui(σ) in the restriction toGs, hencemaxU (r)[i] > U(r)[i], vio-
lating Requirement 1 (contradiction). The “only if” part (by con-
tradiction): Assumeσ is a SPNE forG, but Requirement 1 does
not hold. If Requirement 1 does not hold then there is some agenti
and noded, whered is the root ofGs, a proper subgame ofG, such
thatmaxU (d)[i] > U(d)[i]. We simply build a restricted strategy
si (restricted toGs) which takes actions which will result in utility
maxU (n)[i] from any noden in Gs (given that opponents are fol-
lowing σ−i). Now, taking restrictions toGs: ui(si, σ−i) > ui(σ),
violating the requirements for SPNE (contradiction).�

4.1 An Algorithm for Checking a SPNE
We need to build the game tree by running through its program

for all possible choices. Then we can do a simple backwards induc-
tion to calculateU andmaxU at all nodes, and hence determine if
Requirement 1 is violated anywhere. The only potentially tricky bit
is how to recognise proper subgames. This can be done during the
backwards induction phase; we define a common ancestor function
ca(n) as follows: if n is terminal thenca(n) = n; if n is non-
terminal thenca(n) is the node which is a prefix of every node in
I(n) and for alls ∈ S(n), n must be a prefix ofca(s) too. Note
that a node is a prefix of itself. It is easy to see that, for any node
n, if n = ca(n) thenn is the root of a proper subgame. To see
this note that ifn is the prefix of every node inI(n) then it is a
singleton information set. Also, for any nodep which is on a path
descending fromn in the tree, ifp had an information set which
included nodes not on a path descending fromn in the tree, then
ca(p) would preceden in the tree, and theca value for any ancestor
of p would have to beca(p) or an ancestor ofca(p).

The checking algorithm (Figure 4) has as inputs the SMPL pro-
gramprog which defines the game, and the strategy tupleStrat
which defines the strategy profile. In order to do the checking, it
will build a tree, which is a set of nodes. Each node is a 5-tuple:
〈m, hm, h0, A, U〉, m is the agent who has the move at this node;
hm is the history which is apparent to the agent who has the move
(this is important to determine information sets);h0 is the global
history;A is the set of actions available to agentm; U records the
utility obtained if the path proceeding from this node is followed,
by taking the actions recommended by the strategy profile.

Firstly we build the treeT , using the recursive algorithmexp−
andBranch (Figure 5). Next we create a new set of nodesT p with
extended information; these nodes have the form〈h0, U,maxU , ca〉.
Using these we propagate theU , maxU andca values up the tree,
annotating nodes ofT p from the bottom up, because nodes higher
up the tree derive their utility from their descendants. Once we
build a new node ofT p we can discard its successors as they will
no longer be needed (each node has a unique direct predecessor).

algorithm : expandBranch build the tree
inputs : s: state, m: mover, A: actions,

H: history tuple, prog : program
outputs : Nodes
Nodes := {}
for eacha ∈ A do
〈s, m, A, H〉 := takeAction(s, m, a, H, prog)
if terminal(s, prog) = True
then U := utility(s)
else U := null

SuccNodes := expandBranch(s, m, A, H, prog)
Nodes := Nodes ∪ SuccNodes

fi
node := 〈m, H[m], H[0], A, U〉
Nodes := Nodes ∪ {node}

od
return Nodes

Figure 5: Algorithm: expandBranch

If n is its own common ancestor, thenn is the root of a proper
subgame; for such nodes we check ifmaxU exceedsU .

The getAll(S, t) function returns all elements of setS which
match the templatet; it returnsnull if there are none. Similarly,
getAny(S, t) function returns one element, it is used when only
one element of setS will matcht. ThecommonAncestor(ca1, ca2)
function returns the longest common prefix ofca1 andca2, which
may turn out to be one of the input arguments.

CLAIM 4.2. For an input SMPL programprog , which repre-
sents a gameG, and a tuple of strategiesStrat , which represent a
strategy profileσ, AlgorithmcheckSPNE correctly decides ifσ is
a SPNE forG.

Proof Sketch (by induction on the length of nodes, for the main
repeat loop) We must show that for each noden in the game:n
is assigned the correct values ofU(n), maxU (n) andca(n). it is
simple to show that this is true for the longest nodes in the game,
because they are all terminal nodes. Then we show that if this is
true for nodes of lengthl, it is also true for nodes of lengthl+1.
Some nodes of lengthl+1 may again be terminal; for any noden
among the remainder, it is clear that all elements ofS(n) are in
T p because they are lengthl+1 and hence they were added there
in a previous iteration of therepeat loop. Using those nodes it is
straightforward to see hown is assigned the correct values ofU(n),
maxU (n) andca(n). The firstfor loop gets the common ancestor
with each element ofI(n), note that these are retrieved from the
complete treeT , and notT p, so all nodes are present. The second
for loop gets the common ancestor with the common ancestor of
each elementp ∈ S(n). This time the nodes are retrieved from
T p, so they are annotated withU(p), maxU (p) and ca(p), and
these utility values are used to calculateU(n) andmaxU (n). A
special case ismaxU (n)[m] wherem = M(n), this must be the
best of all themaxU (p)[m]. �

The complexity of checking depends very much on the game; let
us consider the case of a multi-stage game with observed actions,
where there arep players, witha actions to choose from, andm
stages. The number of terminal nodes isapm; to find each of these,
and their utilities, will require the SMPL program to be run each
time (although not always from the beginning). Thus it is clearly
only feasible for games with small numbers of players and stages.
None of these terminal nodes can be neglected, because if any has
a utility higher than all other plays of the game, then any strategy
profile which does not achieve it could not be a SPNE. For this

algorithm : checkSPNE decides if a strategy profile is a SPNE of a game
inputs : prog : the program that is the mechanism, Strat : the strategy profile
outputs : True or False

〈s, m, A, H〉 := initialState(prog) # get the initial state of the game’s program
T := expandBranch(s, m, A, H, prog) # T is the entire tree
T S := sortLongestFirst(T) # T S will be a list of nodes
T p := {} # for nodes with extended information
repeat # repeat for each node in the tree
〈m, hm, h0, A, U〉 := head(TS); T S := tail(T S) # pull the head off
ca := h0; bestUtil := 0 # start with common ancestor = this node
if U 6= null # if it is terminal
then maxU := U
else # get its information set and common ancestor

Iset := getAll(T, 〈 , hm, , , 〉) # get all nodes with same apparent history
for eachnode ∈ Iset do # every node in information set
〈 , , hist , , 〉 := node # we want the history of each node ∈ Iset
ca := commonAncestor(ca, hist) # to find the common ancestor

od
for eacha ∈ A do # every action that can be taken

succNode := getAny(T p, 〈(h0 • a), , , 〉) # get extended information for successor nodes
T p := T p \ {succNode} # we no longer need the extended information
〈 ,maxUs , Us, cas〉 := succNode # get utilities and common ancestor of successor nodes
ca := commonAncestor(ca, cas) # common to our current node and the successor node
if a = run(Strat [m], hm) # was this successor node recommended?
then U := Us;maxU := maxUs # then propagate utilities
fi
if maxUs [m] > bestUtil
then bestUtil := maxUs [m]
fi

od
maxU [m] := bestUtil
if (h0 = ca) ∧ (maxU [m] > U [m]) # h0 = ca if it’s a proper subgame
then return False
fi

fi
T p := T p ∪ {〈h0, U,maxU , ca〉} # this will be a successor node for the next iteration

until T S = []
return True

Figure 4: Algorithm: checkSPNE

reason we are looking into weaker equilibrium notions, where some
portions of the tree can be neglected.

5. COMPARISON WITH RELATED WORK
This paper has a similar motivation to previous work [6], but a

different approach. Firstly, the previous work did not tackle the
issue of enabling agents to check the properties of published spec-
ifications for themselves; instead it proposed an offline verification
which would be carried out by the agent protocol designer. How-
ever, agents in open e-commerce systems might not necessarily
trust the protocol designer, and furthermore, we envisage scenar-
ios where agents themselves could generate protocols on the fly,
tailored for a specific auction scenario, for example. This means
agents need to be able to check the properties of a published speci-
fication for themselves. The second major difference is that the pre-
vious work proposed that the mechanism be specified in the form
of a mapping from strategy profiles to outcome scenarios; this is
infeasible for all but the most simple of mechanisms; for exam-
ple, if there aren agents withm strategies each, then there will
be mn strategy profiles, and each agent’s strategy could itself re-
quire an unwieldy representation. Worst of all, even extremely sim-
ple games can have an astronomical number of possible strategies.
This is why we have moved to an algorithmic representation for
mechanisms.

The work of Marc Pauly [13] has had a major influence on our
approach. Pauly also has explicit choice statements as part of the
syntax of his Mechanism Programming Language (MPL). He proves
game-theoretic properties for 2-player games using correctness as-
sertions, via an extension of Hoare’s calculus. The main advantage
of Pauly’s approach is that it offers the possibility of verifying large
games without needing to construct the entire tree; the advantage
of our algorithmic checking approach is that it offers the possi-
bility of agents checking mechanisms automatically. Two further
differences relate to preferences and information sets. Pauly incor-
porates explicit preferences in the verification framework; this is
absent in our framework. On the other hand, our framework al-
lows games with arbitrary information sets; Pauly’s is restricted to
games of “almost-complete” information, i.e. where the only non-
singleton information sets are those resulting from simultaneous
moves. Preferences and information sets are closely related when
one considers our intended future application to auctions; incom-
plete information games can be modeled as imperfect information
games, and hence we need information sets to obscure the knowl-
edge of other agents’ preferences.

In another paper Pauly and Wooldridge [14] do take an auto-
mated model checking approach to the mechanism verification prob-
lem, and set forth their vision for how this approach can contribute
to the mechanism design problemof game theorists. The paper
shows, as an example, how a voting mechanism can be formalised
and checked to see if a coalition of agents can force a deadlock in-
definitely. It would be interesting to investigate how the checking
of equilibria could be performed through ATL formulae. The main
difference between that paper, and ours, is with respect to the moti-
vation. Pauly and Wooldridge aim to contribute to the area of mech-
anism design by providing computing tools which can make mech-
anism specifications unambiguous, reveal hidden assumptions and
automate the process of proving that the mechanisms possess de-
sired properties. In contrast, our proposal aims to contribute to
multi-agent systems; we aim not to design new mechanisms, but
to make existing ones useful to agents in open systems, by giv-
ing agents a way of checking the properties of a previously unseen
game specification.

Apart from the above work, there appears to be very little work in

the area of verifying properties of games. There is however related
work in the area of specifying and solving games, and also in the
area of specifying protocols for multi-agent systems. This work
will be reviewed briefly now.

5.1 Specifying Games
Although their motivations are different to ours, a number of re-

lated works illustrate various different ways in which games can
be specified. Gambit [10] can automatically compute the equilibria
of games, and it allows games to be represented in extensive form
or normal form. The GAMUT [11] software has the capability to
generate a wide variety of games, where Java classes are written
to encode each type of game; The software also has the ability to
output games in a form readable by Gambit. Gala [8] uses an inno-
vative declarative language for representing and solving imperfect
information games; this allows the rules of the game to be spec-
ified, and removes the need to explicitly represent each possible
game state. This language is based on Prolog, and, similar to our
own, it includeschoosestatements at choice points, and is deter-
ministic if all choices are specified. Of the above approaches, the
Gala language appears to be the most promising for games with
extremely large numbers of possible states.

5.2 Specifying Agent Communication
Protocols

In the area of agent communication there are a number of ap-
proaches which are sufficiently general to capture arbitrary games,
for example Electronic Institutions [1, 3] or Commitment Proto-
cols [18]. These works are concerned with facilitating agent com-
munication at a high level, via the specification of protocols us-
ing notions such as norms and commitments. These approaches to
agent communication, and other similar proposals, are sufficiently
generic to allow the specification of arbitrary games; one can spec-
ify a game by specifying what agents are allowed to do at each
protocol state. While it would be possible to specify our games in
these terms, it would add a significant overhead; we have instead
opted for a language which specifies only the essential information
and hence represents games as simply as possible.

6. DISCUSSION AND FUTURE DIRECTIONS
This paper opens up an interesting new area: publishing game

theory mechanisms in a machine readable format, along with a
claim about some properties of the mechanism (for example a pur-
ported equilibrium), and then automatically checking that the claimed
properties do indeed hold. In the future we are interested in ex-
ploring this area and finding the limits of the approach. For sim-
ple mechanisms the approach certainly does seem feasible. The
published specification of a game and strategy profile is extremely
concise; on the downside, the entire game tree does need to be built
during the verification, but this is similar to the exploration done by
model checkers, an approach which is currently feasible even for
very large numbers of states. The algorithm presented in this pa-
per would only be feasible with small finite domains for the values
which agents can choose, but as we extend these domains, we in-
tend to borrow techniques which have been successfully employed
by the model checking community.

Our current plan is for a generalisation of the current work to
check for Perfect Bayesian Equilibrium. This would need to take
agents’ preferences into account. We can foresee a published strat-
egy recommendation which maps preferences to strategies; i.e. in
the form of an algorithm which can provide the following type of
recommendation to an agent: “Ifx is your preference over out-
comes, theny is your best strategy”. In particular, we are inter-

ested in applying the framework to auctions, and so facilitating the
publication of auction specifications in electronic institutions where
trading agents are free to roam between different auction houses.
Note that verifying the equilibrium of an auction is not possible
with the current framework, because firstly preferences cannot be
specified, and secondly, in an auction we should be checking for a
Bayesian equilibrium, rather than a subgame perfect equilibrium.

Ultimately we would like to explore the space of possible mech-
anisms and their properties, to find the limits of the approach; i.e.
to find the boundary where the complexity of the mechanism makes
the approach advocated here infeasible. This would give valuable
information about the types of mechanisms which should be used
in scenarios with resource bounded agents.

Acknowledgements
Special thanks to Emmanuel Tadjouddine and to the anonymous
referees and for their suggestions.

7. REFERENCES
[1] M. Esteva, J. Rodriguez, C. Sierra, and P. Garcia. On the

formal specification of electronic institutions. InLNAI 1991,
pages 126–147. Springer, 2001.

[2] D. Fudenberg and J. Tirole.Game Theory. MIT Press, 1991.
[3] A. Garcia-Camino, J. Rodriguez-Aguilar, C. Sierra, and

W. Vasconcelos. A rule-based approach to norm-oriented
programming of electronic institutions.SIGecomm
Exchanges (Newsletter of the ACM Special Interest Group on
E-Commerce), 5.5, 2006.

[4] L. Giordano, A. Martelli, and C. Schwind. Specifying and
verifying systems of communicating agents in a temporal
action logic. InAI*IA 2003: Advances in Artificial
Intelligence; LNCS, vol. 2829, pages 262 – 274.
Springer-Verlag, 2003.

[5] G. Gottlob, G. Greco, and F. Scarcello. Pure nash equilibria:
Hard and easy games.Journal of Artificial Intelligence
Research, 24:357–406, 2005.

[6] F. Guerin and J. V. Pitt. Guaranteeing properties for
e-commerce systems. In J. Padget, D. Parkes, O. Shehory,
and N. Sadeh, editors,LNAI volume 2531: Agent-Mediated
Electronic Commerce IV. Designing Mechanisms and
Systems, pages 253–272. Springer-Verlag, Heidelberg, 2002.

[7] F. Guerin and J. V. Pitt. Verification and compliance testing.
In M.-P. Huget, editor,LNAI volume 2650: Communication
in Multiagent Systems: Agent Communication Languages
and Conversation Policies, pages 253–272. Springer-Verlag,
2003.

[8] D. Koller and A. Pfeffer. Representations and solutions for
game-theoretic problems.Artificial Intelligence,
94(1):167–215, 1997.

[9] Z. Manna and A. Pnueli.Temporal Verification of Reactive
Systems (Safety), vol. 2. Springer-Verlag, New York, Inc.,
1995.

[10] R. D. McKelvey, A. M. McLennan, and T. L. Turocy.
Gambit: Software tools for game theory, version
0.2006.01.20 http://econweb.tamu.edu/gambit, 2006.

[11] E. Nudelman, J. Wortman, Y. Shoham, and
K. Leyton-Brown. Run the gamut: A comprehensive
approach to evaluating game-theoretic algorithms. In
International Conference on Autonomous Agents and
Multi-Agent Systems (AAMAS), pages 880–887, 2004.

[12] C. Papadimitriou. Algorithms, games and the internet. In
Proceedings of the Annual Symposium on Theory of
Computing (STOC), pages 749–753, 2001.

[13] M. Pauly. Programming and verifying subgame perfect
mechanisms.Journal of Logic and Computation,
15(3):295–316, 2005.

[14] M. Pauly and M. Wooldridge. Logic for mechanism design -
a manifesto. InProceedings of the 2003 Workshop on Game
Theory and Decision Theory in Agent-based Systems
(GTDT-2003), Melbourne, Australia, 2003.

[15] R. M. van Eijk, F. S. de Boer, W. van der Hoek, and J.-J.
Meyer. A verification framework for agent communication.
Journal of Autonomous Agents and Multi-Agent Systems,
6(2):185–219, 2003.

[16] M. Venkatraman and M. P. Singh. Verifying compliance with
commitment protocols: Enabling open web-based multiagent
systems.Autonomous Agents and Multi-Agent Systems,
2(3):217–236, 1999.

[17] B. von Stengel. Computing equilibria for two-person games.
In Handbook of Game Theory with Economic Applications,
Vol. 3, eds. R. J. Aumann and S. Hart. Elsevier, Amsterdam,
2002.

[18] P. Yolum and M. Singh. Reasoning about commitments in
the event calculus: An approach for specifying and executing
protocols.Annals of Mathematics and AI, To appear., 2003.

