
A Prune-Based Algorithm for Computing Optimal Coalition
Structures in Linear Production Domains

Chattrakul Sombattheera
Decision Systems Lab

School of IT and Computer Sience
University of Wollongong, NSW 2500

Australia

cs50@uow.edu.au

Aditya Ghose
Decision Systems Lab

School of IT and Computer Sience
University of Wollongong, NSW 2500

Australia

aditya@uow.edu.au

ABSTRACT
Computing optimal coalition structures is an important re-
search problem in multi-agent systems. It has rich applica-
tion in real world problems, including logistics and supply
chains. We study computing optimal coalition structures in
linear production domains. The common goal of the agents
is to maximize the system’s profit. Agents perform two
steps: i) deliberate profitable coalitions, and ii) exchange
computed coalitions and compute optimal coalition struc-
tures. In our previous studies, agents keep growing their
coalitions from the singleton ones in the deliberation step.
This work takes opposite approach that agents keep prun-
ing unlikely profitable coalitions from the grand coalition.
It also relaxes the strict condition of coalition center, which
yields the minimal cost to the coalition, that agents merely
keep generating profitable coalitions. Furthermore, we dis-
cuss relevant concept, i.e., integer partition, that draw into
concept in our algorithm and provide an example of how it
can work. Lastly, we show that our algorithm outperforms
exhaustive search in generating optimal coalition structures
in terms of elapses time and number of coalition structures
generated.

1. INTRODUCTION
Coalition formation is an important area of research in

multi-agent systems. It studies the process and criteria that
lead to cooperation among agents. The process involves two
main inter-related activities: i) negotiation in order to ex-
change information among agents, and ii) deliberation in
order to decide with which agents should they cooperate.
Coalition formation research has its roots in the theory of
cooperative game [3, 4] in which a characteristic function
assigns each coalition a coalition value. A coalition value is
often economical value, such as money, that is assumingly
created jointly by the coalition. Such a value will be dis-
tributed as payoffs among coalition members. The focus of

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 2000 ACM 0-89791-88-6/97/05 ..$5.00

the study is on i) what the agents’ payoff should be, that
leads to ii) what coalitions would form. Agents in such a
setting are self-interested: they try to form coalition when
they foresee an opportunity to increase their payoffs. Most
of the studies in the theory of cooperative game operate in
superadditive environment in which merging of two coali-
tions yields a new coalition value of at least as equal to the
sum of the two coalition values.

However, the assumption of characteristic function is some-
what impragmatic that it leads to the ignorance of the pro-
cess of forming coalitions. Also, the assumption of superad-
ditive environment is not always true in various real world
settings, taking into account multiple factors, including the
c ost of coalition. Coalition formation research in multi-
agent systems [6, 7, 9, 10, 8] leaves such assumptions but
takes into account reality. This usually involves various fac-
tors and a large number of agents. Thus coalition formation
becomes a very complex process. There is a large number of
messages to be sent across while negotiating and there is a
large number of coalitions to be considered while deliberat-
ing. A strategy to reduce such complication in negotiation
is that agents focus on deliberation: generate a list of po-
tential coalitions, yet to be agreed upon by agents, that are
likely to be formed [8]. Most of coalition formation studies in
multi-agent systems involves self-interested agents and are
highly successful [6, 7, 9, 10, 8].

Coalition formation among fully-cooperative agents is also
an important, yet to receive more attention, area of research
in multi-agent systems. The common goal of agents is to
maximize the system’s utility–agents are to form coalitions
such that the sum of the coalition values is maximal. This
problem is known as finding optimal coalition structure (see
section 2.2). It has rich application in real world settings,
including logistics and supply chains, grid computing sys-
tems, and composite web services. These settings usually
involve a large number of agents that makes the problem in-
tractable for even a small number of agents (see section 2.2).
A handful of previous studies assume the existence of char-
acteristic function [6, 1]. Although they have achieved high
performance algorithms, they still rely heavily on the exis-
tence of characteristic function. This makes the algorithms
impragmatic as mentioned above. For a system of m agents,
generating all coalition values (due to the non-existence of
characteristic function) of m agents is exponentially com-
plex, i.e., 2m, and can also be intractable for even a reason-
ably small number of m—let alone the problem of finding

optimal coalition structures.
To our knowledge, our previous work [11, 12] is the only

attempt to tackle the problem of finding optimal coalition
structure with realistic assumption, i.e., the non-existence of
characteristic function and non-superadditive environment.
They propose a deliberation algorithm that helps reduce
the number of coalitions generated. Each agent generates
profitable coalitions. From it’s singleton coalition, it keeps
adding profitable members based on existing resources of the
coalition. The coalition grows until it cannot produce profit
anymore. This work is different in various ways. Firstly, it
takes the opposite approach: each agent keeps pruning least
profitable agents from it’s grand coalition. Secondly, it re-
laxes the strict condition of coalition center [11] that agents
merely keep generating profitable coalitions. Thirdly, we in-
troduce pattern into coalition structure generation. Lastly,
we propose a concrete algorithm in for generating coalition
structures. We also provide an example of how it can work.

The outline of this paper is as follows. We restate the
problem domains and discuss about related issues in opti-
mal coalition structure. We then discuss the deliberation,
coalition structure generation and example. Then we dis-
cuss about the experiment, show empirical results. Lastly,
we discuss related work which followed by conclusion and
future work.

2. COALITION FRAMEWORK

2.1 Coalition in Linear Production Domains
We remodel Owen’s work [5] as in our previous work.

For the sake of completeness, we restate our model below.
Let A = {a1, a2, . . . , am} be a set of agents, whose goals are
to maximize the system’s profit. Let R = {r1, r2 . . . , rn}
be the set of resources and G = {g1, g2, . . . , go} be a set
of goods. Resources themselves are not valuable but they
can be used to produce goods. The linear technology ma-
trix L = [αij]n×o, where αij ∈ Z

+, specifies the units of
each resource ri ∈ R required to produce a unit of the good
gj ∈ G. The goods can be sold to generate revenue for the
system. The price of each unit of goods produced is speci-
fied by the vector P = [pj]1×o. Each agent ak ∈ A is given
a resource bundle bk = [bk

i]n×1. In this setting, agents try
to cooperate, i.e. form coalitions, in order to pool their re-
sources, thus increase revenue for the system. A coalition
S ⊆ A has a total of bS

i =
P

k∈S
bk
i of the ith resource. Each

coalition S can use their resources to produce any vector
x = 〈x1, x2, . . . , xo〉 of goods that satisfies the constraint:

X

αijxi ≤ bS
i

and

xj ≥ 0

The cooperation cost among agents is specified by the ma-
trix C = [ckl]m×m, which assigns a cooperation cost between
each pair (ak, al) of agents such that ckl ∈ Z

+if k 6= l,∈ {0}
otherwise. Agents in the coalition S have to find a vector x
to maximize the revenue accruing to a coalition. Let

PS =
o
X

l=1

plxl.

be the maximal revenue the coalition can generate. Here,
we introduce virtual coalition center. Each agent ak ∈ S

can assume itself a coalition center and computes the virtual
coalition cost.

Ck
S =

X

l∈S

ckl.

The virtual coalition value υk
S computed by ak is

υk
S = PS − CS.

Each agent then can exchange the virtual coalition value.
The maximal virtual coalition value is, of course, the coali-
tion value, υS. Any agent ak who yields the maximal virtual
coalition value can be a coalition center.

2.2 Optimal Coalition Structures
Once all agents agree to form coalitions, they can be

viewed as a set has been partitioned into mutually disjoint.proper
subsets. Each subset is a coalition, S ∈ A. Since a coalition
is merely a subset, we shall use the term cardinality to refer
to the size of the coalition. The set of all agents itself is
called the grand coalition. Each instance such a partition
is known as a coalition structure, CS. In our setting, the
coalition value is independent of the actions of other agents
outside the coalition. The value of each coalition structure

V (CS) =
X

S∈CS

υS

indicates the system’ utility yielded by that partitioning.
Let L be the set of all coalition structures. The goal of co-
operative agents in coalition formation [6, 2] is to maximize
the system’s utility. That is agents are to find at least a
coalition structure CS∗ such that

CS∗ = argmaxCS∈LV (CS)

In the literature, coalition structures are laid down into
m layers. Each layer Lκ, where 1 ≤ κ ≤ m, is composed
if coalition structures, whose number of coalition are equal
to κ. We shall call the of number of coalitions within each
coalition structure the size of the coalition structure. The
number of coalition structures within each layer Lκ is known
as the Stirling number of the Second Kind :

S(m, κ) =
1

κ!

κ−1
X

ι

(−1)ι

κ

ι

!

(κ− ι)m

Hence, the number of all coalition structure is

|L| =
m
X

κ=1

S(m,κ)

Computing the optimal coalition structures in a non-superadditive
environment is non-trivial [6]. Sandholm et. al. show that
it is NP-hard [6]. Due to the large search space, existing al-
gorithms can generate coalition structures which are within
a certain bound from optimal and will get closer as the algo-
rithms proceed. This work assumes non-superadditive envi-
ronment and non-existence of characteristic function. Each
coalition value is not known a priori. Thus agents have to
compute all coalition values first. Given a set of m agents,
there are 2m possible subsets, hence the complexity of com-
puting all coalition structures is substantially worse.

2.3 Best Coalition and Coalition Structure Pat-
tern

In previous studies [6, 2], coalition structures are gener-
ated based on the size of coalition structures and the car-
dinality of the coalitions. It appears that the search space
is very large. Here, we try to reduce the search space. For
each cardinality, each agent tries to do local search for a
small number of coalitions. Firstly, we define the agent ak’s
best coalition for the cardinality κ the coalition Sκ

k , whose
members include ak, that is found from a search within a
given time and yields the maximal υS. Within the same
cardinality, the next coalition that yields the second highest
coalition value is second best coalition, and so on.

We introduce the pattern of generating coalition struc-
tures. A pattern of a coalition structure describes the num-
ber of coalitions and their cardinalities in the coalition struc-
ture. It is written in the form

B1 + B2 + . . . + Bκwhere
κ
X

ι=1

Bι

This work proposes coalition structure pattern in break-
ing manner as the followings. Given a set of 6 agents, the
first pattern is 6 in layer L1. There can be just one coali-
tion, which is the grand coalition, whose cardinality is 1. In
the next layer, L2, the grand coalition will be broken into
2 coalitions by splitting a member from the grand coalition
into the new coalition. Hence the pattern is 5 + 1. The next
pattern is 4+2 and 3+3. The pattern in each layer cannot
grow once the difference between each pair of coalition’s car-
dinality is ≤ 1. Then the pattern grows into the next layer,
i.e., 4 + 1 + 1, 3 + 2 + 1, 2 + 2 + 2. The last pattern is
obviously 1 + 1 + 1 + 1 + 1 + 1. The full patterns for 6
agents are shown below:

No. of coalitions 1 2 3 4
Patterns 6 5 + 1 4 + 1 + 1 3+1+1+1

4 + 2 3 + 2 + 1 2+2+1+1
3 + 3 2 + 2 + 2

No. of coalitions 5 6
Patterns 2+1+1+1+1 1+1+1+1+1+1

Agents can use best coalitions to generate coalition struc-
tures by following these patterns. By using the best coali-
tions alone, agents will achieve some coalition structures
whose best one will be close to the optimal one. Using more
coalitions, i.e., the second, third best and so on, coalition
structure values can be improved.

3. ALGORITHM FOR GENERATING COALI-
TION STRUCTURE

Each agent has to do two steps of deliberation: i) Prun-
ing: deliberate over what coalitions it might form by delet-
ing unprofitable coalition members from the grand coali-
tion, and ii) Generating: exchange coalitions generated and
use the breaking pattern to generate coalition structures.
The sets of such coalitions are at least close to the opti-
mal coalition structures. The main goal of the algorithm
is to reduce search space for finding the optimal coalition
structures. This can be achieved by reducing the number of
coalitions to be considered.

3.1 Deliberating Process
We take opposite approach our previous algorithms [11,

12] for agents’ deliberation. We explain the ranking trees

that are used as infrastructure in the early stage of the de-
liberation. Each agent ranks other agents based on their
suitability to be coalition members. Then we will explain
the extended part where each agent tries to shrink its coali-
tions.

In the following, we will identify a coalition by the identi-
fier of agent ak. Thus the coalition Sk refers to a coalition
being consider by agent ak. Hence bS represents the re-
source vector of Sk. Given a coalition Sk, let Gk refer to
the set of goods whose resource requirements are fully or
partially satisfied by bS, the resources available in Sk (ex-
cluding goods whose resource requirement might be trivially
satisfied because these are 0). For each good gj ∈ Gk, the
coalition center agent ak ranks agents not currently in its
coalition on a per good basis. For each resource ri of good
gj , agent ak ranks non-member agents by computing for
each al /∈ Sk, whose bl

i > 0, the value πj
i —its proportional

contribution to the profit of the good (using its fraction of
the resource requirements for that good provided by the al)
minus the (pair-wise) collaboration cost between al and ak,
i.e.,

πj
i =

bl
i

αij

pj − ckl.

The agent ak uses this proportional contribution πj
i to con-

struct a binary tree for each gj . The only child of the root
gj is the first resource α1j , whose left child is the second re-
source α2j , and so on. For each αij , its right child is either
i) null if αi

j = 0, or ii) the agent ari
1st, whose piji value is the

greatest. The right child of ari
1st is the agent ari

2nd, whose πj
i

value is the second greatest, and so on. Agent ak can use
these tree to eliminate surplus agents.

The agent ak uses bS to determine surplus resources not
used to produce additional units of a good gj . For each
gj ∈ Gk and resource ri,

βj
i = bS

i − I(αij),

where I ∈ Z
+ is the smallest integer such that βj

i > 0,
represents the surplus amount of ri that coalition Sk does
not use to produce good gj , provided the amount is non-
negative (β = 0 otherwise). The indicative vector, βj =
[βj

i]1×n, represents surplus units of each resource ri of good
gj .

In this paper, the agent ak creates the grand coalition
and tries to shrink it by pruning least profitable members.
The agent utilizes indicative vectors βjs and the the tree
T j in order to locate the agent who is the least useful to
its present coalition. For each good, the positive value of
βj

i in the indicative vector indicates surplus resource that
the agent who possesses the equivalent resource should be
eliminated from the present coalition. The agent ak create
a trial coalition S′ for each good. The surplus agents will be
eliminated from S for the next smaller quantity of the good
possible. Each trial coalition will be inserted into the prun-
ing members S−. The sub-algorithm for selecting profitable
members is shown in algorithm 1.

In the main algorithm, the agent ak considers itself a sin-
gleton coalition at the beginning of deliberating. It create
the ranking tree T G of all agent for each good. At this point
it is only root of the profitable-coalition tree, L−, and is the
base of the growing coalition. It prune the pruning agents
S− from the coalition. Each S′

j ∈ S− will be added as the
children of the base coalition. Among all S′

js, the most prof-

Algorithm 1 Select the most profitable members

Require: A coalition S
Require: ranking trees T G

set highest profit υ∗ = 0
set pruning members S− = S
for all gj ∈ G do

if S is not capable of producing gj then

continue
end if

get surplus agents S′

set trial coalition S′

j = S ∪ S′

j

compute trial coalition’s profit υS′

j

set S− = S− ← S′

j

end for

return S−

itable agents S∗ are those that provide the highest additional
profit υ∗ and are kept as the base for the further growing
coalition. The coalition keeps shrinking in this fashion until
there are no pruning members left in T G. Then the next
profitable sibling of the base S′

j will be the new base. This
repetition goes on until it cannot find the new base. The
number of coalitions each agent ak has to maintain is also
much smaller compared to that of the exhaustive search.
The main algorithm is shown in algorithm 2.

Algorithm 2 Main

set L− = N
create ranking trees T G for all goods
collect pruning members S−

while S− 6= ∅ do

locate S∗ ∈ S−

set A′ = A′ − S∗

set S = S ∪ S∗

set L− = L− ∪ S
collect pruning members S+

if S+ = null then

set S∗ = the next profitable sibling ofS∗

end if

end while

3.2 Generating Coalition Structure
Once each agent finishes its deliberation in the first stage,

it exchanges all the coalitions generated with all other agents.
It then uses the pattern to generate coalition structures.
Start with the best coalitions, it follows the patters layer
by layer from left to right and from top to bottom in each
layer. For each pattern, the agent will choose a combination
of it’s own best coalitions and those it received from other
agents to generate coalition structures. For example, with
a pattern of 4 + 3 + 2, the agent will place it’s best coali-
tion of cardinality 4 as the first coalition of that coalition
structure. One of the best coalitions of cardinality 3, whose
members are not in the first coalition, will be placed as the
second coalition. One of the best coalitions of cardinality
2, whose member is not in the first two coalitions will be
placed as the coalition structure as the last coalition. In
the case the agent can not find appropriate coalitions to fit
in, it places an empty set instead. The coalition structure
value is the sum of those coalition values. In each round of

proceeding through all patterns, agent can extend the scope
of best coalitions involved one by one. It, for example, gen-
erates the coalition structure using the only best coalitions
in the first round. It then use the best plus the second best
coalitions for the second round, and so on. The following is
the algorithm for generating coalition structures is shown in
algorithm 3:

Algorithm 3 Generating Coalition Structures

exchange best coalitions with all other agents
sort coalitions for each cardinality by their coalition values
in descending order
generate patterns for each layer
set bestcoal to 1
while time is available do

insert the bestcoal coalitions for each CScardinality
for all layers do

for all patterns do

generate combinations of best coalitions in CScar-
dinality

end for

end for

increase bestcoal by 1
end while

3.3 Example
This section gives an example of how this algorithm works.

Let the system is composed of a set of four agents: A =
{a1, a2, a3, a4}. After the first deliberation process, all the
coalition values are computed and sent across. Their values
are as the followings:

v1 = 8 v12 = 13 v123 = 21 v1234 = 22
v2 = 12 v13 = 16 v124 = 23
v3 = 13 v14 = 10 v134 = 16
v4 = 6 v23 = 18 v234 = 19

v24 = 20
v34 = 15

After exchanging the coalitions generated among each other,
each agent can select for each cardinality it’s best coalition.
Let assume that agents only operate on the best coalitions.
Agents’ best coalitions are as the followings:

Cardinality a1 a2 a3 a4

1 v1 v2 v3 v4

8 12 13 6
2 v13 v24 v23 v24

16 20 18 20
3 v124 v124 v123 v124

23 23 21 23
4 v1234 v1234 v1234 v1234

22 22 22 22

For the system of 4 agents, the breaking patterns of coali-
tions are as the followings:

No. of coalitions 1 2 3 4
Patterns 4 3 + 1 2 + 1 + 1 1+1+1+1

2 + 2

Using the algorithm in the second deliberation process,
each agent’s coalition structures computed are shown below.
Each agent will achieve the same optimal coalition structure
whose value is 41.

a1

CS1234 = 22
CS124,3 = 23 + 13 = 36
CS1,234 = 8 + 0 = 8
CS13,24 = 16 + 20 = 36
CS13,2,4 = 16 + 12 + 6 = 34
CS1,23,4 = 8 + 18 + 6 = 32
CS1,2,34 = 8 + 12 + 0 = 20
CS∗

1,3,24 = 8 + 13 + 20 = 41
CS1,2,3,4 = 8 + 12 + 13 + 6 = 39

a2

CS1234 = 22
CS124,3 = 23 + 13 = 36
CS2,134 = 12 + 0 = 12
CS24,13 = 20 + 16 = 36
CS∗

24,1,3 = 20 + 8 + 13 = 41
CS2,13,4 = 12 + 16 + 6 = 34
CS2,3,14 = 12 + 13 + 0 = 23
CS2,1,34 = 12 + 8 + 0 = 20
CS1,2,3,4 = 8 + 12 + 13 + 6 = 39

a3

CS1234 = 22
CS123,4 = 21 + 6 = 27
CS3,124 = 13 + 23 = 26
CS23,14 = 18 + 0 = 18
CS23,1,4 = 18 + 8 + 6 = 32
CS∗

3,1,24 = 13 + 8 + 20 = 41
CS3,2,14 = 13 + 12 + 0 = 25
CS1,2,3,4 = 8 + 12 + 13 + 6 = 39

a4

CS1234 = 22
CS124,3 = 23 + 13 = 39
CS4,123 = 6 + 21 = 27
CS24,13 = 20 + 16 = 36
CS∗

24,1,3 = 20 + 8 + 13 = 41
CS4,13,2 = 6 + 16 + 12 = 32
CS4,23,1 = 6 + 18 + 8 = 32
CS1,2,3,4 = 8 + 12 + 13 + 6 = 39

4. EXPERIMENT
We conduct experiment by simulating agents executing

our algorithm against exhaustive search within the range
of 20 − 50 agents due the the limitation to run exhaustive
search. We compare the performance of both algorithms in
terms of number of partitions generated and elapsed time
of generating best coalition structures. In each round, the
agents number increases by 5. The number of goods and re-
sources are equal, begins from 3 and increase by 1 in every
2 rounds. The technology matrix, agents’ resources and co-
operation costs among agents are randomly generated with
uniform distribution. The number of each resource αij in
the technology matrix is in the range 0 − 10. The prices
of the goods are in the range of 10 − 20 while the coopera-
tion costs are in the range of 0 and the number of agents in

10
0

10
10

10
20

10
30

10
40

10
50

Number of Agents

N
um

be
r

of
 C

oa
lit

io
n

S
tr

uc
tu

re
s E

lapsed Tim
e F

or G
enerating

O
ptim

al C
oalition S

tructures

10
0

10
2

10
4

10
6

10
8

10
10

0 10 20 30 40 50

No of Coalition Structures
by Exhaustive Search

No of Coalition Structures
by Our Algorithm

Elapsed Time for Generating
Partitions by Exhaustive Search

Elapsed Time for Generating
Partitions by Our Algorithm

Figure 1: This graph shows the number of coalition

structures generated and elapsed time for generat-

ing the coalition structures of our algorithm against

those of exhaustive search.

that round, e.g., 10, 15, We test our algorithm with the
5th best coalitions only. As our algorithm deals with non-
superadditive environments, this setting tends to increase
the cooperation cost of a coalition as its size grows. Hence
it forces agents to work harder to form profitable coalitions
and to achieve optimal coalition structures. Both algorithms
uses the Simplex algorithm to find the optimal solution for
each coalitions. Figure 1 compares the performance of our
algorithm against that of exhaustive search. The left x-axis
is the number of coalition structures generated while the
right x-axis is the elapsed time spent for generating optimal
coalition structures in milliseconds. Since the data used
is randomly generated, we present average values of vari-
ous which constantly show signficant difference between re-
sults of the two algorithms. The empirical results show that
our algorithm performs significantly better than exhaustive
search. We experienced that exhaustive algorithm hardly
make progress after the number of agents is larger than 40.
As shown in the figure, the number of coalition structures
generated by exhaustive algorithm is much larger than that
of our algorithm. Furthermore, the elapsed time for gen-
erating optimal coalition structures of exhaustive search is
also much larger than that of our algorithm.

5. RELATED WORK
Shehory et. al [8] propose an algorithm to allocate tasks

to agents in distributed problem solving manner, i.e., agents
try to maximize the utility of the system. They consider a
domain where a task composed of multiple subtasks, each of
which requires specific capacity. These tasks have to be car-
ried out by agents who have specific capacities to carry out
tasks. Each agent prepares its list of candidate coalitions
and proposes to other agents. Shehory et. al. [9] study
overlapping coalition formation in distributed problem solv-
ing systems in non-superadditive environments. Although
agents can belong to multiple coalitions at the same time,
agents execute one task at a time. The task allocation pro-
cess is completed prior to the execution of the tasks. Agents
are group-rational, i.e., they form coalition to increase the
system’s payoff. Sandholm et. al. [7] analyze coalition
formation among self-interested agents who are bounded-
rational. They consider deliberation cost in terms of mone-

tary cost. The agents’ payoffs are directly affected by delib-
eration cost. In their work, agents agree to form coalition
and each of the agents can plan to achieve their goals. Soh
et. al. [10] propose an integrated learning approach to
form coalition in real time, given dynamic and uncertain
environments. This work concentrates on finding out po-
tential coalition members by utilizing learning approach in
order to quickly form coalitions of acceptable quality (but
possibly sub-optimal.) Sandholm et. al. [6] study the
problem of coalition structure generation. Since the num-
ber of coalition structures can be very large for exhaustive
search, they argue whether the optimal coalition structure
found via a partial search can be guaranteed to be within a
bound from optimum. They propose an anytime algorithm
that establishes a tight bound withing a minimal amount of
search.

6. CONCLUSION AND FUTURE WORK
We propose an algorithm for computing optimal coali-

tion structure for linear programming domains among fully
cooperative agents. Our algorithm tries generate best coali-
tions by pruning the least profitable from the grand coali-
tion. Then the coalitions generated will be exchanged among
agents. Lastly, agents use coalitions exchanged to generate
coalition structure. The empirical results show that our al-
gorithm help generate the optimal coalition structures much
faster than exhaustive search. Our algorithm dramatically
reduces the number of coalitions generated hence reducing
the number of coalition structures. As a result, the elapsed
time of generating the coalition structures is relatively small.

Although this algorithm helps reduce number of coalitions
involved in generating optimal coalition structures, there is
always rooms to improve. We want to further improve our
algorithm for larger number of agents, for example, up to
1000 agents. Lastly, we want to study this problem in related
domains, e.g., non-linear programming.

7. REFERENCES
[1] V. D. Dang and N. R. Jennings. Generating coalition

structures with finite bound from the optimal
guarantees. In Proc. of AAMAS-2004, 2004.

[2] V. D. Dang and N. R. Jennings. Generating coalition
structures with finite bound from the optimal
guarantees. In Third International Joint Conference
on Autonomous Agents and Multiagent Systems -
Volume 2 (AAMAS’04), pp. 564-571, 2004.

[3] J. P. Kahan and A. Rapoport. Theories of Coalition
Formation. Lawrence Erlbaum Associates, Hillsdale,
New Jersey, 1984.

[4] J. V. Neumann and O. Morgenstern. Theory of Games
and Economic Behaviour. Princeton University Press,
Princeton, New Jersey, 1953 (1963 printing).

[5] G. Owen. On the core of linear production games.
Mathematical Programming 9 (1975) 358-370, 1975.

[6] T. Sandholm, K. Larson, M. Andersson, O. Shehory,
and F. Tohm. Coalition structure generation with
worst case guarantees. Artif. Intell., 111(1-2):209–238,
1999.

[7] T. Sandholm and V. Lesser. Coalition Formation
among Bounded Rational Agents. 14th International
Joint Conference on Artificial Intelligence, pages
662–669, January 1995.

[8] O. Shehory and S. Kraus. Task allocation via coalition
formation among autonomous agents. In Proc. of
IJCAI, pages 655–661, August 1995.

[9] O. Shehory and S. Kraus. Formation of overlapping
coalitions for precedence-ordered task-execution
among autonomous agents. In ICMAS-96, pages
330–337, December 1996.

[10] L.-K. Soh and C. Tsatsoulis. Satisficing coalition
formation among agents. In Proceedings of the first
international joint conference on Autonomous agents
and multiagent systems, pages 1062–1063. ACM Press,
2002.

[11] C. Sombattheera and A. Ghose. A distributed
algorithm for coalition formation in linear production
domain. In Proceedings of ICEIS 06, May 2006.

[12] C. Sombattheera and A. Ghose. A distributed
branch-and-bound algorithm for computing optimal
coalition structures. In Proceedings of the 4th Hellenic
Conference on Artificial Intelligence, May 2006.

