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ABSTRACT
We investigate the adaptation of cooperating strategies in
an iterated Prisoner’s Dilemma (IPD) game. The deter-
ministic IPD describes the interaction of N agents spatially
distributed on a lattice, which are assumed to only interact
with their four neighbors, hence, local configurations are
of great importance. Particular interest is in the spatial-
temporal distributions of agents playing different strategies,
and their dependence on the number of consecutive encoun-
ters ng during each generation. We show that above a crit-
ical ng, there is no coexistence between agents playing dif-
ferent strategies, while below the critical ng coexistence is
found.

1. INTRODUCTION
When an agent chooses its strategy from a fixed set of

possible ones, its decision has to take several factors into
account: (i) locality, i.e. the subset of those agents, the
respective agent most likely interacts with, (ii) heterogeneity,
i.e. the possible strategies of these agents, (iii) time horizon,
i.e. the number of foreseen interactions with these agents.
The best strategy for a rational agent would be the one
with the highest payoff for a given situation. To reach this
goal, however, can be difficult for two reasons: uncertainty,
i.e. particular realizations are usually subject to random
disturbances and can therefore be known only with a certain
probability, and co-evolution, i.e. the agent does not operate
in a stationary environment, but in an ever-changing one,
where its own action influences the decisions of other agents
and vice-versa.

To reduce the risk of making the wrong decision, it often
seems to be appropriate just to copy the successful strategies
of others [16, 12]. Such an imitation behavior is widely found
in biology, but also in cultural evolution. A similar kind of
local imitation behavior will be used in this paper to explain
the spatial dispersion of strategies in a multi-agent system.
In order to address the problem systematically, we apply a
well defined game-theoretic problem. Game theory embod-
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ies many of the features mentioned above and thus has often
been employed in the design of mechanisms and protocols for
interaction in multi-agent systems [17, 21]. Many investiga-
tions on the relation between game theory and multiagent
systems focus on mathematical investigations [3], and the
learning and coordination of tasks [19, 6, 20, 18]. In con-
trast our paper mainly deals with the dynamics of strategy
distribution.

We consider a system of N agents spatially distributed
on a square lattice, so that each lattice cite is occupied by
just one agent. Each agent i is characterized by two state
variables, (i) its position ri on the lattice, and (ii) a discrete
variable θi, describing its possible actions, as specified in
Sect. 3. Agents are assumed to directly interact only with
their 4 nearest neighbors a number of ng times. In order
to describe the local interation, we use the so-called iterated
Prisoner’s Dilemma (IPD) game – a paradigmatic example
[1, 15] well established in evolutionary game theory with a
broad range of applications in economics, political science,
and biology.

In the simple Prisoner’s Dilemma (PD) game, each agent
i has two options to act in a given situation, to cooperate
(C), or to defect (D). Playing with agent j, the outcome
of this interaction depends on the action chosen by agent i,
i.e. C or D, without knowing the action chosen by the other
agent participating in a particular game. This outcome is
described by a payoff matrix, which for the 2-person game,
i.e. for the interaction of only two agents, has the following
form:

C D
C R S
D T P

(1)

In PD games, the payoffs have to fulfill the following two
inequalities:

T > R > P > S 2 R > S + T (2)

In this paper, we use the known standard values T = 5,
R = 3, P = 1, S = 0. This means in a cooperating envi-
ronment, a defector will get the highest payoff. From this,
the abbreviations for the different payoffs become clear: T
means (T)emptation payoff for defecting in a cooperative
environment, S means (S)ucker’ payoff for cooperating in a
defecting environment, R means (R)eward payoff for cooper-
ating in a likewise environment, and P means (P)unishment
payoff for defecting in a likewise environment.

In any one round (or “one-shot”) game, choosing action
D is unbeatable, because it rewards the higher payoff for
agent i whether the opponent chooses C or D. At the same



time, the payoff for both agents i and j is maximized when
both cooperate. But in a consecutive game played many
times, both agents, by simply choosing D, would end up
earning less than they would earn by collaborating. Thus,
the number of games ng two agents play together becomes
important. For ng ≥ 2, this is called an iterated Prisoner’s
Dilemma (IPD). It makes sense only if the agents can re-
member the previous choices of their opponents, i.e. if they
have a memory of nm ≤ ng −1 steps. Then, they are able to
develop different strategies based on their past experiences
with their opponents, which is described in the following.

2. AGENT’S STRATEGIES
In this paper, we assume only a one-step memory of the

agent, nm = 1. Based on the known previous choice of its
opponent, either C or D, agent i has then the choice between
eight different strategies. Following a notation introduced
by Nowak [14], these strategies are coded in a 3-bit binary
string [Io|Ic Id] which always refers to collaboration. The
first bit represents the initial choice of agent i: it is 1 if
agent i collaborates, and 0 if it defects initially. The two
other values refer always to the previous choice of agent j.
Ic is set to 1 if agent i chooses to collaborate given that agent
j has collaborated before and 0 otherwise. Id is similarily
set to 1 if agent i chooses to collaborate given that agent j
has defected before and 0 otherwise. For the deterministic
case discussed in this paper, the eight possible strategies
(s = 0, 1, . . . , 7) are given in Tab. 1.

s Strategy Acronym Bit String

0 suspicious defect sD 000

1 suspicious anti-Tit-For-Tat sATFT 001

2 suspicious Tit-For-Tat sTFT 010

3 suspicious cooperate sC 011

4 generous defect gD 100

5 generous anti-Tit-For-Tat gATFT 101

6 generous Tit-For-Tat gTFT 110

7 generous cooperate gC 111

Table 1: Possible agent’s strategies using a one-step
memory.

Depending on the agent’s first move, we can distinguish
between two different classes of strategies: (i) suspicious
(s = 0, 1, 2, 3), i.e. the agent initially defects, and (ii) gen-
erous (s = 4, 5, 6, 7), i.e. the agent initially cooperates. Fur-
ther, we note that four of the possible strategies do not pay
attention on the opponent’s previous action, i.e. except for
the first move, the agent continues to act in the same way,
therefore the strategies sD, sC, gD, gC (s = 0, 3, 4, 7) can be
also named rigid strategies.

The more interesting strategies are s = 1, 2, 5, 6. Strategy
s = 6, known as (generous) “tit for tat” (TFT), means that
agent i initially collaborates and continues to do so, given
that agent j was also collaborative in the previous move.
However if agent j was defective in the previous move, agent
i chooses to be defective, too. This strategy was shown to
be the most successful one in iterated Prisoners Dilemma
games with 2 persons [1]. Here, however, we are interested in

spatial interactions, where agents simultaneously encounter
with 4 different neighbors.

Agents playing strategy gATFT (s = 5) initially also start
with cooperation and then do the opposite of whatever the
opponent did in the previous move, while agents playing
strategy sATFT (s = 1) behave the same way, except for
the first move where they defect. Agents playing strategy
sTFT (s = 2) also start with defection, but then imitate
the previous move of the opponent, as in gTFT. A closer
look at the encounters reveals that sTFT and gTFT will
exploit each other alternatively while gTFT will mutually
cooperate. Also, sATFT and gATFT exploit each other al-
ternatively, while sATFT will alternatively cooperate. This
illustrates that the first move of a strategy can be vital to
the outcome of the game. The number of interactions ng is
also a crucial parameter in this game, because, if ng is even,
gTFT and sTFT will gain the same, but in case of ng being
odd sTFT will gain more than gTFT.

Eventually, it can be argued that some of the strategies
do not make sense from a human point of view. In partic-
ular sATFT or gATFT seem to be “lunatic” or “paranoid”
strategies. Therefore, let us make two points clear: Such
arguments basically reflect the intentions, not to say the
preconceptions, of a human beholder. We try to avoid such
arguments as much as possible. In our model, we consider
a strategy space of 23 = 8 possible strategies, and there is
no methodological reason to exclude a priori some of these
strategies. If they do not make sense, then this will be cer-
tainly shown by the evolutionary game theoretic approach
used in our model. I.e., those strategies will disappear in no
time, but not because of our private opinion, but because
of a selection dynamics that has proven its usefulness in bi-
ological evolution. So, there is no reason to care too much
about a few “paranoid” strategies. On the other hand, bi-
ological evolution has also shown that sometimes very un-
likely strategies get a certain chance under specific (local?)
conditions. In a complex system, it would be a priori not
possible to predict the outcome of a particular evolutionary
scenario, simply because of the path-dependence. We come
back to this point in our conclusions, where we shortly dis-
cuss that in the case of eight strategies and ng = 2 also
unpredicted strategies survive.

3. SPATIAL INTERACTION
So far, we have explained the interaction of two agents

with a one-step memory. This shall be put now into the
perspective of a spatial game with local interaction among
the agents. A spatially extended (non-iterative) PD game
was first proposed by Axelrod [1]. Based on these investi-
gations, Nowak and May simulated a spatial PD game on a
cellular automaton and found a complex spatiotemporal dy-
namics [13, 14]. A recent mathematical analysis [2] revealed
the critical conditions for the spatial coexistence of cooper-
ators and defectors with either a majority of cooperators in
large spatial domains, or a minority of ooperators in small
(non-stationary) clusters.

In the following, we concentrate on the iterated PD game,
where the number of encounters, ng , plays an important
role. We note that possible extensions of the IPD model
have been investigated e.g. by Lindgren and Nordahl [7],
who introduced players which act erroneously sometimes,
allowing a complex evolution of strategies in an unbounded
strategy space.
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Figure 1: Local neigbhorhood of agent i. The
nearest neighbors are labeled by a second index
j = 1, ..., 4. Note that j = 0 refers to the agent in
the center.

In the spatial game, we have to consider local configura-
tions of agents playing different strategies (see Fig.1). As
explained in the beginning, each agent i shall interact only
with its four nearest neighbors. Let us define the size of
a neighborhood by n (that also includes agent i), then the
different neighbors of i are characterized by a second in-
dex j = 1, ..., n − 1. The mutual interaction between them
results in a n-person game, i.e. n = 5 agents interact simul-
taneously. In this paper, we use the common assumption
that the 5-person game is decomposed into (n− 1) 2-person
games, that may occur independently, but simultaneously [7,
8, 15], a possible investigation of a “true” 5-person PD game
is also given in [15].

We further specify the θi that characterize the possible
actions of each agent as one of the strategies that could be
played (Tab. 1), i.e. θi ∈ s = {0, 1, . . . , 7}. The total number
of agents playing strategy s in the neighborhood of agent i
is given by:

ks
i =

n−1
X

j=1

δs θij
(3)

where δxy means the Kronecker delta, which is 1 only for x =
y and zero otherwise. The vector ki = {k0

i , k1

i , k2

i , . . . , k7

i }
then describes the “occupation numbers” of the different
strategies in the neighborhood of agent i playing strategy
θi.

Agent i encounters with each of its four neighbors playing
strategy θij

in independent 2-person games from which it
receives a payoff denoted by aθiθij

, which can be calculated

with respect to the payoff matrix, eq. (1). The total payoff
of an agent i after these indepentent games is then simply

ai(θi) =
n−1
X

j=1

aθiθij
=

X

s

aθis · k
s
i (4)

We note again that the payoffs aθis also strongly depend on
the number of encounters, ng , for which explicit expressions
have been derived. They are concluded in a 8 × 8 payoff
matrix not printed here [11].

In order to introduce a time scale, we define a generation
G to be the time in which each agent has interacted with its
n − 1 nearest neighbors ng times. During each generation,
the strategy θi of an agent is not changed while it interacts
with its neighbors simultaneously. But after a generation is

completed, θi can be changed based on a comparison of the
payoffs received. I.e., payoff ai is compared to the payoffs
aij

of all neighboring agents, in order to find the maximum
payoff within the local neighborhood during that generation,
max {ai, aij

}. If agent i has received the highest payoff, then
it will keep its θi, i.e. it will continue to play its strategy.
But if one of its neighbors j has received the highest payoff,
then agent i will adopt or imitate, respectively, the strategy
of the respective agent. If

j? = arg maxj=0,...,n−1 aij
(5)

defines the position of the agent that received the highest
payoff in the neighborhood, the update rule of the game can
be concluded as follows:

θi(G + 1) = θij? (G) (6)

We note that the evolution of the system described by eq.
(6) is completely deterministic, results for stochastic CA
have been discussed in [4].

The adaptation process leads to an evolution of the spa-
tial distribution of strategies that will be investigated by
means of computer simulations on a cellular automaton in
the following section.

4. EVOLUTION OF SPATIAL PATTERNS
OF 3 STRATEGIES

In order to illustrate the spatio-temporal evolution we
have restricted the computer simulation here to only three
strategies. The more complex (and less concise) case of eight
strategies is discussed in detail in [11, 9, 10]. The three
strategies were chosen as sD, sATFT and gTFT (s = 0, 1, 6)
for the following reason. Strategy sD is known to be the
winning strategy for the one-shot game, i.e. ng = 1, while
gTFT is known to be the most successful strategy for ng ≥ 4.
We are interested in the transition region, 1 < ng < 4, thus
we include those two strategies in our simulation and fixed
ng to values of 2 or3. Agents playing sATFT are also added
to the initial population, since they behave anti-cyclic, i.e.
they defect when the opponent cooperated in the previous
encounter and vice versa.

The apparent solution to describe the dynamics of the
system by an dynamical system approach works only for
the so-called mean-field case, which can be simulated by
a random interaction. I.e., each agent interacts with four
randomly chosen agents during each generation. In this case
the dynamics can well be described by a selection equation
of the Fisher-Eigen type [9]. The random interaction is also
used as a reference case, to point out diffences to the case
of local interaction described in the following.

The simulation are carried out on a 100 × 100 lattice
with periodic boundary conditions, in order to eliminate
spatial artifacts at the edges. Initially, all agents are ran-
domly assigned one of the three strategies. Defining the
total fraction of agents playing strategy s at generation G
as fs(G) = 1/N

PN

i=1
δθis, f0(0) = f1(0) = f6(0) = 1/3

holds for G = 0 (see also the first snapshot of Fig. 2).
Because each agent encounters with his 4 nearest neigh-

bors ng times during one generation, in each generation
(N/2 × ng × 4) indepentent and simultaneous deterministic
2-person games occur. Fig. 2 shows snapshots of the spatio-
temporal distribution of the three stategies for ng = 2,
while Fig. 3 shows snapshots with the same setting, but



for ng = 3.

G=0 G=1 G=2

G=4 G=22 G=150

Figure 2: Spatial-temporal distribution of three
strategies sD (black), sATFT (white), and gTFT
(gray) on a 100 × 100 grid for ng = 2.

G=1 G=2

G=4 G=11

Figure 3: Spatial-temporal distribution of three
strategies sD (black), sATFT (white), and gTFT
(grey) on a 100×100 grid for ng = 3. The comparison
with Fig. 2 elucidates the influence of ng.

For ng = 2, we see from Fig. 2 that in the very begin-
ning, i.e. in the first four generations, strategy sD grows
very fast on the expense of sATFT and especially on gTFT.
This can be also confirmed when looking at the global fre-
quencies of each strategy (see left part of Fig. 4). Already
for G=4, strategy sD is now the majority of the population
– only a few agents playing gTFT and even fewer agents
playing sATFT are left in some small clusters. Hence, for
the next generation we would assume that the sD will take
over the whole population. Interestingly, this is not the
case. Instead, the global frequency of sD goes down while
the frequency of gTFT starts to increase continuously until
it reaches the majority. Only the frequency of sATFT stays
at its very low value. On the spatial scale, this evolution is
accompanied with a growth of domains of gTFT that are fi-
nally separated by only thin borders of agents playing sD (cf
Fig. 2 for G = 150). The reasons for this kind of crossover
dynamics will be explained later.

When increasing the number of encounters ng from 2 to
3, we observe that the takeover of gTFT occurs much faster.
Already for G = 13, it leads to a situation where all agents
play gTFT, with no other strategy left. Hence, they will
mutually cooperate. The fast takeover is only partly due to
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Figure 4: Global frequencies fs(G) of the three
strategies for ng = 2 (left) and ng = 3 (right). For
the spatial distribution, see Fig. 2 and Fig. 3, re-
spectively.

the fact that the total number of encounters during one gen-
eration has increased. The main reason is that for ng = 2
agents playing sATFT are able to locally block the spreading
of strategy gTFT, while this is not the case for ng = 3. This
is because both of the ng dependence of the agent’s payoff
and the local configuration of players: for ng = 2, there is
only one local configuration where strategy gTFT can invade
sATFT, because of the higher payoff. After this invasion,
however, the preconditions for further invasion have van-
ished. For ng = 3, this situation is different in that there are
more local configurations, where gTFT can invade sATFT.
This in turn enables the further takeover. The crossover
dynamics mentioned in conjunction with Fig. 4 can be ex-
plained in a similar manner. For ng = 2 gTFT can not
spread initially because of agents playing sATFT. Only sD
is able to invade sATFT and gTFT, therefore its frequency
increases. Once sATFT is removed, gTFT can spread [11].

5. GLOBAL PAYOFF DYNAMICS
The adaptation of strategies by the agents is governed by

the ultimate goal of reaching a higher individual payoff. As
we know from economic applications, however, the maxi-
mization of the private utility does not necessarily mean a
maximization of the overall utility. So, it is of interest to
investigate also the global payoff and the dynamics of the
payoffs of the individual strategies [5].

The average payoff per agent ā is defined as:

ā =
1

N

N
X

i=1

ai(θi) =
X

s

fs(G) · ās ; ās =

P

i
ai(θi)δθis

P

i δθis

(7)
where fs(G) is the total fraction of agents playing strategy
s and ās is the average payoff per strategy, shown in Fig. 5
for the different strategies.
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Figure 5: Average payoff per strategy, ās, eq. (7),
vs. time for ng = 2 (left) and ng = 3 (right)

We note that the payoffs per strategy for the 2-person



games are always fixed dependent on ng . However, the aver-
age payoff per strategy changes in the course of time mainly
because the local configurations of agents playing different
strategies change. For ng = 2, we have the stable coexis-
tence of all three strategies (cf Fig. 2 and Fig. 4left), while
for ng = 3 only strategy gTFT survives (cf Fig. 3 and Fig.
4right). Hence, in the latter case we find that the average
payoff of gTFT reaches a higher value than for ng = 2, while
in Fig. 5 the corresponding curves for the other strategies
simply end, if one of these strategies vanishes.

Eventually, the average global payoff is shown in Fig. 6 for
different values of ng . Obviously, the greater ng , the faster
the convergence towards a stationary global value, which is
ā = 3 only in the “ideal case” of complete cooperation. As we
have already noticed, for ng = 2 there is a small number of
defecting agents playing either sD or sATFT left, therefore
the average global payoff is lower in this case.
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Figure 6: Average global payoff ā, eq. (7), vs. time
for different values of ng.

6. EXTENSIONS AND CONCLUSIONS
In this paper, we have investigated the spatial-temporal

distributions of agents playing different strategies in an it-
erated Prisoner’s Dilemma game. Their interaction is re-
stricted to the four nearest neighbors, hence, local configu-
rations are of great influence. Particular importance was on
the investigation of the number of consecutive encounters
between any two agents, ng . For the case of three strate-
gies, we find that a critical value of ng exists above which
no coexistence between agents playing different strategies
is observed. Hence, the most successful strategy, i.e. the
one with the highest payoff in an iterated game, gTFT, is
eventually adopted by all agents. This confirms the findings
of Axelrod [1] also for the spatial case. Below the critical
ng , we find a coexistence between cooperating and defecting
agents, where the cooperators are the clear majority (playing
gTFT), whereas the defectors play two different strategies,
either sD or sATFT. In both cases, we observe that the share
of gTFT in the early evolution drastically decreases before
it eventually invades the whole agent population.

We notice, however, that this picture holds only for a ran-
dom initial distribution of strategies. It can be shown [11]
that there are always specific initial distributions of strate-
gies where gTFT fails to win. An interesting question is
also under what conditions gTFT is not the most success-
ful strategy any more. This is of particular interest if one
considers the case where all eight strategies are present in
the initial population. In [10] we have investigated this
more complex case with ng = 2. In contrast to the case
of three strategies (gTFT, sD, sATFT) which all coexist for
ng = 2, we observe the coexistence of either two strategies

(gD, sTFT) or three strategies (sD,gD,gTFT) (given in or-
der of frequency) in the final state. In particular, the most
known strategy gTFT will usually become extinct, which is
certainly different from the expected behavior.

A second point to be mentioned, we find for different runs
with the same initial conditions different outcomes of the
simulations. Hence, random deviations may lead the global
dynamics to different attractors. Thus, local effects seem
to be of great influence for the final outcome. This proves
our point made at the end of Sect. 2, that path dependence
plays an important role in the dynamics and the evolution-
ary game cannot be completely predicted. A more through
analysis of the game three strategy game is given in [11],
whereas [9, 10] concentrate on the eight strategy case.

Eventually, we note an important insight about spatial
IPD [11]: Given a specific ng, one can analytically deduce
from the payoff matrix that the payoff of agent i playing
strategy θi is always the same if it encounters with agent j
playing particular strategies θj ∈ s. These particular strate-
gies can be grouped into certain classes, that yield the same
payoff to agent i. For instance, for ng = 2 it makes no differ-
ence for an agent playing strategy sD (s = 0) to play either
against sATFT, sC, gD or gTFT (s = 1, 3, 4, 6), while for
ng = 3 the same is only true for sATFT and sC.
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