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ABSTRACT
We analyze 4-player chaturanga (an ancient variant of chess) us-
ing the methods of empirical game theory. Like chess, this game
is computationally challenging due to an extremely large strategy
space. From the perspective of game theory, it is more interest-
ing than chess because it has more than 2 players. Removing the
2-player restriction allows multiple equilibria and other complex
strategic interactions that require the full tool set of game theory.
The major challenge for applying game theoretic methods to such
a large game is to identify a tractable subset of the game for detailed
analysis that captures the essence of the strategic interactions. We
argue that the notion of strategic independence holds significant
promise for scaling game theory to large games. We present pre-
liminary results based on data from two sets of strategies for chatu-
ranga. These results suggest that strategic independence is present
in chaturanga, and demonstrate some possible ways to exploit it.

1. INTRODUCTION
For many real games of interest, the underlying game form is not

directly known by the players and/or analyst. Instead, various kinds
of evidence may be available for estimating the game (for example,
simulation). We refer to techniques for analyzing such games as
empirical game theory. A distinguishing feature of empirical game
theory is the direct emphasis on the process of discovering the pa-
rameters of the game. This is distinct from learning about oppo-
nents’ strategies during repeated interactions, though the two types
of learning are sometimes conflated. These scenarios can be mod-
eled as games of incomplete information with uncertain payoffs [3].
However, explicitly modeling the process of discovering the game
results in analytically intractable models, even for relatively simple
scenarios.

Uncertainty about the game form may arise from stochastic pay-
offs or computational complexity. First, consider the case where
payoffs are drawn from an unknown distribution but players can
gather samples individually. To model this as a game of incomplete
information, we would need to define player types based on the
possible combinations of samples and compute the necessary con-
ditional belief distributions for each type. This type space grows

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 200X ACM X-XXXXX-XX-X/XX/XX ...$5.00.

exponentially in the number of samples. If players make choices
about which profiles are sampled or how many samples are taken,
the model becomes even more complex. This difficulty can arise
even in games with small numbers of players and actions.

Uncertainty also arises from computational complexity (bounded
rationality). There may simply be too many outcomes to compute,
represent, and reason about. This is common when games have se-
quential interactions, as in chess or go. Sequences of moves result
in a combinatorial explosion in the number of possible outcomes.
It may be relatively easy to determine the outcome for a particular
sequence, but players can compute and store the outcomes for only
a small fraction of the possible sequences of play. In addition, play-
ers may be unaware of which outcomes opponents have explored.
This difficulty can arise even in deterministic games. Obviously,
these two forms of uncertainty are not mutually exclusive; large
stochastic games are also common.

We discuss preliminary results from our investigation of 4-player
chaturanga, an ancient variant of chess. Like chess, this game is
challenging because of the massive number of possible sequences
of play. This variant was selected specifically because it has more
than two players, and most computationally challenging games that
have received extensive attention (e.g., chess, checkers, backgam-
mon, go) belong to the restricted class of two-player, zero-sum
games. The move to more than two players raises important strate-
gic issues, including the potential for multiple equilibria and al-
liances between players.

We employ methods from empirical game theory to analyze chat-
uranga, an approach that takes seriously the potential for complex
strategic interactions in the game. We argue that methods for ex-
ploiting structure are likely to be critical for success in analyzing
large games, just as they are for large single-agent learning prob-
lems. A common approach in single-agent problems is dimension-
ality reduction, where the goal is to create a simpler problem by
ignoring irrelevant information. In games, we can also simplify the
problem by identifying strategically independent choices, in addi-
tion to payoff-irrelevant choices. In other words, it may be possible
to optimize some choices without regard to the strategies selected
by opponents, obviating the need to gather data on the outcomes
for many strategy profiles. We present evidence that some form of
strategic independence exists in chaturanga, and demonstrate some
potential ways of exploiting this.

2. ANALYSIS OF LARGE GAMES
It is impossible to perform complete game-theoretic analysis on

games with very large strategy spaces. Heuristic strategy analysis
deals with this problem by analyzing a heuristically chosen subset
of the strategy space[18]. Even though this type of analysis is nec-
essarily incomplete, it can be very useful in practice. It has been



applied to perform principled analysis of strategies in common use
and proposed alternatives [19, 11, 8] and to mechanism design [17].
A particularly interesting variation is to iterate this analysis, using
directed search to generate new candidate strategies. Phelps et al.
[10] use this approach coupled with a genetic algorithm for search
to investigate bidding strategies for double auctions. We identify
three basic steps for empirical analysis of a game:

1. Identify candidate strategies

2. Generate an empirical payoff matrix

3. Analyze the resulting game

There are many alternatives for implementing each step in this
process, and they are only beginning to be explored to determine
the most effective approaches. These basic steps can also be iter-
ated in various ways, potentially improving the quality of the anal-
ysis. In general, we do not expect to be able to identify a uniquely
compelling strategy using this approach. However, many of the
initial studies listed above have been able to draw useful and some-
times surprisingly strong conclusions.

There is a tradeoff when constraining the set of strategies under
consideration. Including more strategies increases the computa-
tional costs, but strengthens the results. One way to mitigate this
problem is to employ methods for reasoning based on incomplete
game specifications. We can verify the stability of individual pro-
files by examining only the one-step deviations from this profile.
Even if we know the payoffs for only a subset of the deviations, we
can still compute a lower bound on the maximum benefit to devi-
ating (ε). Using this observation, we can implement a simple best-
first search procedure for finding stable profiles (ε-Nash equilibria).
Given any partial data set, always sample an unexplored deviation
from a profile in the data set with the lowest known bound on ε. It is
likely that this search can be improved using additional heuristics,
but it has already shown promise in applications [20].

3. STRATEGIC INDEPENDENCE
Game theory offers powerful tools for studying situations where

a player’s choice of action depends on the choices made by other
players. However, full game-theoretic analysis does not scale well
to large games because the number of possible joint strategy pro-
files grows very rapidly. Exploiting assumptions about strategic in-
dependence is one potential way to scale game theory up to larger
games. Conceptually, we would like to focus game-theoretic anal-
ysis on the most important strategic interactions between players,
using single-agent methods to optimize non-strategic choices. For-
malisms like graphical games [4] and multi-agent influence dia-
grams (MAIDs) [5] provide structured representations exploiting
strategic independence. These representations are more compact
and provide considerable computational advantages in computing
solutions. Exploiting strategic independence in empirical games
potentially offers even greater advantages, since it could dramati-
cally reduce the number of samples needed to create a useful repre-
sentation for a game. This in turn reduces the need for game theory
practitioners to make arbitrary modeling assumptions to achieve
tractable models. The challenge is to find ways of identifying and
exploiting these relationships based on the available data (i.e., to
infer the graph structure taken as given in existing work).

A very common way of assessing performance in complex games
is to assign strategies1 a rank ordering or numeric rating. A wide
1Alternatively, players or teams. We ignore this potential distinc-
tion for our purposes.

variety of systems exist, and they are used for most major competi-
tive events [14, 9], including chess [2]. The appeal of rankings sys-
tems is obvious. They are are useful, conceptually straightforward,
and can produce reasonable results based on even sparse data. To
achieve these properties they make very strong assumptions. A per-
fect ranking requires a complete, strict, and transitive dominance
relationship between the strategies. This is typically motivated by
assuming that each strategy has an underlying strength (or strength
distribution, to allow for stochasticity), independent of the oppo-
nent’s strategy. The winner of a game is determined by comparing
the strengths of the strategies. Much of the work on ranking sys-
tems considers different methods for estimating the strengths of
strategies based on paired comparisons.

We view the assumption that strategies can be ordered according
to an underlying strength parameter as a particularly strong form of
strategic independence assumption. Not only does it assume that
all of the complexities of the interactions between player strategies
can be compressed into a single “strength” dimension, it also as-
sumes a very simple best-response function. It is always better to
play a stronger strategy, regardless of the opponent’s strategy. The
disadvantage of these assumptions is that rankings are not powerful
enough to express tradeoffs between strategies that are dependent
on the opponent’s strategy.

Game theory and rankings are at opposite ends of a spectrum.
Game theory assumes that all strategic choices interact, while rank-
ings assume essentially no interactions. Game theory can poten-
tially make more accurate predictions, but does not scale well to
large games. Rankings are simpler and require much less data, but
do not have the power of game theory. Of course, these are not
the only alternatives. We believe that there are many interesting
opportunities to bridge the gap between these two extremes and
combine the advantages of both by varying the assumptions made
about strategic independence. The fact that rankings enjoy such
popularity suggests that many games of interest do have aspects of
strategic independence.

In addition to the basic questions of whether or not strategic inde-
pendence exists in games of interest and what forms it takes, there
are also many interesting possibilities for how to exploit it. One is
to explicitly try to derive the structure of the dependence relation-
ships from the data (a problem akin to structure discovery prob-
lems for Bayesian networks). Other methods might exploit inde-
pendence less directly. For instance, we could use broad measures
of strategy performance as a heuristic for directing a search in pro-
file space for stable profiles. The process of iterating local search to
generate candidate strategies with game-theoretic analysis of candi-
dates also exploits strategic independence. The local search proce-
dures ignore strategic considerations, but should quickly optimize
independent aspects of strategy performance. Strategic indepen-
dence could also be used to guide the development of a strategy
space for experimentation. For instance, we can explicitly adopt
structured strategy representations and identify variables likely to
be strategically independent.

4. 4-PLAYER CHATURANGA
Chaturanga is an ancient variant of chess from India. We con-

sider a 4-player version of the game. The game is played on the
same board as standard chess, with a modified configuration to al-
low for four players. The starting configuration is shown in Fig-
ure 1. Each player has eight pieces: 1 king, 1 rook, 1 knight, 1 boat,
and 4 pawns. All pieces except the boat are identical to pieces in
standard chess. The boat moves diagonally in any direction, but can
only move to the second square; it must jump over exactly 1 space.
Pawns may advance only in the direction they are facing, and can



Figure 1: The game board for chaturanga. The simulator and
visualization were developed by Cougaar Software.

promote to any other piece type except king when they reach the 8th
rank. There is no initial double move for pawns. There is no notion
of check or mate,2 so kings must be taken to eliminate a player. The
pieces of eliminated players remain on the board as obstacles, but
cannot move. The game ends when a single king remains, an iden-
tical position occurs three times during the game, or each player
has made at least 50 consecutive moves without moving a pawn or
capturing a piece.3 One point is divided equally between all players
with kings remaining on the board when the game ends; any player
without a king gets a score of 0.

A strategy for chaturanga defines a move for each possible board
configuration. An outcome is a legal sequence of moves that con-
stitutes a game. Like chess, chaturanga is challenging primarily be-
cause of the combinatorial explosion in the number of possible se-
quences of moves and resulting board configurations. This presents
problems both for representing strategies and reasoning about the
outcomes, since complete representations (e.g., tables) are orders of
magnitude too large to even store in a modern computer. In other
ways, chaturanga is a relatively simple game: it is deterministic,
has no hidden state during game play, and has a very limited set of
possible payoffs. It is also relatively easy to simulate a particular
instance of the game to determine payoffs.

5. CHATURANGA STRATEGIES
From the viewpoint of empirical game theory, we can call any

process that selects a move for each possible board position a strat-
egy; the details are not important. The raw strategy space is much
too large to reason about directly, so we define a transformed strat-
egy space for analysis. This space defines a strategy based on possi-
ble parameter settings for a move selection algorithm that combines
a feature-based evaluation function with online minimax search.
We have also implemented a reinforcement learning algorithm for
performing local search to estimate an evaluation function from
2Taking the king might not be the best move, since other players
remain alive after the king is taken.
3Note that these stopping conditions guarantee that games are fi-
nite.

sample games. Similar methods have been used extensively for
playing chess and other games; two examples are the KnightCAP
chess agent [1] and Samuel’s checkers agent [13]. There are some
challenges that arise in extending these techniques to games with
more than two players, but the primary novel idea we explore is
the idea of using game-theoretic analysis to determine parameter
settings.

5.1 The Evaluation Function
The evaluation function provides an estimate of the expected

payoffs for each player in the game for any legal board position. It
is very important to understand that the “correct” evaluation func-
tion depends on the strategies employed by all players, so the func-
tion represents predictions about both the strategies opponents will
play and the likely outcomes. These predictions depend on both the
player’s knowledge of the game and assumptions about opponents
(e.g., rationality). The evaluation function is parameterized, and
different settings allow the function to represent a wide range of
beliefs (though clearly not all possible beliefs). We explore various
methods for setting the parameters based on combinations of local
search and game theory.

The representation is based on features of the game board that
consider factors like material value, threats, protections, board con-
trol, king mobility, etc. These features are combined to form a mea-
sure of the raw position strength of each player, which we denote
Spos

i . The function estimates separately the value of each piece,
V (·), and threat level, T (·), for each piece. The threat level cor-
responds roughly to the probability that the piece will be taken in
the near future. V (·) and T (·) are both determined by weighted
linear combinations of the relevant features. These weights are pa-
rameters of the evaluation function, with a separate weight for each
piece type. King values and threats are treated separately because
of the special importance of the king (K). In addition to the values
ascribed to the individual pieces we allow for an emergent value
EV . All of the threats and values are combined using the func-
tional form

Spos
i = T (K)

24 X
p∈{pieces\K}

T (p)V (p) + V (K) + EV

35 . (1)

In 2-player games it is straightforward to compare the position
strengths of the two players and translate this into an expected out-
come; in chess an advantage equivalent to one pawn usually evalu-
ates to a near-certain win. For a 4-player game the situation is more
complex, since there are 4 strengths to consider and they need not
be weighted equally. We must also account for the nonlinear re-
lationship between differences in position strength and expected
outcomes. Our evaluation function performs pairwise comparisons
using sigmoid functions to determine a score for each pair of play-
ers:

PWi,j =
1

1 + e−m(S
pos
i −S

pos
j ))

. (2)

The comparisons use a multiplier m that depends on the re-
lationship between the players, allowing differences in positional
strength relative to different players to have different weightings in
the final evaluation. For instance, we have parameters that vary m
depending on the relative position of the two players on the board
(right, left, or diagonal) and the rank ordering of the raw strength
scores. The multiplier allows players to “gang up” on certain op-
ponents. Finally, these pairwise comparisons are combined and
normalized to yield a predicted outcome for each player:



Si =
Y

j∈{players\i}

PWi,j . (3)

The motivation for taking the product of the pairwise scores is
that this would represent the joint probability of winning all of the
pairwise match-ups if these were independent events and the pair-
wise scores are interpreted as probabilities. The final scores are
normalized to sum to 1 so that they can be interpreted as expected
scores. This interpretation allows us to estimate the parameters of
the evaluation function directly from simulation data.

5.2 Learning the Evaluation Function
We use reinforcement learning [16] to approximate evaluation

functions from simulation data. The algorithm uses TD(λ) updates
with numeric approximations of the error gradient with respect to
the parameters of the evaluation function. We do not currently use
leaf-node updating as suggested by Baxter et al. [1], partially be-
cause we often run simulations with very shallow online search.
All of the standard caveats of reinforcement learning with function
approximation apply in this case; in particular, the learning process
is not guaranteed to converge on a reasonable value function.

It is important to note that the resulting evaluation function may
be highly dependent on the specific profiles of agents in the pool
of training data. A common way of generating reasonable oppo-
nents is to use self-play, where the strategy is continually updated
and pitted against itself. There are other alternatives including play
against human experts4 and play against a larger sampling of “old”
opponents [12]. None of these solves the potential problem of
multiple stable profiles. For this reason, we view learning as a lo-
cal search procedure that should be augmented with more detailed
game-theoretic reasoning.

5.3 Online Minimax Search
Online minimax search is used by virtually all successful chess

agents to improve evaluations of potential moves. Exactly why ex-
actly minimax search improves evaluations is not fully understood
[7], but it works extremely well in practice. The standard version of
minimax search applies to 2-player games, but there is a straight-
forward extension to N -player games known as maxN [6]. A thor-
ough discussion of solution algorithms, pruning methods, and other
issues can be found in [15]. For a variety of reasons, we find deep
search to be a less compelling approach to solving N -player games.
One problem is that standard pruning techniques are much less ef-
fective at reducing the search space for N -player games. Another
is that the minimax rule may not yield a unique prediction for play
in the game tree, since players may need to select between moves
that they are indifferent between but affect the stakes of the other
players differently. There are also more opportunities for making
prediction errors, since each player must predict more opponent
moves that are unlikely to be selected using the same evaluation
function.

Despite these caveats, online search is still likely to be useful
to some degree in N -player games. We have implemented sev-
eral search variants including depth-first search, iterative deepen-
ing with a time limit, and beam search. The beam search expands
nodes selectively, searching only the most promising paths at each
level of the tree. This search can expand either a fixed number of
the top nodes, or all nodes within a fixed value of the maximum.
Beam search is deeper that DFS, but risks ignoring useful lines of

4If they are available. We do not know of any experts in 4-player
chaturanga.

play. The specific search methods used are controlled by param-
eters, which we view as extensions of the possible strategy space.
Regardless of the method used, search is computationally demand-
ing. To reduce the time required to run simulations, we often re-
strict the strategy space we consider to strategies with very limited
or no search capabilities.

6. EXPERIMENTS
We present preliminary data we have gathered on two strategy

spaces in chaturanga. While not originally designed for this pur-
pose, analysis of these experiments provides suggestive evidence
about the existence of strategic independence in chaturanga and
potential approaches for exploiting it. The first hypothesis we ex-
amine is that the average score for each strategy across all profiles
is correlated with the likelihood that the strategy appears in stable
(low ε) profiles. This prediction is based on the concept of an under-
lying strength associated with each strategy. The second hypothesis
is that strategies learned using reinforcement learning should per-
form well (appear in stable profiles) even against novel strategies;
in other words, learning should generalize. This requires that at
least some aspects of a good strategy can be learned without regard
for the opposing strategies. The final hypothesis is that a strategy
space based on a single high-level parameter of interest (selected
by hand) should have interesting strategic interactions (no obvious
stable profiles or dominant strategies). This hypothesis bears on the
need for game-theoretic reasoning in this domain.

For these experiments we collected data by sampling the payoffs
for profiles of strategies using a simulator. Strategies are defined by
a vector of parameter settings for the evaluation function and online
search. We introduce a small amount of noise into each strategy by
forcing the agent to select a random move some percentage of the
time (e.g., 5%). Even a small amount of noise introduces signifi-
cant variation in the games played, since all moves after a random
move are likely to be different. We can think of this as transform-
ing each strategy into a mixture of similar strategies, presumably
making results less dependent on the exact details of the particular
strategies selected.

The first strategy space contains 17 strategies with a broad range
of evaluation functions and online search settings. These strate-
gies are listed in Table 1. We refer to this as the “exploratory”
strategy space. There are a total of 174 = 83521 profiles in this
strategy space, and we have collected 30 payoff samples for 7863
of these profiles, approximately 9% of the total profile space. The
data was collected using a version of the best-first search procedure
described in Section 2.

The second strategy space was designed to emphasize high-level
strategic interactions between the players. All strategies in this
space use the same parameter settings for most of the evaluation
function weights. These settings are the same as the learned eval-
uation function for strategy 7 in the previous strategy space. How-
ever, the strategies differ in how they weight pairwise differences
in positional strength with the other players depending on the spa-
tial orientation of the players. For purposes of easy visualization
and demonstration, we project this weighting into a single “attack
angle” parameter. We gathered data for 9 discrete instantiations of
this parameter, plus 1 additional strategy that weights the players
evenly. These strategies are shown in Figure 2. A small weight
is places on all opponents by default. The attack angle parameter
distributes the majority of the weight between the opponents it is
pointing at, either 100% for a single agent or 33% and 66% split
between two opponents.

For this 10-strategy game we gathered data for the entire space
of 10000 profiles, collecting at least 50 samples for each profile. To



Table 1: Strategies in the learning/search strategy space. A search ply represents a single move by a single player.
Strategy Description
0 Random. Selects uniformly at random from available moves.
1 Hand-set 1. Hand-set weights.
2 Hand-set 2. Hand-set weights.
3 Material only. Weights for material (pieces) only.
4 Learn 1. Learned from approximately 1000 games of self-play.
5 Learn 2. Learned starting from strategy 4; 2000 games self-play
6 Hand-set 3. Hand-set weights.
7 Learn 3. Learned starting from strategy 6; 2000 games self-play
8 Learn 4. Learned starting from strategy 6; 1240 games, fixed opponents
9 DFS 1. 2-ply DFS using strategy 1 evaluation function
10 Beam Search 1. 5-ply beam search using strategy 1 evaluation function
11 DFS 2. 2-ply DFS using strategy 2 evaluation function
12 Beam Search 2. 5-ply beam search using strategy 2 evaluation function
13 DFS 3. 2-ply DFS using strategy 3 evaluation function
14 Beam Search 3. 5-ply beam search using strategy 3 evaluation function
15 DFS 4. 2-ply DFS using strategy 7 evaluation function
16 Beam Search 4. 5-ply beam search using strategy 4 evaluation function

Figure 2: A visualization of the attack angle parameter.

gain a better understanding of the effects of the attack angle param-
eter on the outcome of the game we ran several linear regressions
which are shown in Table 2. As expected, players that have more
“attack weight” placed on them tend to have lower scores on av-
erage. The most potent attacks come from the player to the right
of a given player because this player can employ advancing pawns
directly in the attack. Attacks from the diagonal players are largely
ineffective (very low R2), probably because of the spatial sepa-
ration. On the other hand, players benefit noticeably when other
players direct their attention to the diagonal player (and to a lesser
degree, the player on the right). Each player relies on other players
to defeat opponents that it does not have strong position to attack,
but this may not be in the best interest of the other players.

Based on our data for the exploratory strategy space we have
identified two pure-strategy Nash equilibria of the empirical game,
and two other interesting profiles. These are shown in Table 3.
The profile [15,15,16,16] has a beneficial deviation to the equilib-
rium profile [15,16,16,16]. The beneficial deviation for the profile
[16,16,16,16] is to the equilibrium profile [16,16,16,15]. There are
no other candidate equilibria in the data set that have an epsilon

bound less than 0.05 and fewer than 44 unexplored deviations. For
the attack angle strategy space there are no pure-strategy Nash equi-
libria of the empirical game. The 10 most stable profiles are shown
in Table 4.

Additional statistics about each of the individual strategies are
given in Tables 5 and 6. These include both measures of average
performance across the entire data set and the likelihood that each
strategy appears in stable profiles. The strategies are listed in order
of increasing average scores. The average performance metrics and
profile stability metrics are remarkably strongly correlated, a point
we return to after some remarks about each strategy space.

By any measure, strategies 15 and 16 are clearly the strongest in
the exploratory strategy space. They are the only ones to appear
in the pure-strategy Nash equilibria, and have much higher average
scores than all other strategies. These are the two strategies that in-
corporate both a learned evaluation function and online search. The
beam search version (16) is more common in the stable profiles,
but 15 is a best response in some cases. The strategies with learned
evaluation functions did very well overall; the three versions with-
out online search finished next in the average score ordering, above
even the hand-set evaluation functions with online search. Among
these three, the ones with the most training data performed better.
The robust performance of the learned evaluation functions in this
setting shows that they were able to learn strategies that generalized
well to novel situations.

Online search also seems to have improved the performance of
the strategies. Each of the evaluation functions used in strategies 1,
2, 3, and 7 had two search versions: one DFS (9,11,13,15) and one
beam (10,12,14,15). In all cases except evaluation function 2, the
search versions appear to be stronger than the non-search version.
All versions using evaluation function 2 were very weak. There
is not a clear winner between the DFS and beam search variants.
This may depend on the strength of the evaluation function, as it
seems that the weaker evaluation functions (1,3) fared better with
DFS than the stronger evaluation function (7).

In comparison with the exploratory strategy space, the attack an-
gle space appears to be much more strategically interesting. None
of the strategies is clearly dominant, and all appear in at least one
relatively stable profile. Additionally, none of the pure strategy
profiles is a Nash equilibrium. One noticeable trend in the data is
that strategies that distribute weight across more opponents seem



Table 2: Data showing the effects of attack angle settings on average score. Total weight is the sum of the weight placed on the
relevant player from all three opponents.

R2 Coefficient
Total weight on player 0.36 –0.14
Weight from right player 0.25 –0.20
Weight from left player 0.14 –0.07
Weight from diagonal player 0.03 –0.15
Total weight on right player 0.06 0.05
Total weight on left player 0.002 0.26
Total weight on diagonal player 0.17 0.09

Table 3: Most stable profiles for the exploratory strategy space
ε Unexplored Deviations Profile Scores
0 0 [15,16,16,16] [0.15,0.25,0.30,0.30]
0 0 [16,16,16,15] [0.23,0.15,0.37,0.25]

0.05 0 [15,15,16,16] [0.33,0.20,0.23,0.23]
0.02 1 [16,16,16,16] [0.13,0.30,0.33,0.23]

Table 4: Most stable profiles for attack angle strategy space.
ε Profile Scores

0.04 [7,8,8,2] [0.22,0.23,0.21,0.33]
0.05 [8,7,4,7] [0.24,0.38,0.27,0.11]
0.05 [7,1,8,8] [0.16,0.29,0.18,0.37]
0.06 [2,5,8,7] [0.09,0.26,0.52,0.12]
0.06 [9,7,4,7] [0.25,0.46,0.17,0.13]
0.06 [9,9,9,7] [0.17,0.37,0.23,0.24]
0.06 [9,7,5,8] [0.40,0.12,0.32,0.16]
0.06 [9,9,5,3] [0.44,0.25,0.15,0.17]
0.06 [4,0,7,7] [0.26,0.24,0.12,0.38]
0.06 [4,7,8,6] [0.12,0.42,0.15,0.31]

Table 5: Statistics about the performance of individual strategies in the exploratory strategy space. Score is the average score over
all profiles explored. Dev Benefit is the average benefit for deviating from the strategy over all deviations explored. % Positive Dev
is the percentage of deviations from this strategy that are beneficial. The top X% are the percentage of times the given strategy is
played in the most stable (lowest ε-bound) profiles, considering only profiles with at least 20 out of 64 possible deviations explored.

Strategy Score Dev Benefit % Positive Dev top 5% top 1% top 0.1%
3 0.049 0.160 0.779 0.005 0 0
0 0.051 0.183 0.811 0.003 0 0
11 0.054 0.146 0.757 0.012 0.008 0
12 0.064 0.143 0.720 0.012 0 0
2 0.089 0.148 0.722 0.017 0.008 0
1 0.105 0.131 0.675 0.017 0.008 0
14 0.110 0.078 0.586 0.008 0 0
10 0.177 0.034 0.476 0.017 0.008 0
6 0.199 0.019 0.474 0.025 0.025 0
9 0.213 0.019 0.479 0.025 0.017 0
4 0.221 0.009 0.442 0.034 0.017 0
13 0.255 -0.011 0.396 0.035 0.042 0
8 0.280 -0.041 0.342 0.032 0.025 0
7 0.353 -0.110 0.279 0.037 0.033 0
5 0.383 -0.155 0.210 0.083 0.050 0
15 0.480 -0.266 0.074 0.277 0.225 0.167
16 0.481 -0.261 0.083 0.360 0.533 0.833



Table 6: Statistics about the performance of individual strategies in the attack angle strategy space.
Strategy Score Dev Benefit % Positive Dev top 5% top 1% top 0.1%
0 0.214 0.04 0.663 0.045 0.022 0.025
6 0.222 0.031 0.627 0.047 0.025 0.025
3 0.238 0.013 0.549 0.082 0.055 0.025
1 0.245 0.005 0.519 0.083 0.052 0.025
5 0.246 0.004 0.512 0.098 0.125 0.075
2 0.248 0.003 0.503 0.090 0.068 0.050
4 0.255 -0.006 0.47 0.118 0.120 0.100
7 0.263 -0.015 0.432 0.132 0.152 0.300
8 0.279 -0.032 0.364 0.143 0.162 0.200
9 0.289 -0.043 0.321 0.162 0.218 0.175

to do better. The three lowest strategies are the ones that “attack” a
single opponent, while the highest is the one that weights all three
opponents equally.

As noted above, there is a striking correlation between the aggre-
gate performance measures and the profile stability metrics. Tables
7 and 8 give the actual correlations for each strategy space. This
correlation is interesting because it is consistent with the hypothesis
that there is some form of strategic independence in the underlying
game. There are many possible ways to exploit this sort of struc-
ture. In addition the local search techniques discussed previously,
this could also function as a reasonable search heuristic for guiding
the choice of which profiles to sample next in the best-first search
procedure for finding equilibria.

7. DISCUSSION
We have presented a preliminary analysis of the interesting and

challenging game chaturanga using methods from the emerging
field of empirical game theory. The focus of the discussion has
been on the notion of strategic independence and the possible appli-
cation of this idea to the analysis of large games. Our preliminary
experiments with chaturanga suggest that strategic independence
exists and can be exploited, at least in this game. We will con-
tinue to seek opportunities to improve these and other methods for
analyzing empirical games.
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