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ABSTRACT
We illustrate developing techniques for empirical game-theoretic
analysis by application to two challenging market games employed
in an annual Trading Agent Competition. These games exemplify
relevant environments beyond analytic tractability, yet which can
be investigated experimentally through simulation and careful mea-
surement. Our analysis of agents from the 2005 TAC Supply Chain
Management game reveals interesting interactions not seen in the
tournament, and demonstrates the value of a post-competition agent
repository. Our ongoing analysis of the TAC Travel game illustrates
methods for scaling up the strategy and profile space, and demon-
strates the value of empirical game-theoretic analysis for strategy
selection. Interesting open issues remain, particularly in regard to
controlling the experimental search process.

1. INTRODUCTION
Many if not most multiagent systems (MAS) research projects that
produce new strategies for agent behavior evaluate their proposals
through some experimental regimen comprising simulation of al-
ternative behaviors in a chosen environment. The typical objective
of such experimentation is to establish that the proposed strategy
possesses some advantageous characteristic(s) compared to alter-
natives in a given setting, or to develop a model of performance
as a function of environment features. Methodologies employed
in experimental analyses are various, and dependent of course on
the issues at hand. A key issue distinguishing MAS settings from
single-agent applications of computational experiments is that the
effectiveness of an agent’s strategy depends pivotally on the strate-
gies employed by other agents. Determining the configurations of
agent behaviors to simulate is therefore a crucial issue in MAS ex-
perimental design.

Although it appears that much MAS research pursues this deter-
mination in an ad hoc manner, the issue is often recognized, and
several approaches address it directly. In a factorial design, the
combinations of agent strategies are simulated exhaustively. This
is infeasible when there are large numbers of possible strategies,

or a large population of agents. Even when feasible, in interpret-
ing the experiments the analyst must render judgments about the
degree to which the various configurations are relevant in order to
draw conclusions about proposed strategies.

One appealing way to determine a relevant set of agent strategies is
to generate a population iteratively through some evolutionary pro-
cess. The evolutionary approach was pioneered in computational
agent research by Axelrod’s famous Prisoner’s Dilemma tourna-
ment [Axelrod, 1984], and has become a standard method among
researchers in agent-based computational economics [Tesfatsion and
Judd, 2006]. Evolutionary search techniques provide (at least) two
useful functions in MAS experimentation:

1. Generating strategies for exploration given a set of primi-
tive building blocks, employing stochastic local search from
an initial population. Techniques for generation are typi-
cally based on genetic algorithms or genetic programming
[Mitchell, 1996].

2. Finding stable populations of strategies, for example using
replicator dynamics [Taylor and Jonker, 1978].

Of course, there are alternative means as well to support both of
these functions. Any structured search technique (employing ge-
netic operators or not) is a candidate method for exploring a space
of available strategies. And evolutionary stability is just one crite-
rion that might be employed to evaluate the plausibility of popula-
tions. It is uniquely compelling only to the extent that the evolu-
tionary dynamic employed is itself a plausible model of how agent
strategies might be adopted over time.

Game theory is another source of stability criteria often employed
in MAS research. Although evolutionary and game-theoretic sta-
bility (i.e., equilibrium) concepts sometimes coincide [Friedman,
1991], this is not always the case. Game theory generally tends
to avoid assuming any particular dynamic model, which may be
viewed as a strength or weakness depending on one’s perspective
and the particular issues at hand. What game theory does provide
is a rigorous mathematical framework for formalizing interactions
among rational agents, and a rich set of solution concepts and other
formal properties useful for characterizing alternative strategic con-
figurations.

Whereas game theory is now quite commonly employed by MAS
researchers in theoretical investigations, it is less frequently applied



in experimental studies.1 Over the past few years, our research
group has been developing an experimental methodology for ex-
plicit game-theoretic treatment of MAS simulation studies. We re-
fer to the approach as empirical game-theoretic analysis. Along the
way we have accumulated a body of tricks and techniques that en-
hance the empirical analysis approach. We illustrate the application
of some of these by way of presenting analyses of two scenarios
from an MAS research competition.

2. TAC MARKET GAMES
The annual Trading Agent Competition (TAC) series of interna-
tional research tournaments was initiated to promote research and
education in the technology underlying trading agents.2 At the
core of TAC are two games, market-based scenarios where multiple
agents compete to exchange goods and services at dynamically ne-
gotiated prices. The first TAC tournament, in July 2000, introduced
the TAC Travel game [Wellman et al., 2001]. A second game, in the
domain of supply chain management, has been played since 2003
[Arunachalam and Sadeh, 2005].

A key feature of both games is that—like most realistic market
environments—they are sufficiently complicated (severely imper-
fect and incomplete information revealed over time throughout dy-
namic activity) to defy analytic solution. Thus, empirical methods
appear indispensable to progress.

Although most details of the game rules are inessential to our anal-
yses here, we establish some context by providing capsule descrip-
tions. Complete specifications of the games are available at the web
sites referenced, and further description and discussion is provided
in many of the papers cited herein.

2.1 Supply Chain Management
In the Trading Agent Competition Supply Chain Management game
(TAC/SCM), six agents representing PC (personal computer) man-
ufacturer agents compete to maximize their profits over a simu-
lated year. There are 220 simulation days, and agents have approx-
imately 14 seconds to make decisions each day. Agents participate
simultaneously in markets for supplies (components) and finished
PCs. There are 16 different types of PCs (divided into three market
segments), defined by the compatible combinations of 10 differ-
ent component types. Components fall into one of four categories:
CPU, motherboard, memory, and hard disk. There are four types of
CPUs and two types of all other components; one component from
each category is required to produce a PC.

Agents negotiate deals with suppliers and customers through an
RFQ (request-for-quote) mechanism. The suppliers and customers
execute policies defined by the game specification and implemented
in the server. The suppliers have limited production capacity that
varies during the game according to a random walk. They make
offers and set prices based on their ratio of available capacity. The
customer generates requests for PCs each day. The number of re-
quests is driven by a stochastic demand process for each market
segment.

1Perhaps it is starting to emerge. Although we do not attempt
here to identify the earliest sources (see Reeves [2005, Section 3.9]
for a survey), we do acknowledge that many MAS works have
included elements of game-theoretic perspective in experimental
studies. Our claimed contribution is to systematizing and enriching
the methodology, not completely originating it.
2See http://tradingagents.org, and http://www.
sics.se/tac.

Agents face substantial uncertainty in both markets. The under-
lying supplier capacities, customer demand parameters, and local
state of other manufacturer agents are not directly observable, so
agents must estimate these from other sources of information. There
is also strategic uncertainty, since agents do not know the exact
strategies employed by their competitors.

Each manufacturer is endowed with an identical factory that has
limited production capacity, measured in cycles. Each PC type re-
quires a different number of cycles to produce. Agents pay storage
costs for all components and PCs held in inventory each day, and
are charged (or paid) interest on bank balances. At the end of the
game agents are evaluated based on total profit, and any remaining
inventory is worthless.

2.2 Travel Shopping
In the TAC Travel game, agents assemble flights, hotels, and en-
tertainment into trips for a set of eight probabilistically generated
clients. Clients are described by their preferred arrival and depar-
ture days, the premium they are willing to pay to stay at the nicer
hotel, and their respective values for three different types of enter-
tainment events. The agents’ objective is to maximize the value of
trips for their clients, net of expenditures in the markets for travel
goods. The three categories of goods are exchanged through dis-
tinct market mechanisms.

Flights. A feasible trip includes air transportation both ways, com-
prising an inflight day i and outflight day j, 1 ≤ i < j ≤ 5. Flights
in and out each day are sold independently, at prices determined by
a stochastic process. The initial price for each flight is uniformly
distributed, and follows a random walk thereafter with an increas-
ingly upward bias.

Hotels. Feasible trips must also include a room in one of the two
hotels for each night of the client’s stay. There are 16 rooms avail-
able in each hotel each night, and these are sold through ascend-
ing 16th-price auctions. Agents submit bids for various quanti-
ties, specifying the price offered for each additional unit. When
the auction closes, the units are allocated to the 16 highest offers,
with all bidders paying the price of the lowest winning offer. Each
minute, the hotel auctions issue quotes, indicating the 16th- and
17th-highest prices among the currently active unit offers. Each
minute, one of the hotel auctions is selected at random to close,
with the others remaining active and open for bids.

Entertainment. Agents receive an initial random allocation of en-
tertainment tickets (indexed by type and day), which they may allo-
cate to their own clients or sell to other agents through continuous
double auctions. The entertainment auctions issue quotes repre-
senting the highest outstanding buy and lowest sell offer, and re-
main open for buying and selling throughout the 9-minute game
duration.

At the end of a game instance, the TAC server calculates the optimal
allocation of trips to clients for each agent, given final holdings of
flights, hotels, and entertainment. The agent’s game score is its
total client trip utility, minus net expenditures in the TAC auctions.

3. TAC/SCM 2005
Our previous application of empirical game-theoretic analysis to
the TAC/SCM domain considered the issue of strategic procure-
ment of components at the beginning (“day 0”) of the simulated
manufacturing period [Wellman et al., 2005a]. In that study, we



investigated a phenomenon observed in the 2003 tournament, em-
ploying strategies defined by varying one aspect of the University
of Michigan’s agent (our own), Deep Maize. Controlled experi-
ments varying only the degree to which agents procure components
on day 0 verified that the agressive procurement policies observed
(informally) in tournament play actually represents an equilibrium
of sorts—and one that is mutually destructive to manufacturing
profits. Our analysis further confirmed that Deep Maize’s preemp-
tive strategy of blocking day-0 procurement neutralized this issue,
forming a new equilibrium where all agents (not just the preempt-
ing Deep Maize) were more profitable.3

The force of day-0 procurement in the game was considered a de-
sign flaw by the TAC/SCM community, and revisions of the game
in 2004 and 2005 attempted to attenuate its influence. The 2004 re-
design was unsuccessful from this perspective [Kiekintveld et al.,
2005], and empirical game-theoretic analysis demonstrates that no
reasonable settings of the focal storage-cost parameter would have
likely been sufficient [Vorobeychik et al., 2006]. The 2005 redesign
[Collins et al., 2004] included deeper changes to supplier behavior,
and appears to have dramatically lessened the salience of day-0
procurement issues.

Like our own reports, most published research on TAC/SCM agents
presents evidence from tournaments, as well as controlled experi-
ments with variants on the agent strategy under study. These ex-
periments typically include simulations where some subset of the
agents play such variants, and the remainder play some fixed or
background strategies. What strategies to assume for the back-
ground agents is a key experimental design choice. One option—
employed, for example, in a recent study on SouthamptonSCM
[He et al., 2006]—is to use the “dummy” agents provided along
with the TAC/SCM game server. Another is to use agent strategies
developed by other TAC/SCM participants. This has been greatly
facilitated by the introduction of a TAC agent repository follow-
ing TAC-05.4 For example, Pardoe and Stone [2006] run simu-
lated games, each with two variants of their agent TacTex playing
with a fixed background of four agents drawn from the repository
(Mertacor, MinneTAC, GoBlueOval, and RationalSCM).

Playing with real tournament agents lends realism to the simula-
tions, but the question still remains as to what mixtures of back-
ground strategies are most relevant. This is where empirical game-
theoretic analysis can provide some guidance. Our premise is that—
all else equal—profiles of strategies that are more strategically sta-
ble (i.e., closest to game-theoretic equilibrium) are more plausible
as background contexts. Of course, this is at best a starting point,
as introduction of a new strategy may alter the strategic landscape.
Therefore, one must update the analysis to reflect any promising
new strategies identified during experimentation.

We have undertaken an empirical game-theoretic analysis of agent
strategies from TAC/SCM 2005. Our approach comprises the fol-
lowing steps:

1. Approximate the six-player SCM game by its three-player
3Here we refer to the 2003 version of Deep Maize. Subsequent
discussion applies to the 2005 versions of Deep Maize and all
other agents mentioned.
4Designed and implemented by Joakim Eriksson (Swedish In-
stitute of Computer Science) and Kevin O’Malley (University
of Michigan), and available at http://www.sics.se/tac/
showagents.php.

reduced version, SCM↓3 [Wellman et al., 2005b].

2. Run many simulations covering all distinct strategy profiles.

3. Process the simulation data by checking game validity and
adjusting for stochastic demand variability.

4. Analyze the resulting empirical game by searching for equi-
libria and approximate equilibria.

We elaborate each of these steps in turn.

3.1 Reducing the Game
Given a symmetric game with N players and S strategies, there are
`

N+S−1

N

´

distinct pure-strategy profiles. For TAC/SCM, N = 6,
and in our current analysis we consider S = 6 agent strategies.
This induces a total of 462 profiles that would need to be estimated
for a full-granularity analysis. We can significantly decrease this
number by restricting attention to cases where strategies are as-
signed to pairs of agents rather than individuals. Specifically, the
resulting 3-player game, denoted SCM↓3, comprises only 56 pro-
files over the same 6-strategy set. The payoff to a strategy in an
SCM↓3 profile is defined as the average payoff to the two agents
playing this strategy in the original 6-player game.

In several contexts, we have found experimentally and theoretically
that this form of hierarchical game reduction produces results ap-
proximating well the original unreduced game, with great compu-
tational savings [Reeves, 2005, Wellman et al., 2005b]. Although
we have not validated this specifically in TAC/SCM, intuitively we
would expect that payoffs vary smoothly with the number of other
agents playing a given strategy.

3.2 Running Simulations
We have collected results from well over 2000 sample games, cov-
ering 56 distinct profiles of six agents: TacTex [Pardoe and Stone,
2006], Mertacor [Kontogounis et al., 2006], Deep Maize [Kiek-
intveld et al., 2006], MinneTAC, PhantAgent, and GoBlueOval.5

As shown in Table 1, the first four of these made it to the final round
of the TAC/SCM-05 tournament (the other two finalists are not cur-
rently available in the repository), PhantAgent was a semi-finalist,
and GoBlueOval was a quarter-finalist.

Interaction among the strategies is one factor explaining differences
in scores—and even relative rankings—between rounds of the tour-
nament. The game-theoretic analysis here thus also serves to assess
the robustness of tournament ranking results.

We performed most of our simulations using a computing cluster
operated by the Center for Advanced Computing at the University
of Michigan. The cluster facility provides scalable and homoge-
neous processing, supporting parallel simulation with a fair allo-
cation of computational power to each agent. Our basic computa-
tional package called for seven CPUs (the six agents plus a game
server) for a period of three and a half hours. When the cluster’s
schedule grants our request, we distribute the agent and server bi-
naries to the allocated nodes, updating configuration files dynami-
cally to point agents to the corresponding game server. We then run
three games, and afterwards copy the game logs back to a central
5At least two of these, TacTex and Deep Maize, employed fa-
cilities for adapting behavior between games during the TAC-05
tournament. Our analysis here restricts the agents to versions that
adapt only within a game instance.



Agent Affiliation Finals Semi-Finals Quarter-Finals Seeding

TacTex U Texas 4.74 3.57 [1] 17.78 [A] 14.89
SouthamptonSCM U Southampton 1.60 4.62 [2] 3.50 [B] 10.05
Mertacor Aristotle U Thessaloniki 0.55 2.66 [2] 4.58 [B] 9.30
Deep Maize U Michigan –0.22 3.68 [1] 17.49 [D] 10.23
MinneTAC U Minnesota –0.31 2.27 [1] 11.91 [A] 9.86
Maxon Xonar Inc. –1.98 3.80 [2] 5.23 [C] 8.76
PhantAgent Politechnica U Bucharest n/a –6.64 [1] 7.03 [A] 9.87
GoBlueOval Ford Motor Co. and U Michigan n/a n/a –2.60 [B] 12.60

Table 1: TAC/SCM-05 finalists, plus PhantAgent and GoBlueOval, with average scores ($M) from seeding through final rounds
(semi-final and quarter-final groups in brackets).

repository. By packaging games into groups of three, we achieve a
balance of amortizing configuration time with limiting recomputa-
tion necessary in case of failure.

3.3 Post-Processing Simulation Results
During a game simulation, much can go wrong, for example net-
work outages or delays, or interference with one or more proces-
sors. We therefore attempt to filter our data set by removing game
instances tainted in this way. We considered various procedures for
identifying tainted games, ultimately settling on a very simple rule.
A game is scratched if, for any agent, there are six or more days
(out of 220) in which the server did not receive a message from
that agent (as indicated by the game log). The dataset analyzed in
this paper comprises 2110 validated games, with a minimum of 28
games for each of the 56 distinct strategy profiles.

Given the expense of generating samples by simulation (over 7
processor-hours per game), we seek to glean the most information
we can from each data point. Toward that end, we employ statisti-
cal techniques to reduce variance. In particular, the method of con-
trol variates [Ross, 2002] improves the estimate of the mean of a
random function by exploiting correlation with observable random
variables. In the case of TAC/SCM, the most significant stochastic
factor bearing on payoffs is the level of customer demand for PCs
during the game.

As in our analysis of TAC/SCM-03 [Wellman et al., 2005a], we
use control variates to derive a payoff measure we call demand-
adjusted profit (DAP). Our adjustment considers the average level
of demand (measured in total number of PCs requested) for each
of the PC market segments: low, mid, and high.6 We collected
the demand and score data from games played in the TAC/SCM-05
tournament: quarter-final, semi-final, and final rounds. The over-
all tournament comprised 96 games, of which 71 remained after
applying the tainted-game filter described above. Table 2 presents
summary demand statistics for these games.

Segment Mean (Q̄seg) Std. Dev. DAP Coeff. (δseg)
Low 132,498 29,102 69.67
Mid 157,481 33,698 63.80
High 129,641 21,870 85.57

Table 2: TAC/SCM-05 tournament demand statistics.

The rightmost column of the table (DAP coefficient) presents the
6In the original TAC/SCM-03 rules, one stochastic process gov-
erned demand for all PC types. Thus, the adjustment formula was
necessarily revised from our earlier analysis.

result of a linear regression of score on demand in the respective
segments. The R2 statistic for the DAP regression is 0.3 4 69 with
a p-value of 2.5e-6. We then obtain the DAP for agent i in game
x by subtracting from its actual profit an adjustment based on the
demand in that game.

DAPi(x) = P ro fi ti(x)−
X

seg∈{lo w ,m id ,h igh }

δseg(Qseg(x)−Q̄seg),

(1)
where Qseg(x) denotes the actual demand for the specified segment
in game x, and Q̄seg the mean demand as presented in Table 2.

3.4 Game Analysis
Figure 1 summarizes our stability analysis of the pure strategy pro-
files of the game. Each node represents a profile (three strate-
gies). The outgoing edge from a node indicates the best devia-
tion from that profile—that is, the transition providing the greatest
gain in payoff for one agent switching strategies. For example, the
profile with all Deep Maize (DmDmDm, in Level 4 around 10
o’clock) points to profile DmDmMr, which means that switching
from Deep Maize to Mertacor in this context offers the greatest
increase in payoff. That the arrow signifying the edge is solid rather
than dashed means that the benefit is statistically significant in this
case, at the p ≤ 0.05 level.

The magnitude of the potential benefit from deviating is repre-
sented by the node’s placement in the diagram. We denote this
quantity by ε, since a profile with maximal benefit to deviation of
ε constitutes an ε-Nash equilibrium. The profiles in the innermost
ellipse (Level 1) represent the most stable (closest to equilibrium),
with 0.04M ≤ ε ≤ 0.6M . Concentric rings define levels with
increasing values of ε. Level 4 (outermost ring) profiles are quite
unstable, as a single agent (in the 3-player game) can benefit by at
least 4.4M by deviating from its designated strategy. Note that the
best deviation links usually, but not necessarily, connect profiles to
more stable alternatives.

Since all profiles in Figure 1 have outgoing edges, we can con-
clude that the empirical game has no pure-strategy Nash equilibria
(PSNE). Indeed, there exists a directed cycle among three relatively
stable profiles, and all paths lead to this cycle.

There are, however, mixed strategy equilibria, and we have identi-
fied one symmetric Nash equilibrium, as well as several approx-
imate equilibria. We found these mixtures using replicator dy-
namics (RD), and present them in Table 3. Specifically, we ran
RD seven times: once with all strategies present, and once for
each subset of five out of six. In all cases the initial population



Figure 1: Deviation analysis of pure profiles of SCM↓3.

is distributed uniformly. The profile generated by RD with all
agents present is a symmetric Nash equilibrium. GoBlueOval is
not played in this equilibrium, and indeed omitting that agent leaves
the RD result unchanged. Two other RD results are approximate
(ε < 1.0M ) equilibria; not surprisingly these respectively omit the
agents (Deep Maize and Minnetac) with lowest positive probabil-
ity in the known exact equilibrium.

Our analysis reveals several striking observations. First, all agents
perform quite poorly with many copies of themselves. Three out
of the four most unstable profiles (MnMnMn, TxTxGb, TxTxTx,
and MrMrMr, respectively) comprise a single strategy. This fact
can be explained by the multiple copies all competing for the same
“niche”, or exploiting opportunities typically left available by other
agents (but not themselves, of course). In addition, some of the
problem may be simply that the agents are hardwired to procure
components on certain days or with certain lead times, and these
naturally interfere when more than one copy exists. Similarly, mul-
tiple copies may make the same predictions and estimates of prices
and other market conditions, so may be making bidding and other
decisions in an interfering manner.

Second, PhantAgent performs much better in the game-theoretic
sense than might be expected from the TAC/SCM-05 tournament
outcome.7 PhantAgent is least sensitive to playing with copies
of itself, and appears with substantial probability in all the profiles
produced by RD in Table 3. In fact is most probable in all but the
case where it was excluded, and the one with highest ε value.

Third, Mertacor appears especially strong in a wide variety of con-
texts. Like PhantAgent, Mertacor is present with large probabil-
ity in all the symmetric stable profiles identified. Most remarkable

7We are unaware of specific problems that may have afflicted the
agent in the semi-final round, but this is a possibility.

is that of the 35 profiles without Mertacor, 30 of them have a best
deviation where some strategy changes to Mertacor. Of the 21
profiles with Mertacor, the best deviation changes from Mertacor
in only three.

We should note that the first observation above raises some ques-
tions about our analysis approach. Presumably TAC entrants de-
sign their agents with tournament play in mind, and so may not
be concerned about the performance of their agents with copies of
themselves in the environment. On the other hand, one might argue
that performance in self-play is important, and the tournament un-
duly neglects this aspect of strategy. Our reduced-game analysis is
especially sensitive to this question, since all profiles have at least
two copies of any strategy present. We plan to explore this issue
further in ongoing development of our methodology.

4. TAC TRAVEL
In contrast with the TAC/SCM analysis presented above, our em-
pirical game-theoretic analysis of TAC Travel focuses on variations
of our own agent, Walverine [Cheng et al., 2005]. The database of
games comprises simulations from a dedicated testbed running vir-
tually continuously since mid-2004. Our primary objective in this
experiment has been to inform our choice of strategy parameter set-
tings to play in the tournament [Wellman et al., 2005c]. In fact, this
turned out successfully, as Walverine placed third in the 2005 TAC
Travel tournament, and actually scored highest if we ignore games
tainted by faulty behavior of one of the agents.

Pieces of our TAC Travel analysis have appeared in previous re-
ports on Walverine and our methodology [Wellman et al., 2005b,c].
Here we provide an update based on additional simulations (over
25,000 more games, for a total of 72,971), as well as some new
results and discussion not included elsewhere.

As in the TAC/SCM analysis, we employ control variates to reduce



Agent all (Deep Maize) (TacTex) (MinneTAC) (PhantAgent) (Mertacor) (GoBlueOval)

Deep Maize .055 — .015 .035 .219 .326 .055
TacTex .112 .137 — .100 .210 .156 .112
MinneTAC .057 .079 .106 — 0 .109 .057
PhantAgent .400 .418 .533 .482 — .271 .400
Mertacor .376 .366 .346 .384 .559 — .376
GoBlueOval 0 0 0 0 .012 .138 —

ε 0 0.49M 1.46M 0.42M 1.28M 3.50M 0

Table 3: Profiles resulting from replicator dynamics. Each column presents probabilities for a mixed profile, with associated ε in
SCM↓3 specified in the bottom row. The first column presents the result from RD including all agent strategies (initial proportions
uniform). Subsequent columns respectively omit one strategy from the RD process.

the variance due to stochastic inputs in our simulation process. In
TAC Travel, the important stochastic influences are agent-specific,
namely the client preferences assigned to agents at the beginning of
the game. Accordingly, we adjust observed scores based on the po-
tential premium available to clients from hotel and entertainment, a
measure of the conflict of their demand with other agents’ clients,
and one agent-independent feature: the initial flight prices [Well-
man et al., 2005c].

Another technique shared in the two analyses is our exploitation
of game reduction to limit the explosion of strategy profile space.
TAC Travel is an 8-player game, and thus enables reduction across
a hierarchy of levels. Table 4 shows how our dataset is apportioned
among the 1-, 2-, and 4-player reduced games. We are able to
exhaustively cover the 1-player game, of course. We could also
have exhausted the 2-player profiles, but chose to skip some of the
less promising ones (around one-quarter) in favor of devoting more
samples elsewhere. The available number of samples could not
cover the 4-player games, but as we see below, even 2.4% is suffi-
cient to draw conclusions about the possible equilibria of the game.
Spread over the 8-player game, however, 73,000 instances would
be insufficient to explore much, and so we refrain from any sam-
pling of the unreduced game.

p Profiles Samples/Profile
total evaluated % min mean

4 123,410 2967 2.4 15 24.6
2 840 624 74.3 18 36.4
1 40 40 100.0 30 89.1

Table 4: Profiles evaluated, reduced TAC games (TAC↓p).

4.1 TAC↓4 Analysis
Although our coverage of TAC↓4 is far from exhaustive, for partic-
ular subsets of strategies (which we call cliques), we do have sam-
ples for all possible profiles. The largest TAC↓4 cliques contain
five strategies, and we currently have seven of these (which have
overlapping strategy sets). We used replicator dynamics to derive a
symmetric mixed equilibrium for each of these clique games, and
for five of these the profile is a candidate equilibrium (ε < 1) with
respect to the entire dataset (i.e., no beneficial deviations are found
among the evaluated profiles). These candidates are presented in
Table 5.

Strategies in Table 5 are described by index number, each corre-
sponding to a vector of parameter settings. The actual values are
not relevant to present purposes, except to note that the Walver-

Strategy mixed profiles

3 0 .125 — — —
4 0 .687 — — —
5 — — 0 0 —
7 — — .273 — —
9 — — — .250 —

16 .744 .071 .601 .418 .085
17 .225 0 — — 0
18 — — — — —
21 — — 0 0 —
23 .031 — — — —
24 — .117 .126 .332 —
37 — — — — .225
39 — — — — 0
40 — — — — .690

Table 5: Candidate equilibria in TAC ↓4, as determined by
replicator dynamics applied to clique subgames. Each column
represents a symmetric mixed profile, with dashes indicating
that a strategy was not included in the corresponding clique.

ine played in the 2004 tournament finals was strategy 17, and that
strategy 37 played in 2005. We used equilibrium analysis of the
sort displayed here to suggest a subset of plausible strategies (e.g.,
those appearing with significant probability in some equilibrium),
and then selected among these based on play against the actual TAC
field in preliminary tournament rounds.

Another form of analysis considers the maximum benefit from de-
viation (ε bounds) established for the various TAC↓4 profiles. As
indicated in Table 4, we have evaluated 2967 TAC↓4 profiles. Of
these, 201 are TAC↓2 profiles with no evaluated neighbors in TAC↓4

(i.e., no deviations tested). Although these are technically PSNE
candidates, we distinguish them from PSNE candidates that have
actually survived some challenge. The remaining 2766 evaluated
profiles are of course too many to diagram as in Figure 1. Instead,
we plot the distribution of ε bounds, in Figure 2.

Figure 2 also shows, inset, the distribution of epsilon bounds over
the 182 strategy pairs for which we have evaluated all combinations
in TAC ↓4 (i.e., the 2-cliques). Among these are one confirmed
equilibrium at ε = 2 .5, with all other pairs refuted at ε > 9.

Recall from our discussion of the SCM empirical game the observa-
tion that Mertacor appears versatile, as indicated by the frequency
with which the best deviation from a profile is to that agent. We can
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Figure 2: Cumulative distribution of ε bounds in TAC↓4. Main
graph: pure profiles. Inset: 2-strategy mixtures.

examine deviations from our TAC↓4 profiles analogously, and find
that of the 2766 evaluated profiles with deviations, in 354 of them
(12.8%), the best deviation is to strategy 37 (Walverine-2005). The
next “most deviated to” strategy covers a like amount (350), and
next two after that cover 262 and 259 profiles, respectively. Note
that one must interpret such numbers with much caution, since the
potential deviations are not evaluated with equal frequency. More-
over, any figure of merit that aggregates across profiles is suspect,
as the distribution of available profiles is not uniform, and profiles
are not equally relevant to such an evaluation anyway. Neverthe-
less, the breadth of contexts in which 37 performs well provides
further support for its choice from among the set of strategies con-
sidered.

4.2 Search through Profile Space
Our empirical game for TAC Travel is based on a large dataset of
game instances, accumulated over a great deal of time with much
computation. One important part of the experimental procedure not
described thus far is how we chose which agent strategy configura-
tions to sample, and to what extent. Indeed, the process is manually
controlled, informed by standard analysis routines but somewhat
ad hoc. Nevertheless, we describe our basic approach, and raise the
issue as an important area for future research in empirical game-
theoretic methodology.

The relevant question at any point in the sampling process is: “What
profile to sample next?” We can choose to generate (1) an addi-
tional sample of a profile already evaluated, (2) a first sample for
an unevaluated profile comprised of existing strategies, or (3) a first
sample for a profile including a new strategy.

Our approach to introducing new strategies in TAC Travel was en-
tirely manual and admittedly arbitrary. Since the profile space ex-
plodes in the number of strategies, we are generally conservative,
becoming more amenable as the existing strategy base appears to
us relatively well understood. In many cases, we introduced new
strategies based on discovering new ideas for agent components, or
problems with some of the existing elements.

We followed a much more structured process for introducing new
profiles of existing strategies. In general, profiles are introduced
with a view toward refuting candidate equilibria. Specifically, we
tend to seek profiles that represent deviations from an existing pure
profile or 2-strategy mixture with small ε bound. By interleaving
game analysis with sampling, we can identify prospective profiles

routinely. Since there will generally be many choices of how to de-
viate, we require secondary criteria as well. For instance, we prefer
profiles that deviate from multiple candidates, or have many evalu-
ated neighbors (e.g., will contribute to forming cliques) already in
the dataset.

Note that the foregoing selection can be applied with respect to
the game at any level of reduction. We have interleaved consid-
eration of TAC↓1, TAC↓2, and TAC↓4, devoting more effort to-
ward the finer-grained games as the coarser levels become better
defined (i.e., once deviations from candidates of more severely re-
duced games have been thoroughly explored).

With respect to profiles already sampled, our highest priority is to
maintain a minimum number of samples (see Table 4) for any eval-
uated profile. Next, whenever we explore new deviations from a
candidate, we also allocate some samples to the candidate itself,
and profiles that currently seem to be the best deviations.

Although the process described here is clearly informal and could
benefit from analysis and optimization, we believe it contains sev-
eral important qualitative features. Given the size of the search
space, uniform exploration would be quite infeasible, and so we
require some guidance to focus on the parts of profile space most
relevant to strategic analysis. The criteria we adopted aim to bal-
ance exploration of new directions with better understanding of
areas with established promise. We suspect that some existing
methods can be employed to improve and automate our sampling
process. For example, the information-theoretic criteria proposed
by Walsh et al. [2003], designed to allocate additional samples
given a completely evaluated empirical game, could perhaps be ex-
tended to cases with missing profiles. We intend that future work
be addressed to principled methods for introducing new profiles
and strategies as well.

5. CONCLUSION
Our two case studies illustrate some of the methods we have found
useful in applying empirical game-theoretic analysis to scenarios
of interest. Further development of these and other techniques with
experience will lead to a rich set of tools bridging simulation and
game-theoretic approaches to understanding complex multiagent
systems.
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