
Universal Agents in Repeated Matrix Games

Jan Poland
∗

Graduate School of Information
Science and Technology

Hokkaido University, Japan

jan@ist.hokudai.ac.jp

Marcus Hutter
IDSIA

Galleria 2, CH-6928 Manno
Switzerland

marcus@idsia.ch

ABSTRACT
We study and compare the learning dynamics of two uni-
versal learning agents, one based on Bayesian learning and
the other on prediction with expert advice. Both approaches
have strong asymptotic performance guarantees. When con-
fronted with the task of finding good long-term strategies in
repeated 2×2 matrix games, they behave quite differently.

Categories and Subject Descriptors
I.2.6 [Artificial Intelligence]: Learning

1. INTRODUCTION

Today, data mining and machine learning is typically treated
in a problem-specific way: People propose algorithms to
solve a particular problem (such as learning to classify points
in a vector space), they prove properties and performance
guarantees of their algorithms (e.g. for Support Vector Ma-
chines), and they evaluate the algorithms on toy or real
data, with the (potential) aim to use them afterwards in
real-world applications. In contrast, it seems that a univer-
sal agent, i.e. a single algorithm that is applied for all (or at
least “many”) problems, is neither feasible in terms of com-
putational costs nor competitive in (practical) performance.
Nevertheless, understanding universal agents is important:
On the one hand, their practical success would lead a way
to real Artificial Intelligence. On the other hand, principles
and ideas from universal learning can be of immediate use,
and of course machine learning research aims at exploring
and establishing more and more general concepts and algo-
rithms.

Because of its practical restrictions, most of the understand-
ing of universal learning so far is theoretical. Some ap-
proaches that have been suggested in the past are (adap-
tive) Levin search [8, 14], Optimal Ordered Problem Solver

∗This work was supported by SNF grant 2100-67712.02 and
JSPS 21st century COE program C01.

[13] and reinforcement learning with split trees [9] among
others. For a thorough discussion see e.g. [6]. In this paper,
we concentrate on two approaches with strong theoretical
guarantees in the limit: the AIξ agent based on Bayesian
learning [6] and FoE based on Prediction with expert advice
[12].

Both models work in the setup of a sequential decision prob-
lem: An agent interacts with an environment in discrete
time t. At each time step, the agent does some action and
receives a feedback from the environment. The feedback con-
sists of a loss (or reward) plus maybe more information. (It
is usually just a matter of convenience if losses or rewards
are considered, as one can be transformed into the other by
reverting the sign. Accordingly, in this paper we switch be-
tween both, always preferring the more convenient one.) In
addition to this instantaneous loss, we will also consider the
cumulative loss which is the sum of the instantaneous losses
from t=1 up to the current time step, and the average per
round loss which is the cumulative loss divided by the total
number of time steps so far (and the same for reward).

Most learning theory known so far concentrates on passive
problems, where our actions have an influence on the instan-
taneous loss, but not on the future behavior of the environ-
ment. All regression, classification, (standard) time-series
prediction tasks, common Bayesian learning and prediction
with expert advice, and many others fall in this category.
In contrast, here we deal with active problems. The envi-
ronment may be reactive, i.e. react to our actions, which is
the standard situation considered in reinforcement learning.
These cases are harder in theory, and it is often impossible
to obtain relevant performance bounds in general.

Both approaches we consider and compare are based on fi-
nite or countably infinite base classes. In the Bayesian deci-
sion approach, the base class consists of hypotheses or models
for the environment. A model is a complete description of
the (possibly probabilistic) behavior of the environment. In
order to prove guarantees, it is usually assumed that the
true environment is contained in the model class. Experts
algorithms in contrast work with a class of decision-makers
or experts. Performance guarantees are proven without any
assumptions in the worst case, but only relative to the best
expert in the class. In both approaches, the model class
is endowed with a prior. If the model class is finite and
contains n elements, it is common to choose the uniform
prior 1

n
. For universal learning it turns out that universal

base classes for both approaches can be constructed from
the set of all programs on some fixed universal (prefix) Tur-
ing machine. Then each program naturally corresponds to
an element in the base class, and a prior weight is defined
by w(program)=2−length(program) (provided that the input
tape of the Turing machine is binary). The prior is a (sub-)
probability distribution on the class, i.e.

P
w≤1.

Contents. The aim of this paper is to better understand
the actual learning dynamics and properties of the two uni-
versal approaches, which are both “universally optimal” in
a sense specified later. Clearly, the universal base class is
computationally very expensive or infeasible to use. So we
will restrict on simpler base classes that are “universal” in a
much weaker sense: we will employ complete Markov base
classes where each element sees only the previous time step.
Although these classes are not truly universal, they are gen-
eral enough (and not tailored towards our applications),
such that we expect the outcome to be a good indication
for the dynamics of true universal learning. The problems
we study in this paper are 2×2 matrix games. (We will
not go into the deep literature on learning equilibria in ma-
trix games, as our primary interest is the universal learn-
ing dynamics.) Matrix games are simple enough such that
a “universal” algorithm with our restricted base class can
learn something, yet they provide interesting and nontrivial
cases for reactive environments, where really active learning
is necessary. Moreover, in this way we can set up a direct
competition between the two universal learners. The paper
is structured as follows: In the next two sections, we present
both universal learning approaches together with their the-
oretical guarantees. Section 4 contains the simulations, fol-
lowed by a discussion in Section 5.

2. BAYESIAN SEQUENTIAL
DECISIONS (AI ξ)

Passive problems. Inductive inference problems can be
brought into the following form: Given a string x<t ≡
x1:t−1 := x1x2...xt−1, guess its continuation xt. Here and
in the following we assume that the symbols xt are in a fi-
nite alphabet X ; for concreteness the reader may think of
X ={0,1}. If strings are sampled from a probability distri-
bution µ:X ∗→[0,1], then predicting according to µ(xt|x<t),
the probability conditioned on the history, is optimal. If µ is
unknown, predictions may be based on an approximation of
µ. This is what happens in Bayesian sequential prediction:
Let the model class M :={µ1,µ2,...} be a finite or countable
set of distributions on strings µi(x1:t|y1:t) that are addition-
ally conditionalized to the past actions y<t. The actions are
necessary for dealing with reactive environments as intro-
duced above. We agree on the convention that the learner
issues action yt before seeing xt. Let {w1,w2,...} be a prior
on M satisfying

P
wi ≤ 1. Then the Bayes mixture is the

weighted average

ξ(x1:t|y1:t) :=
X

i
wi · µi(x1:t|y1:t).

One can show that the ξ-predictions rapidly converge to the
µ-predictions almost surely, if we assume that M contains
the true distribution: µ∈M. This is not a serious constraint
if we include all computable probability distributions in M.
This universal model class corresponds to all programs on

a fixed universal Turing machine (cf. the introduction and
[15, 6]).

In a passive prediction problem, the behavior of the environ-
ments µi do not depend on our actions y1:t. Here we may
interpret our action yt as a prediction of xt. Assume that
`:(yt,xt) 7→[0,1] is a function defining our instantaneous loss.
Then the average per round regret of ξ tends to 0 at least at
rate t−1/2, precisely [6]

1
t
Lξ

1:t ≤ 1
t
Lµ

1:t + 2

q
ln w−1

µ /t. (1)

Here, Lξ
1:t is the cumulative µ-expected loss of the

ξ-predictions. The ξ-prediction (and likewise the µ-
prediction) is chosen Bayes optimal for the given loss func-
tion: yξ

t = argminyt

P
xt

`(yt,xt)ξ(x1:t|y1:t). The difference

Lξ
1:t−Lµ

1:t is termed regret.

Active problems. If the environment is reactive, i.e. de-
pends on our action, then it is easy to construct examples
where the greedy Bayes optimal loss minimization is not op-
timal. Instead, the far-sighted AIξ-agent chooses the action

yξ,d
t = arg min

yt

X
xt

... min
yt+d

X
xt+d

`t:t+dξ(x1:t+d|y1:t+d). (2)

where `t:t+d = `(yt:t+d,xt:t+d) =
Pt+d

s=t`(ys,xs) and d is the
depth of the expectimin-tree the agent computes by means
of (2). We refer to t+d as the (current) horizon. If we
knew the final time T in advance and had enough compu-
tational resources, we could choose d = T−t according to
the fixed horizon T . Taking d fixed and small (e.g. d=8) is
computationally feasible; this is the moving horizon variant.
However, this can cause consistency problems: A sequence
of actions that is started some time step t may not seem
favorable any more in the next time step t+1 (since the
horizon shifts), and thus is disrupted. We therefore also use
an almost consistent horizon variant that takes d=8 in the
first step, then d=7, and so on down to d=2, after which
we start again with d=8. (Actually, we do not go down to
d=1, since then the agent would be greedy, which can for
instance disrupt consecutive runs of cooperation in the Pris-
oner’s dilemma, see below.) A theoretically very appealing
alternative is to consider the future discounted loss and in-
finite depth, which is a solution of the Bellman equations.
This can be found in [6], together with more discussion and
the proof of the following optimality Theorem for AIξ.

Theorem 1 (Performance of AIξ). If there exists
a self-optimizing policy ρ in the sense that its expected aver-
age loss 1

T
Lρ

1:T converges for T→∞ to the optimal average
1
T

Lµ
1:T for all environments µ∈M, then this also holds for

the universal policy ξ, i.e.

If ∃ρ∀µ : 1
T

Lρ
1:T

T→∞−→ 1
T

Lµ
1:T ⇒ 1

T
Lξ

1:T

T→∞−→ 1
T

Lµ
1:T

Matrix games (as defined in Section 4) can be stated in a
straightforward way in our setup. We just have to consider
that the opponent, i.e. the environment, does not know our
action yt when deciding its reaction xt: µi(xt|x<t,y1:t) =
µi(xt|x<t,y<t). AIξ for 2×2 matrix games can then be

function `=AIξ(s0,x<t,y<t,d)
//input: current state s0 =xt (unknown),
//history x<t,y<t, depth d
`0 :=`(0,s0), `1 :=`(1,s0)
If d>1 Then

For a∈{0,1} //the agent’s possible actions
For s∈{0,1} //the env.’s possible next states

`(s,a) :=AIξ(s,[x<ts0],[y<ta],d−1)

`a :=`a+ξ(s|s0,a,x<t,y<t)·`(s,a)

Return min{`0,`1}

Figure 1: The AIξ recursion for known loss matrix
`.

function FoE
ą
(γt)t≥1,(ηt)t≥1,(Bt)t≥1

ć
//input: sequences of exploration rates γt, learning
//rates ηt, time control parameters Bt

For τ =1,2,3,...
Sample rτ ∈{0,1} independ. s.t. P [rτ =1]=γτ

If rτ =0 Then
Invoke subroutine FPL(τ):

Sample qi
τ

d.∼Exp independently for 1≤ i≤n
Select IFPL

τ =arg min
1≤i≤n

{ητ
ˆ̀i
<τ +lnwi−qi

τ}
〈end of subroutine FPL(τ)〉
Play IFoE

τ :=IFPL
τ for Bτ elementary time steps

Set ˆ̀i
τ =0 for all 1≤ i≤n

Else
Sample IFoE

τ ∈{1...n} uniformly

Play I :=IFoE
τ for Bτ elementary time steps

Let t0(τ) :=
Pτ−1

τ ′=1Bτ ′ and `I
τ :=

Pt0(τ)+Bτ

t=t0(τ)+1`
I
t

Let ˆ̀I
τ =`I

τn/γt and ˆ̀i
τ =0 for all i 6=I

Figure 2: The algorithm FoE . The parameters ηt,
γt, and Bt will be specified in Theorem 2.

implemented recursively as shown in Figure 1, if we addi-
tionally assume that the environments are Markov players
with two internal states, corresponding to the reaction xt

they are playing. (Note that in the description of the al-
gorithm, we denote the hypothetical future states by s, as
opposed to the observed history x.) Since in step t, we don’t
know xt yet, AIξ must evaluate both AIξ(0,x<t,y<t,d) and
AIξ(1,x<t,y<t,d) and compute a weighted mixture for both
possible actions a=0,1. As long as we do not yet know the
loss matrix ` :(yt,xt) 7→ [0,1] completely (which we assume to
be deterministic), we additionally compute an expectation
over all assignments of losses that are consistent with the
history. To this aim, we pre-define a finite set L⊂N that
contains all possible losses. In the simulations below, we
use L= {0...4}∪{−16}, where the actual losses are always
in {0...4} and the large negative value of −16 encourages
the agent to explore as long as he doesn’t know the losses
completely. This is for obtaining interesting results with
moderate tree depth: otherwise, when the loss observed by
AIξ is relatively low, AIξ would explore only with a large
depth. This phenomenon is explained in detail in Section 4.

Markov Decision Processes (mdp) have been inten-
sively studied. In an mdp, the environmental behavior de-
pends only on the last action and observation, precisely
µ(xt|x<t,y<t)=µ(xt|xt−1,yt−1). For a 2×2 game, a Markov
player is modelled by a 2×2×2 transition matrix. It turns
out that the (uncountable) class of all transition matrices
with a uniform prior admits a closed-form solution:

ξ(xt|x<t, y<t) =
N

yt−1
xt−1→xt +1

N
yt−1
xt−1→0+N

yt−1
xt−1→1+2

,

where N
yt−1
xt−1→xt counts how often in the history the state

xt−1 transformed to state xt under action yt−1. This is
just Laplace’ law of succession [6, Prob.2.11&5.14]. (Ob-
serve that ξ is not Markov but depends on the full history.)
Note that the ξ posterior estimate changes along the expec-
timin tree (2). Disregarding this important fact as is done
in Temporal Difference learning and variants would result
in greedy policies where one has to rescue exploration by
ad-hoc methods (like ε-greedy). One can show that there
exist self-optimizing policies p̃ for the class of ergodic mdps
[6]. Although the class of transition matrices contains non-
ergodic environments, a variant of Theorem 1 applies, and
hence the Bayes optimal policy pξ is self-optimizing for er-
godic Markov players (which we will exclusively encounter).
The intuitive reason is that the class is compact and the
non-ergodic environments have measure zero.

3. ACTING WITH EXPERT ADVICE (FOE)

Instead of predicting or acting optimally with respect to
a model class, we may construct an agent from a class of
base agents. We show how this can be accomplished for
fully active problems. The resulting algorithm will radically
differ from the AIξ agent.

Prediction with expert advice has been very popular
in the last two decades. The base predictors are called ex-
perts. Our goal is to design a master algorithm which in
each time step t selects one expert i and follows its advice
(i.e. predicts as the expert does). Thereby, we want to keep
the master’s regret `master

1:T −`∗1:T small, where `∗1:T is the
cumulative loss of the best expert in hindsight up to time
T . Usually, T ≥ 1 is not known in advance. The state-of-
the-art experts algorithms achieve this: Loss bounds similar
to (1) can be proven, with `µ

1:T replaced by `∗1:T and wµ re-
placed by the prior weight of the best expert in hindsight,
w∗. These bounds hold in the worst case, i.e. without any as-
sumption on the data generating process. In particular, the
environment that provides the feedback may be an adaptive
adversary. Since these bounds imply bounds in expecta-
tion in the Bayesian setting (with slightly larger constants
than (1)), expert advice is in a sense the stronger prediction
strategy [5].

In order to protect against adaptive adversaries, we need to
randomize. In this work, we build on the Follow the Per-
turbed Leader FPL algorithm introduced by [4]. (We won’t
discuss the more popular alternative of weighted sampling
at all.) We don’t even need to be told the true outcome
after the master’s decision. All we need for the analysis is
learning the losses of all experts, which are bounded (this
is an important restriction which applies to all standard ex-

perts algorithms) w.l.o.g. in [0,1]. In this way, the master’s
actual decision is based on the past cumulative loss of the
experts. A key concept is that we must prevent the master
from learning too fast (or too slowly). This is achieved by
introducing a learning rate ηt, which decreases to zero at
an appropriate rate with growing t. Most of the literature
assumes experts classes of finite size n with uniform prior 1

n
,

in particular when the learning rate ηt is non-stationary. For
FPL, the case of arbitrary non-uniform prior and countable
expert classes has been treated in [7].1

Active problems. In the passive full observation game
discussed so far (i.e. we learn all losses), the notion of re-
gret is not problematic even against an adaptive adversary.2

However, the situation changes if the reaction of the envi-
ronment depends on our past actions. Consider the simple
case of two experts, one always suggesting action 0 and the
other one action 1. The environment is reactive and “un-
fair”: Each expert incurs no loss as long as we stay with
its initial action (e.g. the action sequences 00000 and 111
have no loss). But as soon as we perform a different action
(e.g. 001), in all subsequent rounds both experts incur loss
1. Each sensible strategy will soon explore both actions, and
compared to the pure experts, we incur large loss. Conse-
quently, we need to consider a different notion of regret: Our
performance is compared to what an expert could achieve
when he is actually put in our situation. In this example,
after the action sequence 001, we perform badly, but so do
all experts.

Another problem with reactive environments is that we do
not necessarily get valid feedback for all experts in each
round. In the previous example, if we chose 0 as the first
action and learned that expert 0 had no loss at time t=2,
it is not legitimate to make any assumption on the loss of
expert 1 at t=2. Even if the environment tells us that the
pure expert 1 had no loss, we are interested in the loss of
expert 1 put in our situation, i.e. after the first action 0.
But this loss we do not know. Precisely, we know only the
loss of an expert with the correct action history after the
last time step in the past, where we (maybe coincidentally)
acted as he suggested. Instead of trying to track the action
history (which is possibly expensive), we therefore use only
the feedback from the currently selected expert i and discard
all other information. This is commonly referred to as bandit
setup. Fortunately, this issue can be successfully addressed
by forcing exploration, i.e. sampling according to the prior,
with a certain probability γt [10]. This exploration rate γt

is decreased to zero appropriately with growing t. Thus,
in each time step we decide to either follow the perturbed
leader or explore. Accordingly, we call our algorithm FoE
(Follow or Explore). Bounds for the bandit setup are typi-
cally similar to (1), but with −lnw∗ replaced by (something

1Given the large amount of recent literature, it should be not
too difficult to obtain similar assertions for weighted sam-
pling algorithms. However, as far as we know, the only result
proven so far requires rapidly decaying weights [3], which is
therefore not appropriate for universal expert classes.
2One can even prove the following strong statement[7, 11]:
If a strategy performs well against an oblivious adversary
which does not at all depend on our actions, then it also
performs well against an adaptive adversary (in case of par-
tial observations, this holds only for the weak regret).

larger than) 1/w∗. Hence they are exponentially larger in
w∗, and one can show that this is sharp in general.

Increasing horizon. If the environment is reactive, it is
not sufficient to consider only the short-term performance of
the selected expert i. This was first recognized by [1], who
considered the repeated game of “Prisoner’s Dilemma” and
the “tit for tat” opponent as a motivating example (see Sec-
tion 4 for details). In this case, a good long term strategy is
cooperating (because of the particular opponent). However
defecting is dominant, i.e. the instantaneous loss of defecting
is always smaller than that of cooperating. So in order to
notice that an expert (for instance the always cooperating
one) performs well, we have to evaluate it at least over two
time steps. In general, if we evaluate a chosen expert over
an increasing number of time steps, we hope that we per-
form well in arbitrary reactive environments. This means
that the master works at a different time scale τ : in its
τth time step, it gives the control to the selected expert for
Bτ ≥1 time steps (in the original time scale t). As a conse-
quence, the instantaneous losses which the master observes
are no longer uniformly bounded in [0,1], but in [0,Bτ]. For-
tunately, it turns out that the analysis remains valid if Bτ

grows unboundedly but slowly enough. Only the conver-
gence rate of the average master’s loss to the optimum is
affected: we will obtain a final rate of t−1/10. The result-
ing algorithm FoE (for a finite expert class) is specified in
Figure 2 together with its subroutine FPL. We may have in-
stantaneous and cumulative losses in both time scales, this
is always clear from the notation (e.g. `i

t vs. `i
τ). Not sur-

prisingly, most of FoE works in the master time scale.

Note that FoE makes use of its observation only if he de-
cided to explore, i.e. if rτ = 1. This seems an unnecessary
waste of information, which is motivated from the analysis,
since FoE needs an unbiased loss estimate ˆ̀ (with respect
to FoE ’s randomization). We just chose the simplest way to
guarantee this. For the simulations, we concentrate on the
following faster learning variant : approximate the probabil-
ity pi

τ of the selected expert i (jointly for exploration and
exploitation) by a Monte-Carlo simulation. Then always
learn a (close to) unbiased estimate ˆ̀i

τ = `i
τ/pi

τ . The analy-
sis of FoE works in the same way for this modification. On
the other hand, we will see that modified FoE learns faster.

In case of a non-uniform prior and possibly infinitely many
experts, the exploration must be according to the prior
weights. This causes another problem: FoE ’s loss estimates
ˆ̀ need to be bounded, which forbids exploring experts with
very small prior weights. Hence we define for each expert
i, an entering time T i≥1 (at the master time scale). Then
FoE (including its subroutine FPL) is modified such that it
uses only active experts from {i : τ ≥T i}. This guarantees
additionally that we have only a finite active set in each
step, and the algorithm remains computationally feasible.

Theorem 2 (Performance of FoE). Assume FoE
acts in an online decision problem with bounded instanta-
neous losses `i

t∈ [0,1]. Let the exploration rate be γτ =τ−1/4

and the learning rate be ητ = τ−3/4. In case of uniform
prior, choose Bτ = bτ1/8c. Then, for all experts i and all

T ≥1, we have

1
T
E`FoE1:T ≤ 1

T
`i
1:T + O(n2T−1/10), and

1
T

`FoE1:T ≤ 1
T

`i
1:T + O(n2T−1/10) w.p. 1− T−2.

Consequently, lim supT→∞
1
T

(`FoE1:T −`i
1:T)≤ 0 a.s. For non-

uniform prior, let Bτ = bt1/16c and T i = d(wi)−16e. Then
corresponding assertions hold with O-terms replaced by
O

ą
log(wi)T−1/10+(wi)−22T−1

ć
.

The proof of this main theorem on the performance of FoE
can be found in [12]. Similar bounds hold for larger Bτ <τ

1
4 .

In the simulations, we used Bτ =τ0.24 for faster learning. For
playing 2×2 matrix games, we will use the class of all 16 de-
terministic four-state Markov experts. That is, each expert
consists of a lookup table with all the actions for each of the
4 possible combination of moves in the last round. In the
first round, the expert plays uniformly random. (Compare
the standard results on learning matrix games with expert
advice by [2].)

4. SIMULATIONS

A 2×2 matrix game consists of two matrices R1,R2∈R2×2,
the first one containing rewards for the row player, the sec-
ond one rewards for the column player. (Recall that using
losses or rewards is just a matter of convenience, in this sec-
tion we will use rewards.) A single game proceeds in the
following way: the first player chooses a row action i∈{0,1}
and simultaneously the second player chooses a column ac-
tion j∈{0,1}, both players without knowing the opponent’s
move. Then reward Rk(i,j) is payed to player k (k = 1,2),
and i and j are revealed to both players. A repeated game
consists of T single games. We chose T =20000, if at least
one opponent is FoE (which has slow learning dynamics, as
we will see), and T = 100 for the fast learning AIξ (unless
it is plotted in the same graph as FoE). If at least one ran-
domized player participates, the run is repeated 10 times3,
and the average is shown.

All games we consider have rewards in {0...4}. The AIξ and
FoE agents are used as specified in the previous sections,
with the classes of all two-state Markov environments and all
deterministic four-state Markov experts, respectively. For
AIξ, we will concentrate the presentation on the almost con-
sistent horizon variant, since it performs always better than
the moving horizon variant. For FoE , we will concentrate
on the faster learning variant.

Prisoner’s Dilemma. This dilemma is classical. The re-
ward matrices are R1=

ą
1 4
0 3

ć
and R2=RT

1 , with the following
interpretation: The two players are accused of a crime they
have committed together. They are being interrogated sep-
arately. Each player can either cooperate with the other
player (don’t tell the cops anything), or he defects (tells the
cops everything but blame the colleague). The punishments

3We stress again that we are only interested in the qualita-
tive behavior of the simulations, i.e. we need to assess the
learning dynamics only roughly. Therefore we do not need
large sample sizes, and we will not complicate the graphs
with error bars or other information used for precise statis-
tics.

are according to the players’ joint decision: if none of them
gives evidence, both get a minor sentence. If one gives ev-
idence and the other one keeps quiet, the traitor gets free,
while the other gets a huge sentence. If both give evidence,
then they both get a significant sentence. (There is also an
easier variant “Deadlock” which we do not discuss.)

It is clear that giving evidence, i.e. defecting, is an instanta-
neously dominant action: regardless of what the opponent
does, the immediate reward is always larger for defecting.
However, if both players would agree to cooperate, this is
the “social optimum” and guarantees the better long-term
reward in the repeated game. A well-known instance for
this case is playing against the “tit for tat” strategy strat-
egy which cooperates in the first move and subsequently
performs the action we did in the previous move. Similar
but harder to learn are “two tit for tat” and “three tit for
tat”, which defect in the first move and cooperate only if we
cooperated two respectively three times in a row. Note that
although “two tit for tat” and “three tit for tat” are not
in AIξ’s model class, probabilistic versions of the strategies
are: if the probability of “adversary defected, I cooperate,
then the adversary will cooperate in the next round” is cho-
sen correctly (namely 1

2
for 2-tit for tat and ≈0.57 for 3-tit

for tat), then the expected number of rounds I have to co-
operate until the adversary will do so is 2 respectively 3.

Figure 3 shows that in most cases, AIξ learns very quickly
the best actions. (This is the consistent horizon variant,
the moving horizon variant will be discussed with the next
game, Stag Hunt.) If the opponent is memoryless as for
example the uniform random player, AIξ constantly defects
after short time. Against tit for tat and two tit for tat, AIξ
cooperates after short time. The figure shows the average
per round rate of cooperation, which after a few exploratory
moves converges to the optimal action as 1

t
. However, AIξ

does not learn to cooperate against three tit for tat. The
reason is the general problem that in order to increase ex-
ploration, AIξ needs exponential depth of the expectimin
tree. Assume that a certain action sequence of length n is
favorable against the true environment, which has however
not too large a current weight. In this instance, cooperating
three times in a row is favorable against (the probabilistic
version of) 3-tit for tat. In order to recognize that this is
worth exploring, AIξ has to build a branch of depth n = 3
in the expectimin tree, which has (because of the relatively
low prior weight) very small probability ∼ exp(−n) how-
ever. Then it needs an exponentially large subtree below
this branch to accumulate enough (virtual) reward in order
to encourage exploration.

One more problem arises when AIξ plays against another
AIξ. Here, the perfectly symmetric setting results in both
playing the same actions in each move, hence they are not
correctly learning. We might try to remedy this by varying
the tree depth of the second AIξ (denoted AIξ2 in the figure),
however it turns out that in this case, both AIξ’s do not learn
at all to cooperate (see [6, Sec.8.5.2] for a possible reason).

We now turn to the performance of FoE (the faster learning
variant) as evaluated in Figure 4. As expected, FoE learns
much slower than AIξ (note the different time scale). On the
other hand, its exploration is strong enough to learn 3-tit for

0 20 40 60 80 100
0

0.2

0.4

0.6

0.8

1

t

av
g.

 p
. r

ou
nd

 c
oo

pe
ra

tio
n

ra
tio

AIXI vs. random
AIXI vs. tit4tat
AIXI vs. 2−tit4tat
AIXI vs. 3−tit4tat
AIXI vs. AIXI
AIXI vs. AIXI2

Figure 3: AIξ in Prisoner’s Dilemma

0 10000 20000
0

0.2

0.4

0.6

0.8

1

t

av
g.

 p
. r

ou
nd

 c
oo

pe
ra

tio
n

ra
tio

FoE vs. random
FoE vs. tit4tat
FoE vs. 2−tit4tat
FoE vs. 3−tit4tat
FoE vs. FoE
FoE vs. AIXI
AIXI vs. FoE

Figure 4: FoE (and AIξ) in Prisoner’s Dilemma

tat (and even harder opponents). When playing against an-
other instance of FoE , we notice however that they usually
do not succeed to overcome the dominance of mutual defec-
tion. Also when FoE competes with AIξ, they tend to learn
mutual defection rather than cooperation. (Sometimes, they
learn cooperation in one or two of the possible states of the
MDP.)

Stag Hunt. This game is also known as “Assurance”. The
reward matrices are R1 =

ą
2 3
0 4

ć
and R2 = RT

1 . Two players
are hunting together. If they cooperate, they will catch the
stag. However, one player might not trust the other, in
which case he chases rabbits on his own instead. In this case,
the other one won’t get anything if he tries to cooperate. If
both defect, then they are in conflict, and each player gets
less rabbits. Although the optimum for both players is to
cooperate, they need to trust each other sufficiently. If one
player plays uniformly random, it is better for the other to
go for the rabbits. Also, defecting has the lower variance.

Maybe it is surprising to observe that AIξ (with a depth of
8) does not learn to cooperate against 2-tit for tat (Figure
5). The reason is that defecting has a relatively good payoff,
and therefore exploration is not encouraged as discussed in
the previous subsection. If the depth of the tree is increased
to 9, AIξ learns cooperation against 2-tit for tat (but not
against 3-tit for tat). We also see that the moving horizon
variant of AIξ has even more problems with exploration: It
does not learn cooperating against 2-tit for tat, even with
depth 9. The explanation is that even if AIξ decides to

0 20 40 60 80 100
0

0.2

0.4

0.6

0.8

1

t

av
g.

 p
. r

ou
nd

 c
oo

pe
ra

tio
n

ra
tio

AIXI depth 8 vs. 2−tit4tat
AIXI depth 9 vs. 2−tit4tat
mov. AIXI (9) vs. 2−tit4tat
mov. AIXI (8) vs. tit4tat

Figure 5: Stag Hunt: AIξ and its moving horizon
variant

0 10000 20000 60000 100000
0

0.2

0.4

0.6

0.8

1

t (non−uniform scale)

av
g.

 p
. r

ou
nd

 c
oo

pe
ra

tio
n

ra
tio

FoE vs. 2−tit4tat
FoE vs. AIXI (lucky)
AIXI vs. FoE (lucky)
slow FoE vs. 2−tit4tat

Figure 6: Stag Hunt: FoE and its slower learning
variant

explore in one time step, in the next step this exploration
might not be correctly continued, as the tree is now explored
to a different level. This observation can also be made for the
Prisoner‘s Dilemma. In fact, the consistent horizon variant
performs always better than moving horizon.

As before, FoE learns much slower but explores more ro-
bustly (Figure 6), neither 2- nor 3-tit for tat are a problem.
Unlike in the Prisoner’s Dilemma, if AIξ and FoE are com-
peting, they learn mutual cooperation in almost half of the
cases, an average over such lucky instances is given in the
figure. The same is valid for FoE against FoE , while AIξ
against AIξ has the same symmetry problem as already ob-
served in the Prisoner’s Dilemma. The original slower learn-
ing variant of FoE reaches the same average level of perfor-
mance only after 105 time steps instead of 2·104 steps, and
moreover with a variance twice as high.

Chicken. The reward matrices R1 =
ą
0 4
1 2

ć
and R2 = RT

1

of the “Chicken” game (also known as “Hawk and Dove”)
can be interpreted as follows: Two coauthors write a paper,
but each tries to spend as little effort as possible. If one
succeeds to let the other do the whole work, he has a high
reward. On the other hand, if no one does anything, there
will be no paper and thus no reward. Finally, if both decide
to cooperate, both get some reward. Here, in the repeated
game, it is socially optimal to take turns cooperating and
defecting.4 Still the best situation for one player is if he

4We assume that the authors are not very good at cooperat-
ing, and that the costs of cooperating more than compensate

0 20 40 60 80 100
0

1

2

3

4

t

av
g.

 p
. r

ou
nd

 r
ew

ar
d

AIXI vs. alternate
alternate vs. AIXI
AIXI vs. stubborn
stubborn vs. AIXI

Figure 7: AIξ in the Chicken game

0 10000 20000
0

1

2

3

4

t

av
g.

 p
. r

ou
nd

 r
ew

ar
d FoE vs. alternate

FoE vs. stubborn
stubborn vs. FoE
FoE vs. AIXI
AIXI vs. FoE

Figure 8: FoE (and AIξ) in the Chicken game

emerges as the “dominant defector”, defecting in most or
all of the games, while the other one cooperates.

If the opponent steadily alternates between cooperating and
defecting, then AIξ quickly learns to adapt. This can be
observed in Figure 7, where the performance is given in
terms of average per round reward instead of cooperation
rate. However, AIξ is not obstinate enough to perform well
against a “stubborn” adversary that would cooperate only
after his opponent has defected for three successive time
steps. Here, AIξ learns to cooperate, leaving his opponent
the favorable role as the dominant defector. (However, AIξ
learns to dominate the less stubborn adversary which co-
operates after two defecting actions.) When two AIξs play
against each other, they again have the symmetry problem.
Interestingly, if we break symmetry by giving the second
AIξ a depth of 9, he will turn out the dominant defector
(not shown in the graph).

FoE behaves differently in this game (Figure 8). While he
learns to deal with the steadily alternating adversary and
emerges as the dominant defector against the stubborn one,
he would give precedence to AIξ in most cases. This is not
hard to explain, since FoE in the beginning plays essentially
random. Thus AIξ learns quickly to defect, and for FoE
remains nothing but learning to cooperate. However, this
does not always happen: In the minority of the cases, FoE

for the synergy. We could assign a reward of 3 instead of
2 to mutual cooperation. This is the less interesting situ-
ation of “Easy Chicken”, where cooperating is the optimal
long-term strategy like in the previous games.

0 10000 20000
0

1

2

3

4

t

av
g.

 p
. r

ou
nd

 r
ew

ar
d

AIXI vs. AIXI (and alt.)
AIXI vs. stubborn
FoE vs. alternate
FoE vs. stubborn
AIXI vs. FoE
FoE vs. AIXI

Figure 9: AIξ and FoE in Battle of Sexes

0 200 400 600 800 1000

2

2.5

3

3.5

4

t

av
g.

 p
. r

ou
nd

 r
ew

ar
d AIXI vs. alternate

FoE vs. alternate
AIXI vs. FoE
AIXI vs. AIXI
FoE vs. FoE

Figure 10: AIξ and FoE in Matching Pennies

defects enough such that AIξ decides to cooperate, and FoE
will be the dominant defector. (Hence the average shown in
the graph is less clear in favor of AIξ.)

Battle of Sexes. In this game, a married couple wants
to spend the evening together, but they didn’t settle if they
would go to the theater (her preference) or the pub (his pref-
erence). However, if they fail to meet, both have a boring
evening (and no reward at all). The reward matrices are
R1=

ą
2 0
0 4

ć
and R2=

ą
4 0
0 2

ć
. Coordination is clearly important

in the repeated game. Like in “Chicken”, taking turns is a
social optimum, while it is best for one player if his choice
becomes dominant.

In Figure 9, our universal learners show similar performance
like in the Chicken game. Both learn to deal with an alter-
nating partner. FoE also learns to dominate over a stubborn
adversary which plays his less favorite action only after the
opponent insists three times on that. AIξ is dominated by
this stubborn player. However, AIξ always dominates FoE .
Finally, in contrast to the Chicken game, AIξ against AIξ
does not have the symmetry problem, but they both learn
to alternate.

Matching Pennies. Each player conceals in his palm a
coin with either heads or tails up. They are revealed si-
multaneously. If they match (both heads or both tails), the
first player wins, otherwise the second. This is the only zero-
sum game of the games we consider, where R1 =

ą
4 0
0 4

ć
and

R2=
ą
0 4
4 0

ć
. Thus, there is a minimax strategy for both play-

ers, which is actually uniform random play. On the other
hand, deterministic repeated play is potentially exploitable
by the adversary.

Figure 10 shows the results for this last game we discuss.
Both AIξ and FoE learn to exploit a predictable adversary,
namely the player alternating between 0 and 1. The other
games are balanced in the long run, only in the beginning
AIξ succeeds to exploit FoE a little. If two AIξs compete, it
is important to break symmetry, then both learn to alternate
(this situation is shown in the graph). If symmetry is not
broken, the row player (who tries to match) always wins.

5. DISCUSSION

In principal, universal agents perform well in repeated ma-
trix games. They usually learn to prefer the optimal long-
term action to greedy behavior (Prisoner’s Dilemma and
Stag Hunt). If possible they are able to exploit a predictable
adversary (Matching Pennies). And they learn good strate-
gies when it is necessary to foresee the opponent’s action
(Chicken and Battle of Sexes). Of the two approaches we
presented and compared, AIξ learns much faster than FoE ,
but FoE explores more thoroughly. Of course, there is a
trade-off between exploration and fast learning. Interest-
ingly, it may depend on the adversary (and thus on the en-
vironment) if fast learning or exploration is the better long-
term strategy: In Chicken and Battle of Sexes, AIξ profits
against FoE by learning fast and dictating its preferred ac-
tion, but looses against the stubborn opponent because of
not exploring enough.

6. REFERENCES

[1] D. P. de Farias and N. Megiddo. How to combine
expert (and novice) advice when actions impact the
environment? In S. Thrun, L. Saul, and B. Schölkopf,
editors, Advances in Neural Information Processing
Systems 16. MIT Press, Cambridge, MA, 2004.

[2] Y. Freund and R. Schapire. Adaptive game playing
using multiplicative weights. Games and Economic
Behavior, 29:79–193, 1999.

[3] C. Gentile. The robustness of the p-norm algorithm.
Machine Learning, 53(3):265–299, 2003.

[4] J. Hannan. Approximation to Bayes risk in repeated
plays. In M. Dresher, A. W. Tucker, and P. Wolfe,
editors, Contributions to the Theory of Games 3,
pages 97–139. Princeton University Press, 1957.

[5] M. Hutter. Online prediction – Bayes versus experts.
Technical report,
http://www.idsia.ch/∼marcus/ai/bayespea.htm, July
2004. Presented at the EU PASCAL Workshop on
Learning Theoretic and Bayesian Inductive Principles
(LTBIP-2004).

[6] M. Hutter. Universal Artificial Intelligence: Sequential
Decisions based on Algorithmic Probability. Springer,
Berlin, 2004. 300 pages,
http://www.idsia.ch/∼marcus/ai/uaibook.htm.

[7] M. Hutter and J. Poland. Adaptive online prediction
by following the perturbed leader. Journal of Machine
Learning Research, 6:639–660, 2005.

[8] L. A. Levin. Universal sequential search problems.
Problems of Information Transmission, 9:265–266,
1973.

[9] A. K. McCallum. Instance-based utile distinctions for
reinforcement learning with hidden state. In Proc.
12th International Conference on Machine Learning,
pages 387–395, 1995.

[10] H. B. McMahan and A. Blum. Online geometric
optimization in the bandit setting against an adaptive
adversary. In 17th Annual Conference on Learning
Theory (COLT), volume 3120 of Lecture Notes in
Computer Science, pages 109–123. Springer, 2004.

[11] J. Poland. FPL analysis for adaptive bandits. In 3rd
Symposium on Stochastic Algorithms, Foundations
and Applications (SAGA’05), pages 58–69, 2005.

[12] J. Poland and M. Hutter. Defensive universal learning
with experts. In Proc. 16th International Conf. on
Algorithmic Learning Theory (ALT’05), volume 3734
of LNAI, pages 356–370, Singapore, 2005. Springer,
Berlin.

[13] J. Schmidhuber. Optimal ordered problem solver.
Machine Learning, 54(3):211–254, 2004.

[14] J. Schmidhuber, J. Zhao, and M. Wiering. Shifting
inductive bias with success-story algorithm, adaptive
Levin search, and incremental self-improvement.
Machine Learning, 28:105–130, 1997.

[15] R. J. Solomonoff. A formal theory of inductive
inference: Part 1 and 2. Inform. Control, 7:1–22,
224–254, 1964.

