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ABSTRACT 
This articles reprises findings from hypergame work in Vane’s 
doctoral dissertation [Vane 2000] that are directly applicable to 
decision-theoretic (DT) and game-theoretic (GT), or simply, 
DTGT agents.  Hypergame theory meets many of the 
methodological requirements for bounded rationality agent 
research.  While this early hypergame work considered expected 
value and worst case scenarios (from adversarial uncertainty), 
additional work for US government stimulated scenarios added 
considerations for luck (best case scenarios).  Additionally, the 
effectiveness measure was refined to account for differences in 
the inherent robustness of each option/plan.  Both of these 
extensions support the needs of researchers of effective DTGT 
agents.  Discussions on context and evidentiary mechanisms are 
also included. 

Categories and Subject Descriptors 
I.2.8 [Problem Solving, Control Methods and Search]: DTGT 
agents represent an approach to reasoning in complex problem 
domains to accomplish objectives and reduce risks. 

General Terms 
Algorithms, Economics, and Theory. 

Keywords 
Hypergames, hypergame expected utility, uncertainty, contexts, 
and belief. 

1. INTRODUCTION 
Hypergame theory (HT) is all about attempting to model 
opponents and situations well.  It incorporates key features of 
both sides of the DT, GT debate.  Any model, such as HT, can be 
wrong, so an effectiveness measure was proposed that accounts 
for the spectrum from a decision maker’s complete certainty to 
complete uncertainty.  This continuum essentially blends decision 
theory’s strong reliance on knowledge about other players’ 
decision processes and game theory’s strong reliance on a model 

of the exact situation.  A fully effective plan is defined as one 
which is better than all other alternatives over the certainty-
uncertainty domain.  If any option/plan were fully effective it 
would always be the best alternative.  No plan is ever that good.  
However, the derived effectiveness measure, called Hypergame 
Expected Utility (HEU), may be a very useful DTGT plan 
selection mechanism. 

One plus for HT is its explicit commitment to representing 
different views of any competitive situation for each of the 
players.  HT explicitly breaks game theory’s requirement on 
consistent alignment of beliefs among opponents/players, which is 
needed for the calculation of Nash Equilibrium Mixed Strategies, 
hereafter NEMS.  Another plus is that plan dynamics reflected in 
the HEU effectiveness measure can be used to delay action and 
gather more information to attempt to reduce uncertainty by 
exploring plan vulnerabilities.  The additional reasoning in HT 
reduces the modeling parsimony of GT normal games, which can 
be a minus. 

Since competitive situations often include a number of factors 
which cause opponents to view the options and results of game 
situations differently, HT appears more suitable to real world 
situations.  Some of these considerations include: 

(1) Differences in player knowledge, expertise 
(2) Differences in player starting situation assessment 
(3) Differences in player on-going assessment capability 

(evidence processing) 
(4) Differences in player understanding of plan projection 

(what beats what?) 
(5) Differences in player information (both at the commitment 

phase and during the operations) 
(6) Differences in robustness, resilience of each player’s plans 
(7) Player Constraints because of time 
(8) Differences in player creativity (what tricks can be added) 

such as feints, hidden reserves, denial and deception 
operations 

These considerations motivate HT’s extension of the GT normal 
form to account for situational aspects that might arise in real 
competitive situations.   They will be referred to throughout the 
rest of the article as C-1 for consideration 1, when discussing 
variations from GT.  Considering all of these differences in the 
same way that game theory treats them would become perilously 
combinatoric.  Instead, an approach is used that accounts for 
much of the variability while not burdening either the modeling or 
computation ability of decision-makers or DTGT agents. 

 

 



Lastly, hypergame theory can be used to become more rigorous in 
checking hypotheses and stimulating new option generation.  
Because so many more of the features of the competitive situation 
are recorded, hypergame theory’s normal form can be used to 
evaluate the opportunity cost, potential for gain, and risk of loss 
that most competitive decisions should consider to be judged as 
wise.  More will be explained about these features in the 
discussion and findings sections. 

2. BACKGROUND 
The reader is presented the minimum number of seminal 
hypergame theory papers needed to understand this paper’s 
findings.  The first reference to Bennett’s hypergame theory was 
published in [Bennett, Dando 1979] as “Complex Strategic 
Analysis: A Hypergame Study of the Fall of France.”  In this 
article, the authors make a compelling case that strict use of game 
theory would have prevented the Germans from winning the May 
1940 campaign.  Instead the Germans did attack where France 
was the weakest.  Bennett and Huxham attempted to generalize 
HT in 1982.  The second is the research of Vane and co-authors to 
discover the general properties and limitations of HT.  All 
diagrams and formulae are presented in the Vane style for 
consistency. 

2.1 Birth of Hypergame Theory 
Four significant contributions occurred in Bennett and Dando’s 
work.  They are: a profound understanding of the dual nature of 
the perceptions of two organizations or game players, a GT 
mechanism for predicting each organization’s behavior, a 
realization that one side might achieve a result that vastly exceeds 
the GT value of the full game, and an implicit respect for the 
nature of adversarial outguessing.  Each of these contributions 
will be explained below. 
Cognitive psychological literature is rife with examples of how 
different contexts, past experiences, and cultural factors can 
change the effectiveness of intelligence analysts [Heuer 1999], 
military planners [Tolcott et al. 1989], and people in general 
[Nobel laureate Kahnemann 2002].  Bennett and Dando showed 
that considerations for the subgame that France was playing were 
important, even if it was not the full game that the Germans were 
considering.  They actively addressed the intuition that even 
fully-revealed games such as chess can be played very differently, 
conceptually.  They also showed a way to represent it.  
National defense plans are hard to create (C-7).  They require 
many staff officers to perform months of planning and 
documentation.  Therefore the Germans could reason that the 
French (they) would quickly realize that they could easily stop an 
attack through the Ardennes and they knew that the Germans 
would know that they could as well.  Thus by using a two-stage 
consistent knowledge of rationality, the French could create a 
subgame, calculated by applying the Nash Equilibrium Mixed 
Strategy (NEMS).  After all, there is a cost to developing a plan 
against an attack that will never come.  This creates the first GT 
normal game.  Using the German’s supposition that the French 
might exclude seriously planning against a German attack that 
they could easily thwart, the Germans created a German GT 
normal game with the added effects of surprise allowed.  Bennett 
and Dando used the probability calculations from the French 
subgame to evaluate the new German game, rather than applying 
the NEMS.  

HT actually frees the creative planner to attempt to exploit the 
thought processes of opponents, as does DT.  By doing this, 
Bennett and Dando replaced the original GT definition of player 
rationality, by substituting one which considers mistakes in 
valuation of the results, similar to C-4.  But the Germans also 
realized the inherent vulnerability of their plan to French 
disruption (C-6).  Thus, Bennett and Dando have the Germans 
calculate the probability that the French will defend in the 
Ardennes and prevent a breakout.  By deriving a French behavior 
probability based on game theory (rather than using a DT 
approach), Bennett and Dando showed that hypergame rationality 
had been accomplished by the Germans.  Furthermore, the 
Germans could anticipate a great victory if successful (C-8).  But 
they had to keep the French in the dark (C-5). 

Lastly, Bennett and Dando recognized that their model 
was not truth – the Germans were not guaranteed victory.  They 
pointed out that the German reasoning and French reasoning were 
rational.  They suggested that GT’s requirement for a full game 
does not allow deception, trickery, feints, and lures that cause 
opponent play to degrade.  Yet, they recognized that they had 
given up GT’s guarantee of the value of the game as the minimum 
expected result.  In fact the Germans could have been trounced. 

Unfortunately, their hypergame theory is only 
referenced in the literature three times outside of the original 
authors.  It was essentially ignored. 

2.2 Re-emergence of Hypergame Theory 
This section will concentrate on the results of Vane’s original 
hypergame research.  Hypergame theory did not catch on in the 
1980’s in the DT or GT community.  In fact, HT may still be in 
the intellectual backwaters.  But Vane and Lehner began to 
publish articles [Vane, Lehner 1990] about how HT could be used 
in military planning.  And Vane participated in GTDT Agents 
Workshop in 1999 in London [Vane, Lehner 2002] which was 
attached to the Fifth European Conference on Symbolic and 
Quantitative Approaches to Reasoning about Uncertainty 
(ECSQARU).  Around the time that Vane produced his 
dissertation, numerous intelligence and military planners were 
beginning to discuss asymmetric warfare and Osbourne and 
Rubinstein in “A Course on Game Theory” had penned that 
“Modeling asymmetries in abilities and perceptions of a situation 
by different players is a fascinating challenge for future research, 
which models of ‘bounded rationality’ have begun to tackle.” 

 HT is a model of bounded rationality.  HT is a 
representation of possibility and likelihood with an embedded 
representation of error.  The background material shows how two 
views of the same game can be incorporated in a hypergame 
normal form that records player options, adversarial and nature 
caused situations, predicted outcomes, possible reasoning contexts 
(even improbable ones), current evidence assessment, and the 
fears and expectations of the choosing player.  This section also 
includes a number of previous findings on different kinds of 
strategies that can be used to select plans using an HT 
representation. 
 Vane’s dissertation research explored 14 random 
generated four by four games with the following properties:  each 
four by four game had no row or column that was inferior to 
another row or column.  This fact encompasses two truths: (1) that 
every option for both players was usable.  (2) But the options, 
either row or column were not forced to be in the NEMS for the 



four by four, full game.  Since these were zero-sum, two-player 
games; the value in the matrix was the value to the Row player 
(and hence the negative of the value to the Column Player).  All 
sixteen, 3x3, subgames were evaluated for each, 4x4, full game.  
These games were to represent any m x n game and all arbitrary µ 
x ν subgames. 
The question was: What could we say about all of Row’s possible 
strategies?  The Row player could play game theoretically: the 
NEMS 3x3 for each subgame, or the NEMS 4x4 for the full game, 
or a NEMS 4x3 (eliminating the unavailable column); or decision 
theoretically by choosing a single row.  Because all possible 3x3 
subgames were evaluated, the goal was to discover the properties 
of such games with an eye towards generality.  In fact the 
evidence became so predictable that fifteen analytic results were 
proven [Vane 2000].  Some of the more important ones will be 
shared in this section.  An example of such a game is included in 
figure 1. 
It quickly became my hope that more of the information that 
needed to be shared with reviewers or peer decision-makers could 
be appended to the game, as a hypergame normal representation.  
Looking at the two games above, it was obvious that since they 
were actually both from the row player’s perspective then they 
could be superimposed.  While non-zero sum games were not 
envisioned in this research, subsequent decision-theoretic 
additions showed that any column player value system could be 
accommodated.  Thus, the hypergame normal form is a structured 
argument with utility values and beliefs attached. 
In the hypergame normal form in figure 2, both games are 
included in the game results portion (lower right hand).  As a 
reminder NEMS m x n solutions are stated as two vectors, the 
column player’s mixed strategy (CMS) and the row player’s 
mixed strategy (RMS).  These are made explicit in hypergame 
normal form.  Notice that the full game, 3x3, and 4x3 CMSs can 
be recorded as potential estimates of Column’s play.  Because of 

later work [Vane, Griffith 2005] these are now considered 
situational contexts in the upper right hand portion of the 
hypergame normal form.  An informational region (in the 
adjacent left side of the game) associated with the RMS for each 
context provides the row player with information on the NEMS 
solutions for each situational context.  These are rarely the choice 
that Row makes.  However, the upper left hand section is used to 
evaluate current evidence to determine which situational contexts 
are likely to be in play.  This probability vector also sums to one 
and weights how much each situational context is considered by 
the row player to be participating in the situational belief (context 
summary), CΣ.  Note that the RMS 3x3 is always less than the 
RMS 4x3, hence N/A, or not applicable. 
 

 Col. 
1 

Col. 
2 

Col. 
3 

Row 1 -2 -1 3 

Row 2 -1 4 -1 

Row 3 2 -3 -4 

Column Player Subgame 

 Col. 
1 

Col. 
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Col. 
3 

Col. 
4 

Row 1 -2 -1 3 -2 

Row 2 -1 4 -1 1 

Row 3 2 -3 -4 1 

Row 4 -2 -2 5 -5 

Row Player Full Game 
Figure 1.  Subgame and Full Game Reasoning 

 
 

    CΣ .58 .12 .30 0 
 0   CMS 4x3 .6 .15 .25  
  1  CMS 3x3 .58 .12 .30 - 
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EU(*,CΣ) 
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4x3 

RMS 
3x3 

RMS 
4x4 

Full Game Col. 
1 

Col. 
2 

Col. 
3 

Col. 
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0 (-.39) 0 .40 .31 Row 1 -2 -1 3 -2 
0 (-.39) .35 .26 .28 Row 2 -1 4 -1 1 
0 (-.39) .35 .34 .34 Row 3 2 -3 -4 1 
1 (.08) .3 - .07 Row 4 -2 -2 5 -5 

.08 
(1) 

-.27 N/A -.36 
(3) 

EU(*,CΣ)     

-.36 
(2) 

-.36 N/A -.36 
(4) 

EU(*,WC)     

Figure 2.  Four by Four Hypergame in Normal Form 
 
 
 
 



Hypergame theory includes a simple calculation of the worst case 
for any option and mixed strategy.  The worst case is the least 
result in the row for any option and the lowest expected value in a 
mixed strategy evaluation.  The maximum of the minimums is 
what GT proposes to guarantee; it raises the floor of one’s 
expectations and reduces the effects of outguessing.  Often GT is 
useful for pruning options that are mathematically dominated.  
But the rest of this article has been about how one might model 
and achieve better results than the best of the worst results (what 
maximin really means). 
The following equations are used to record the options as an m 
rows by n columns matrix U, CMS’s as probability vectors, 
RMS’s as probability vectors, and beliefs about the applicability 
of each CMS to the situation as a probability vector P.  These 
beliefs are summarized in CΣ, also a probability vector. 
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In a completed hypergame, CΣ represents the final accumulation 
of what the Row player believes about the entire situation – CΣ 
sits atop the hypergame as distilled competitive intelligence, 
factoring in the evidence and the Row player’s knowledge.  Row 
calculates which option is best in the Modeling Opponent (MO) 
column on the far left of figure 2 and uses values in the 
hypergame to compute the Row player’s predictions.  Four entries 
show what results are expected for a modeled opponent: what 
Row expects (1), the worst case (2), what the full game NEMS 
expects(3) and what the full game NEMS promised(4). The Row 
player also knows how much this additional thinking has 
improved the result expectations by adopting a non-NEMS 
solution or how much risk we have accepted in our pursuit for a 
higher than EU(NEMS(m, n)) result. 
By tradition the full game NEMS is calculated as CMS0 because it 
represents a starting point for this reasoning.  However CMS0 has 
another purpose as well.  When the Row Player can not assign all 
of the current situational belief to subgame CMS’s, then the full 
game receives the remaining belief (1- sum(P1..PK)).  This finding 
came from the GT definition of full game NEMS(m,n) as a “don’t 
know” condition.  Indeed any other assignment of such belief 
actually favors one option over another, which is counterintuitive 
to the spirit of uncertainty. 

2.3 How Rows and Columns Affect the NEMS 
Expected Utilities 
We should expect that adding new option represented by adding a 
row in the hypergame always preserves or increases the expected 
utility for the NEMS of the game. 

EU(NEMS(m, n)) ≤ EU(NEMS(m+1, n)) 
If an opponent ignores/excludes a column (one of the opponent’s 
options), the expected utility also preserves or increases for the 
NEMS of the new game 

EU(NEMS(m, n)) ≤ EU(NEMS(m, n-1)) 
What can be said about adding i rows and subtracting j columns?  
This action is the generalized result of the two steps. 
However, adding just one column or subtracting just one row 
makes the expected utility of the NEMS unpredictable. 

EU(NEMS(m, n) ?? NEMS(m+i, n+1) 
EU(NEMS(m, n) ?? NEMS(m-1, n-j) 

The rationale is that the subtracted row may be the most 
significant factor in preserving the vale of the EU(NEMS(m, n)) 
or it may be completely insignificant. 
Similarly, removing i rows or adding a j columns lowers the 
expected utility of the NEMS of a full m x n game. 

EU(NEMS(m-i, n)) ≤ EU(NEMS(m, n)) 
EU(NEMS(m, n+j)) ≤ EU(NEMS(m, n)) 

Likewise, subtracting just one column or adding one row may 
change the relationship, requiring an empirical determination. 

EU(NEMS(m, n) ?? NEMS(m-i, n-1) 
EU(NEMS(m, n) ?? NEMS(m+1, n+j) 

2.4 Hypergame Strategy Effectiveness 
Before hypergame theory was invented, game theory already 
provided a solution to such games – the Nash Equilibrium Mixed 
Strategy (NEMS).  The NEMS must be the “floor” for any 
hypergame strategy (hyperstrategy) to be deemed effective.  An 
effective hyperstategy provides at least the expected utility of the 
NEMS for the full game. 
A hyperstrategy, H, is effective if and only if the expected utility 
of the hyperstrategy and the summary of beliefs, CΣ, is greater 
than the expected utility of the full game Nash Equilibrium Mixed 
Strategy (NEMS(mxn)). 

( ) ( , ) ( ( ))Eff H EU H C EU NEMS m n∑↔ ≥ ×  

Thus, an effective hyperstrategy incorporates the Row player’s 
belief about the hypergame.  Practically, effectiveness was 
assessed by determining whether: 

EU(H, CΣ) ≥ EU(RMS(m x n),CΣ)  and  
EU(H,CMS(m x n)) = EU(RMS(m x n),CMS(m x n)) were 

satisfied. 
If the second term is not true and becomes 

EU(H,CMS(m x n)) < EU(RMS(m x n),CMS(m x n))  
then the hyperstrategy ceases being effective at some level of 
uncertainty.  Most hyperstrategies are partially effective.  
However, if any hyperstrategy is even partially effective; then the 



NEMS solution is actually suboptimal as the original hypergame 
researchers surmised. 

Four types of effective hyperstrategies exist: the NEMS(m x n), 
a default full game strategy; modeling opponent, which is the 
hyperstrategy that closely approximates decision theory; pick 
subgame, where the Row player chooses a NEMS solution based 
on all available rows but using less than all available columns; 
and weighted subgame, a blend of modeling opponent and pick 
subgame hyperstrategies.  One of the results of Vane’s doctoral 
dissertation was to show that the weighted subgame hyperstrategy 
always performs worse than a combination of the other three 
hyperstrategies based on the player’s estimate of uncertainty. 

2.5 Hypergame Expected Utility and 
Uncertainty 
A hypergame is a model of belief, but it is not a guarantor of 
results.  This small section reviews the fact that any game 
theoretic or decision theoretic model can be wrong and how 
wrong it can be.  In the explanation of the hypergame normal 
form, the reader was introduced to the worst case calculation. 

( , ) ( , ) (1 ) ( , ) ( )HEU s g EU s C g EU s WC gΣ= ⋅ − + ⋅ , 
where s represents the strategy being plotted and g represents 
the uncertainty associated with the hypergame (as a 
normalized probability in the range 0 to 1).  CΣ is the 
summary of belief and WC is the worst case result. 

See figure three to observe the plot of the HEU formula over 
uncertainty from zero to one for MO vs. NEMS full game.  The 
shaded area shows an advantage over GT for Row. 
HEU creates a mathematical bridge between DT and GT. By 
incorporating a variable that represents the planner’s fear of being 
outguessed.  When the planner has no fear of being outguessed, 
then the HEU resembles DT.  When the planner is in complete 
fear of being outguessed then the HEU resembles GT.  Please 
notice how the HEU plot shows the current breakpoint for 

uncertainty of the Row player needed to select the Model 
Opponent hyperstrategy.  Model Opponent hyperstrategies are 
almost always a single row from the hypergame.  When the EU(*, 
CΣ) of two rows are exactly equal, then the Row player should 
choose the row with the best worst case. 

3. DISCUSSION 
The original work was done to explore the properties of 
hypergame theory, particularly about how adding a “new option” 
for the Row player or constraining the Column player to a proper 
subgame affects analytical results.  Several new aspects of game 
theory were discovered, as well as a compact representation – 
hypergame normal form.  Since then, I have been privileged to 
receive funding for several additional adversarial/competitive 
research projects. 
This section discusses why I consider game theory as a last resort 
prescription; how HT supports reasoning about luck and option 
robustness; and lastly how HT might prevent cognitive bias by 
better representing situational beliefs, evidence monitoring, 
consensus gathering, and game eliciting.  HT can become the 
defacto standard for structured arguments for developing trust 
among reasoners or facilitating dialogue about important 
decisions in groups.  HT would ascend to the popularity of Multi-
Attribute Utility Analysis (DT) for such activities. 

3.1 Game Theory as a Last Resort 
Prescription 
It was discovered that game theory is seldom a prescriptive theory 
for play.  Instead it helps us to identify options that are 
mathematically dominated by combinations of other options.  
Sometimes this eliminates all other options, but one – where it 
becomes a prescription by elimination.   
In fact any option in the mixed strategy always results in the exact 
value of the game if played against a player ascribing to the 
strategy of playing a full game NEMS.  Semantically this makes 
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sense.  If your opponent is willing to remove his “volitional” 
decision-making mathematically, then playing any strategy not 
“ruled out” by NEMS earns the expected utility of the NEMS 
solution. 
One example is of playing the game rock-paper-scissors with 
equal probability against a child who always plays “rock”.  Since 
rock is in the NEMS mix; the child “wins”, “draws,” and “loses” 
as often as the GT playing adult.  The child could blithely assume 
that being completely transparent in a strategy game is effective, 
or that “rock” is a really great strategy.  HT offers an alternative 
of using paper to win more often, that would stimulate the child to 
learn something about strategies. 

3.2 Reasoning about Luck 
In figure four, an expanded HEU plot over Vane’s dissertation 
was developed.  There are two primary regions based on the x-
axis related to certainty that tend towards uncertainty to the right 
and serendipity to the left.  Luck leads us to the best outcomes, 
while uncertainty should tend towards the worst outcomes.  When 
these are zero, this indicates a complete trust in the hypergame 
model predicting actual operational results.  The range of all of 
the possible results should be encompassed in this diagram.  The 
range of evaluated outcomes (the y-axis) has a winning region 
(above the zero-line) and a losing region (below). 
There are three strategies plotted in figure four.  The current 
Model Opponent (MO) strategy which may be read left to right as 
follows:  The current hypothesis has respectable utility if Row is 
lucky during implementation, but one plan beats it if the planner 
is very lucky.  Otherwise, MO is the best choice until the planner 

is .3 uncertain about being outguessed, whereupon the safe 
hypothesis and its meager utility outweighs the very large 
negatives that accrue if the MO plan is outguessed (as shown at 
the far right).  Both the luck breakpoint and risk breakpoint give 
the planner an estimate of the rationality in using MO or not. 

The reader is reminded that 0 point on the x-axis should 
correspond to EU(s, CΣ), complete trust of the hypergame as a 
model of each strategy s under the summary belief criteria. 

3.3 Reasoning about Option Properties, such 
as Robustness 
Some additional subtleties are introduced in figure five on the 
next page.  In this plot of the HEU for each strategy from figure 4, 
the actual reliability or robustness of the plan is plotted. 

As a first approximation, robust plans are ones with lots of 
contingencies.  This is analogous to plans that have a lot or 
“OR’d” options.  Brittle plans are those that depend on a number 
of parts of the plan being synchronized or occurring properly in 
the right order.  This is analogous to plans that have a lot or 
“AND’d” resources and tasks.  Straight lines represent those plans 
that appear to be neither. 
Note that this allows the planner to account for really bad 
outcomes even in the robust, safe plan (heavy dashed line) – when 
“everything goes wrong.”  Additionally, the Row Player is aware 
that there should be more concern about maintaining an accurate 
estimate of uncertainty, for the current “best hypothesis, MO. The 
risk breakpoint has moved closer to the zero uncertainty line and 
the upside potential (luck) appears to be less likely, too. 

 

Figure 4. HEU with luck considered 
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3.4 Preventing Cognitive Bias and Shortfalls 
HT can directly address problems with human cognition: short 
term memory (often represented as the Miller Number of seven 
plus or minus two); complex storytelling and future projection (I 
call the Simon Number – three plus or minus one); and 
Kahneman’s System1, Intuitive and System 2, Deliberative, 
models of human cognitive processing.  The explicit recording of 
HT parameters aids the short term limitations, while the HT 
option-situation-context matrices supports enhanced course of 
action and situational analyses. 
It will probably take DTGT agent intelligent augmentation of a 
human planner to mitigate the shortfalls of cognitive processing, 
particularly by aiding the intuitive processing.  Since this 
processing is done almost instantaneously based on recognized 
patterns and slowly accumulated expertise, a lot of computer 
processing will need to be done to support it.  My colleague, 
Douglas Griffith, is writing about this in his work on 
neosymbiosis [Griffith 2005, 2006]. 

3.4.1 Preventing Cognitive Bias and Shortfalls 
Since HT allows the planner to record beliefs in an organized 
way, we believe that this addresses an attempt to make the 
invisible visible.  By recording and labeling contexts, in the above 
work competing CMS’s, HT enables the planners to see where a 
small change in evidence would result in a large swing in 
estimated likelihood of some enemy operation or situation. 
This allows us to even reason with completely different value 
matrices for other players and to distill organizational behavior 
(as DT does) into a new situational context, as another HT CMS. 

3.4.2 Monitoring Evidence 
During the original hypergame work, no formalized evidentiary 
reasoning techniques were proposed.  They were assumed to exist 
in the subjective probability assessments assigned in the upper left 
hand portion of the hypergame.  It is expected that more model 

based approaches that allow larger data streams to be interpreted 
and recorded 24/7 will help determine the P values in HT.  
Promising work by Schum, [Schum 2001, 2003] indicates that 
discovery, invention, and completeness of evidential 
considerations are enhanced by applying varying evidential 
mechanisms.  Furthermore, software agents may be employed to 
scrutinize evidence as it arrives in a decision support system, 
increasing both the speed and breadth of intelligence monitoring 
before, during, and after operations begin. 

3.4.3 Gathering Consensus 
We have some experience supporting computer maintained 
structured arguments that can be applied to a hypergame 
consensus tool.  The idea is to allow members of a decision-
making team to register different views and support them with 
HT.  For instance a merger could be proposed by the 
corporation’s Merger’s and Acquisitions team for review and 
discussion via HT on future business opportunities and corporate 
culture by the entire management team. 

3.4.4 Eliciting Hypergames 
Hypergame theory can become a strategic prescription that far 
exceeds the usefulness of game theory.  Because it addresses 
limited intelligence situations, plans can be made that incorporate 
many of the C-1 to C-8 considerations outlined in the 
introduction.  HT supports knowledge elicitation and an approach 
to dynamic reasoning that is missing from the declarative aspects 
of game theory. 
One such concept that has emerged is the concept that not only 
should a planner attempt to create a new, unanticipated option 
(row); but the planner should not feel that the task is done until 
the new row’s most dangerous anti-plan (often called situation 
since it is recorded in a column) is also identified.  This way new 
options for Row are not subject to as much confirmation bias.  It 
has been my experience that smart people can invent useful new 
plans, fall in love with them, and never see the counterstroke.  A 
balanced way to avoid this is to require a counter-plan for every 



new plan to be added to an HT matrix.  Unexpectedly, perhaps, is 
that there has been a pattern of closure or completeness using this 
technique.  Often, by forcing one to consider nasty counter plans 
that the process turns up one of the original enemy plans as the 
almost ideal counter.  Often it was the unstated reason why the 
opponent’s column was included originally. 
Anecdotally, GT almost always requires a gestational period for 
the reasoning to settle down to a consistent alignment of beliefs.  
In fact both sides of the Cold War conflict wanted the other side 
to know all of their options to generate the kind of “lose-lose” 
perception needed to prevent military adventurism and nuclear 
exchange. 

4. FINDINGS 
HT appears to be a worthwhile, relatively new representation that 
would benefit from a larger community of practice and that HT 
would aid those involved in real world reasoning issues.  HT’s 
capacity to represent complex considerations such as the feint in 
the First Gulf War is documented [Vane 2000]. 
This new work helps decision makers to focus on meaningful 
intelligence to reduce uncertainty.  The actual semantics of an 
option are used to determine what evidence to collect and when to 
change strategies.  While the aspects of collection are must be 
based on the vulnerabilities of friendly plans and the properties of 
current sensor systems.   
By supporting the ideas of observe-orient-decide-act mentioned in 
Boyd {Boyd 1988].  The following findings emerge, by referring 
to figure five on the previous page: 
(1) The who hypergame representation and associated HEU plot 
meets the observe-orient phase of the problem. 
(2) The HEU plot highlights when one should decide (choose a 
plan) and act or observe-orient again to reduce uncertainty. 
(3) As a plan is executed, the continuous observe-orient loops 
either reduce uncertainty or show that we were fooled.  Hence, we 
can see even in initial feedback whether our modle of the situation 
is valid to the degree needed. 
Unlike GT which requires consistent alignment of beliefs among 
opponents or DT which does not force a comprehensive 
evaluation of low probability situations, HT appears to be a good 
enough approach to search an abstract decision space that can 
reduce the computation complexity of real world planning. 

5. CONCLUSIONS 
General Dynamics is implementing a network of Real-time 
Control System Four (RCS-4) DTGT agents in the Cognitive 
Agent Architecture (Cougaar) to explore how the sensing, 
modeling, planning, and particularly judging modules of 
heterogeneous agents collaborating to solve a difficult problem 
can be improved by applying HT.  I hope to report this work next 
year. 

Lastly, by sharing predicted outcomes between calling and called 
agents, we expect to fold the search space into layered utility 
spaces that greatly transforms the domain of planning from 
movement and constraint space to strategy space.  HT naturally 
supports an idea of confidence from its representation of luck and 
uncertainty. 
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