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Abstract

We investigate the computational complexity of a number of
questions relating to deductive argument systems, in partic-
ular the complexity of linking deductive and more abstract
argument systems. We start by presenting a simple model
of deductive arguments based on propositional logic, and
define logical equivalence and defeat over individual argu-
ments. We then extend logical equivalence to sets of argu-
ments, and show that the problem of checking equivalence of
argument sets is co-NP-complete. We also show that the prob-
lem of checking that an argument set contains no two logi-
cally equivalent arguments is NP-complete, while the prob-
lem of checking that a set of arguments is maximal (i.e., that
no argument could be added without such an argument being
logically equivalent to one that is already present) is co-NP-
complete. We then show that checking whether a digraph
over an argument set is sound with respect to the defeat re-
lation is co-NP-complete, while the problem of showing that
such a digraph is complete is NP-complete, and the problem
of showing both soundness and completeness is D”-complete.

Introduction

Argumentation is the process of attempting to construct
rationally justifiable set of beliefs (Prakken & Vreeswijk
2001), and is increasingly used as a mechanism to support
interaction in multiagent systems (Parsons, Wooldridge, &
Amgoud 2003). The argumentation process typically starts
with a knowledge base that contains logical conflicts, and is
hence inconsistent: argumentation can be understood as the
process of extracting a rationally justifiable position from
this inconsistent starting point. Essentially two different ap-
proaches to formalizing arguments have been put forward
in the literature. The first is the abstract argument frame-
work of (Dung 1995). In this framework, the starting point
is simply a digraph, with vertices in the graph correspond-
ing to arguments, and edges in the graph representing the
notion of attack, or defeat, between arguments. Abstract
argument systems are so-called because they abstract away
from the internal structure and properties of individual ar-
guments, and focus instead simply on the attack relation
between arguments. An alternative approach, which in-
stead gives arguments some internal, logical structure, is
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that of deductive argument systems (Pollock 1992; 1994;
Krause et al. 1995; Amgoud 1999; Besnard & Hunter 2001;
Parsons, Wooldridge, & Amgoud 2003).

Our aim in this paper is to investigate the computational
complexity of a number of questions relating to deductive ar-
gument systems, but in particular, the complexity of linking
deductive argument systems and abstract argument systems.
Such a linking seems to be necessary if we are to use argu-
mentation systems, for example as the basis of inter-agent
communication in multiagent systems. To capture the inter-
nal structure and intended meaning of arguments, we need
something of deductive arguments, while to capture the in-
teractions between arguments, and to formulate appropriate
solution concepts, we clearly need something akin to an ab-
stract argument system. Thus, to be practically useful, it
seems an argumentation framework must have linked ele-
ments of both deductive and abstract argument systems.

We start by presenting a simple model of deductive ar-
guments, and define notions logical equivalence and defeat
over individual arguments. We then extend logical equiv-
alence to sets of arguments, and show that the problem of
checking equivalence of argument sets is co-NP-complete.
We also show that the problem of checking that an argument
set is distinct (i.e., contains no two logically equivalent argu-
ments) is NP-complete, while the problem of checking that a
set of arguments is maximal (i.e., that no argument could be
added without such an argument being logically equivalent
to one that is already present) is co-NP-complete. We then
show that checking whether a graph over an argument set is
sound with respect to the defeat relation is co-NP-complete,
while the problem of showing that such a graph is complete
is NP-complete, and the problem of showing both soundness
and completeness is D”-complete.

Deductive Arguments, Defeat, & Equivalence

We present the model of deductive arguments that we work
with throughout the remainder of this paper. This model
is closely related to those of (Besnard & Hunter 2001; Par-
sons, Wooldridge, & Amgoud 2003). Let &g = {p,q,...}
be a finite, fixed, non-empty vocabulary of Boolean vari-
ables, and let ¢ denote the set of (well-formed) formulae of
propositional logic over ®(, constructed using the conven-
tional Boolean operators (“A”, “V”, “—=7, “<”, and “=7),
as well as the truth constants “T” (for truth) and “1” (for



falsity). We refer to a finite subset of ® as a database, and
use A, A’ Ag,... as variables ranging over the set of ®-
databases. We assume a conventional semantic consequence
relation “=" for propositional logic, writing A = ¢ to mean
that ¢ is a logical consequence of the database A. We write
E © as a shorthand for ) = ¢; thus = ¢ means that ¢
is a tautology. We denote the fact that formulae ¢, € ®
are logically equivalent by ¢ ~ 1); thus ¢ ~ 1 means that
E ¢ < 1. Note that “~” is a meta-language relation sym-
bol, which should not be confused with the object-language
bi-conditional operator “<”.

If A C @ is a database, then an argument, «, over A is
a pair a = (C,S) where C € @ is a propositional formula
which we refer to as the conclusion of the argument, and
S C A (S # 0)is a subset of A which we refer to as the
support of the argument, such that S = C, i.e., C is a log-
ical consequence of S. Notice that we omit two constraints
on arguments that are commonly assumed in the literature,
namely that S is consistent, and that S is minimal (Besnard
& Hunter 2001; Parsons, Wooldridge, & Amgoud 2003). Of
the two, minimality is generally regarded as an aesthetic cri-
terion, rather than technically essential. Consistency is more
important, and of course by relaxing this constraint we ad-
mit into our analysis some scenarios that do not seem to have
any useful interpretation; but of course this does not invali-
date the results we present. Let A(A) denote the set of ar-
guments over A. If « is an argument, then we denote the
support of o by S(«) and the conclusion of o by C(«).

There are two common ways of defining defeat between
two deductive arguments (Prakken & Vreeswijk 2001): re-
buttal (where the conclusion of each argument is logically
equivalent to the negation of the conclusion of the other)
and undercut (where the conclusion of the attacker contra-
dicts some part of the support of the other). It is not hard
to see that the rebuttal relation between arguments will be
symmetric, and this potentially limits its value as an analyt-
ical concept (Besnard & Hunter 2001). We therefore focus
on undercutting (Besnard & Hunter 2001). There are in fact
a number of ways of defining undercuts (Besnard & Hunter
2001), and our choice here is largely motivated by simplic-
ity. We say an argument oy defeats an argument cvo (Written
def (a1, a2)) if Jp € S(az) such that C(ag) ~ —p. The
problem of checking whether def (1, ap) is obviously co-
NP-complete.

Now, consider the circumstances under which two argu-
ments may be said to be equivalent. First, consider the
equivalence of formulae: we have two obvious interpreta-
tions of “equivalence” w.r.t. formulae. The first is simply
that of syntactic equivalence, which we denote by equality
(“="); and the second is that of logical equivalence, which
you will recall is denoted by ~. Let us now extend these no-
tions to arguments. We write oy = ap to mean that oy and
ap are syntactically equivalent, i.e., that C(ay) = C(az)
and S(a1) = S(ag). What about logical equivalence of
arguments? We will say that arguments oy and ao over a
database A are logically equivalent (written: o1 =~ o) iff
C(ag) ~ C(ag), i.e., if they are in complete logical agree-
ment w.r.t. the conclusion. The point here is that this ignores
syntactic variations in the presentation of the argument’s

conclusion. In general, for any database A, there will be
more syntactically distinct arguments over A than there will
be logically distinct arguments over A. To see this, simply
consider a database A; = {p — ¢, p}, and the arguments
(¢,{p.p — q}) and (=g, {p,p — q}), both of which are
syntactically distinct, but (¢, {p,p — q}) = (——q,{p,p —
q}). Tt is evident that checking whether two arguments are
logically equivalent is co-NP-complete.

Argument Sets, Distinctness, & Maximality

We now change our focus to consider subsets of arguments.
We extend our notion of equivalence of arguments to sub-
sets of arguments as follows. We say X; C A(A) and
Xo C A(A) are logically equivalent (written: X; =~ Xo)
iff there exists a bijection f : X; — Xy such that Vo € X;,
we have a &~ f(«). The 3V pattern of quantifiers in the
checking of equivalence of argument sets suggests that this
is computationally harder than checking equivalence of for-
mulae or arguments — perhaps Y5-complete (Papadimitriou
1994, pp.424-425). However, this turns out not to be the
case:

Theorem 1 The problem of checking equivalence of argu-
ment sets is co-NP-complete.

Proof: It will be convenient to work with the comple-
mentary problem — INEQUIVALENT ARGUMENT SETS (IAS)
— and to prove that IAS is NP-complete. Showing NP-
hardness is straightforward, so we focus on membership of
NP. Let X; = {al,ag, . ,am} and X, = {61, . ,ﬁm}.
where o; = (p;,S;) and 3; = (¢;,T;) are arguments in
A(A). We use @ and ¥ to denote the sets {p1,...,0n}
and {91, ..., Ym}.

Let B(®, ¥, E) be the bipartite graph on (disjoint) sets
of m vertices labelled ® and ¥ and whose edges are £ =
[y} : Slow) = S(8)}. Fora € (L, T)" B,(9, 9, F,)
is the subgraph of B(®, VU, E) containing only the edges
Fo = {{pii} + @ila) = (a) }. For Y C (L, T)",
By(®, U, Fy) is the subgraph of B(®, ¥, E) whose edges are
Fy = {{vi. ¢} : wila) = ¢j(a) forevery a € Y}. Letting
TOT denote the set (L, T)" it is easy to see the following:
X1 B X iff Bror(®, ¥, Fror) contains a perfect matching,
i.e., a subset of m edges defining a bijective mapping be-
tween ¢ and .

For V. C ®, let I'(V,By) denote the subset of W
formed by T'(V,By) = { + Aoy} €
Fy for some ¢; € V}.  From the Konig-Hall Theorem
((Berge 1976, Ch. 7, Thm. 5, p. 134)), there is a per-
fect matching in Bror(®, ¥, Fror) if and only if V V. C
® |T'(V,Bror)| > |V|. Suppose itis the case that X; 2 Xo,
i.e., (X1,X>) is accepted as an instance of 1AS. From the ar-
gument above, this happens if and only if Bror(®, U, Fror)
does not contain a perfect matching, and thus there will be
some strict subset of @, V say, for which |T'(V, Bror)| < |V|.

These observations lead to the following NP algorithm to
decide 1AS.

1. Non-deterministically choose some V C ®.

2. Non-deterministically choose some W C W of size |V| —
1.



3. Non-deterministically select a set F of |V|.(m — |W|) <
m? distinct a € TOT.

4. For each ¢ € V and each ¢y € ¥ \ W check that
if {¢,9} € E then there is some a € F for which

P(a) # ¢(a).

The last stage involves only polynomially many tests, each
of which requires simply evaluating two formulae on a given
instantiation.

To see that this algorithm is correct it suffices to observe
that the structure (V, W, F) witnesses that (X1, X>) is a pos-
itive instance of IAS: there are at most |V|.(m — |V|) pairs
<<p,',’(/Jj> with ¢; € V and wj g W. If S(Oé,') = S(ﬁ]) then
{¢i,1;} € E, however, we only require one instantiation
a € TOT in order to eliminate this edge from Fror. Thus we
need at most |V|.(m — |V|) < m? instantiations to remove
all edges between V and ¥ \ W. It follows that (V, W, F)
provides a polynomial length certificate for membership in
IAS. =

Next, we define the notion of distinctness for sets of ar-
guments. The intuition is that a set of arguments is distinct
if it does not contain duplicated arguments, where duplica-
tion is measured with respect to logical equivalence of argu-
ments. Formally, we say argument set X C A(A) is distinct
iff Vo, g € X:if (a1 # ag) then (a1 o ag).

Theorem 2 The problem of checking whether an argument
set is distinct is NP-complete.

Proof: Membership of NP follows from the fact that check-
ing distinctness of an argument set X C A(A) reduces
to the |X|? independent satisfiability checks, i.e., verifying
that for all a;, s € X, such that a; # s, the formula
(Clan) A =C(az)) V (-C(a1) A C(az)) is satisfiable. For
NP-hardness, we reduce SAT. Given a SAT instance ¢, Sim-
ply check that the argument set X; = {(¢, {¢}), (L, {L})}
is distinct. a

We say a set of arguments X C A(A) is maximal w.r.t. A
if it is not possible to add an argument from A(A) to X with-
out X becoming indistinct. Intuitively, if a set of arguments
X is maximal with respect to some database A, then it con-
tains all the arguments that can be made about A: it is not
possible to pick an argument from A(A) without duplicating
a member of X (where duplication is measured with respect
to logical equivalence). Notice that distinctness does not of
course imply maximality, but neither does maximality imply
distinctness. That is, an argument set can be maximal but
contain duplicates. Indeed, the set A(A) of all arguments
that can be made with respect to a database A is an obvious
example of such a maximal but indistinct set.

In analysing the computational complexity of checking
maximality it will be convenient to work with its comple-
mentary form, which we dub NON-MAS. In this problem,
instances (A, X) are accepted iff there is some § € A(A)
whose conclusion is not logically equivalent to that of any
argument in X. We observe that the “natural” formulation of
NON-MAS in determining the status of an instance (A, X) is
as

ISCA ¢ : (.5 eAA) A N (¢ # Cla))

acX

This formulation raises two difficulties: unless restrictions
are placed on ¢, the structure {(p, S) which must be validated
as an argument in A(A) may have size that is not polynomi-
ally bounded in the size of the instance (A, X)!; we have to
validate S = ¢ (in general CO-NP-hard) and ¢ ¢ C(«) for
each o € X (in general, NP-hard). Overall, even assuming
the restriction to formulae whose size, || (measured as the
number of literals occurring in ) is bounded by some poly-
nomial in the instance size, it would appear that NON-MAS
is “unlikely” to be decidable by an NP computation: with the
formulation and the restriction imposed we get only a 334 al-
gorithm. However, not only is it unnecessary explicitly to
restrict ¢, we may also validate S |= ¢ for all relevant ¢ in
polynomial time (in the size of the instance (A, X)). In this
way we can show that NON-MAS € NP a result which, cou-
pled with the easy proof that NON-MAS is NP-hard, allows
us to deduce that NON-MAS is NP-complete.

The following result is central to our subsequent proof
that NON-MAS € NP.

Lemma 1 Let (A, X) be an instance of NON-MAS and n
be the number of Boolean variables in the vocabulary ®g
of A. The instance (A, X) is accepted if and only if there
is a propositional formula, o, over ®q for which all of the
following properties hold:

a. A E e
b. @ is a CNF-formula containing at most |X| clauses, each of
which is defined by exactly n literals, so that || < n|X|.

c. Va € X, Cla) % .

Proof: From the definition of NON-MAS it is immediate
that if ¢ with the properties (a) through (c) exists, then it is
certainly the case the (A, X) is accepted as an instance of
NON-MAS: the argument (p, A) being distinguished from
all arguments in X.

For the converse implication, suppose it is the case that
(1,S) € A(A) and that for each o € X, we have ¢ £ C(a).
We first observe that, since S |= 1 it is certainly the case
that A |= ¢. For any instantiation ¢ € (T, _L)", let x, be
the propositional formula given as the disjunction over all
literals over @ that take the value L under a: thus x,(b) =
1 & b = a. Consider the set of (full) instantiations of ®¢,
1 (), defined by,

L) = {ae(T,L1)" : ¥(a) =1}
It is well-known that for any propositional formula, v, is
logically equivalent to the formula ¢)cyr defined via

Yene = /\ Xa
acL(¢)
Thus from A = ¢ we have A |= t)cxe. In addition, however,
for any subset R of L (%)) it further holds that

A /\Xg

acrR

'Given a database A, it may be the case that there is some ¢
such that A = ¢ and the shortest formula 1 such that ¢ ~ v is of
length exponential in the size of A. In other words, there could be
arguments that we can construct from a database whose conclusion
is necessarily exponential in the size of the database.



Since Yene 7% C(a) for any a0 € X, it follows that we can
identify £ = |X| instantiations, (a;,ds,...,q;) for which
Yene(q;) # C(ay)(g;). We now define the subset Ry of
L (%) to contain { g; C(ey)(a;) = T} and fix ¢ (the
propositional formula whose existence we wish to establish)
as N\,er, Xa- For ¢ defined in this way, from our earlier
analysis: A |= ¢, as required by (a); ¢ is in CNF, and con-
tains at most |X| clauses (since |[Rx| < |X|) with each clause
defined from exactly n literals — as required by (b); finally
© ¢ C(a) for any o € X — as required by (c). To see that (c)
does hold true of ¢ it suffices to observe that L (¢) = Rx so
that if @; € Rx then p(g;) = L and (from the definition of
Rx) C(a;)(a;) = T;similarly if a; & Rx then C(ay)(g;) = L
and (from the fact that L () = Rx) ¢(a;) = T.

In total if it is the case that (A, X) is accepted as an in-
stance of NON-MAS, then we can identify some ¢ with the
properties (a)—(c) described in the Lemma statement. o

Given this, we can now prove that:

Theorem 3 The problem of checking maximality of argu-
ment sets is CO-NP-complete.

Proof: We prove the equivalent result that NON-MAS is
NP-complete. We first show NON-MAS is NP-hard using a
reduction from SAT. Given an instance ¢ of SAT, consider
the database A = {-¢} with X C A(A) chosen to be
{(T,{—¢})}. We claim that ¢ is satisfiable iff X is not max-
imal w.r.t. A.

We now show that NON-MAS € NP. Consider the follow-
ing non-deterministic algorithm.

1. For each o; € X, non-deterministically choose an instan-
tiation, g; of ®g.

2. Construct the formula ¢ = /\a.:C((X[)(a‘)ZT Xa

3. Testif A |= ¢, accepting if this is the case.

By Lemma 1 it is certainly the case that (A, X) is accepted
as an instance of NON-MAS if and only if the algorithm de-
scribed has an accepting computation. Stages (1) and (2)
can clearly be realised in non-determininistic polynomial
time. The final stage, however, is easily completed in de-
terministic polynomial-time: ¢ is a CNF formula for which
1(¢) ={a; : C(ay)(g;) = T}. Thus to verify A |= ¢ it
suffices to check that for each a € L(p) some ¢ € A has
¥(a) = L. Since | L(¢)| < |X| this final stage takes time
polynomial in the size of the instance (A, X). o

Of particular interest to us are argument sets over A that
are both maximal and distinct. We say a set of arguments
X is canonical with respect to A if it is both maximal and
distinct w.r.t. A. A canonical argument set thus represents
a limit of what can be argued from a database without rep-
etition. We will let can(A) denote the canonical argument
sets of A, so can(A) C 24(%). First, we prove that every
non-empty database A has a canonical argument set.

Theorem 4 For all A # () C @, can(A) # 0.
Proof: = We use the same proof idea as Lindenbaum’s

lemma. Let 0 : ag, a1, ... be an enumeration of arguments
over A: such an enumeration clearly exists. Corresponding

to o, define a sequence of argument sets X, X1, ... where
Xo = {ao}, and forn > 0,

X — X,—1 U{a,} ifX,—1 U {«,} is distinct
T X—1 otherwise.

Finally, define an argument set X by: X = (J 2, X,. By
construction, X will be a canonical argument set of A. o

The following, easily established result gives our motiva-
tion for using the term “canonical”.

Fact 1 Canonical argument sets are logically equivalent.
That is, VX1, X2 € can(A): X1 = Xo.

We note, in addition, the following consequence of
Lemma 1, the proof of which is omitted.

Corollary 1 If X € can(A), then |X| = 21O where
6 = /\LpEA 2

Argument Graphs

Let us now consider the issue of linking deductive and
abstract argument systems. Given a set of arguments
X C A(A), the defeat predicate def(---) induces a graph
X, {(a1,2) | a1,0 € X,def(a1,2)}) over X, which
can obviously be understood as being analogous to the
graph structures of Dung’s abstract argument systems (Dung
1995). Note that there are some technical difficulties in-
volved in “lifting” a defeat relation to a Dung argumenta-
tion graph in this way. In particular, Besnard and Hunter
show that unless modified, Dung’s notion of an admissible
set turns out to collapse under this interpretation; although
the notion of an admissible set can be refined to make more
sense when interpreted for deductive argument systems, this
comes at the cost of eliminating some apparently reasonable
cases (Besnard & Hunter 2001). Thus, solution concepts
which make sense when studied with respect to arbitrary
graphs do not necessarily make sense when the defeat rela-
tion is given a concrete interpretation in terms of deductive
arguments, suggesting a need for refined versions of these.
However, the issue of formulating appropriate Dung-style
solution concepts for deductive argument systems is some-
what tangential to the paper at hand, and we shall not investi-
gate this particular issue. Instead, we focus on the problems
of establishing links between deductive and more abstract
argument systems.

To motivate the discussion, suppose we are given a set
of arguments X C A(A) (for some A), and a graph Gy =
(X, E C XxX), so that the vertices of Gy are the members of
X. How might X and Gy be related? Two obvious questions
then suggest themselves:

1. Soundness: Does Gx “correctly” represents the defeat re-
lation def (- - - ) over X? Formally, Gx will be sound with
respect to X iff Vo, as, if Gx(aq, ao) then def (aq, aa).

2. Completeness: Does Gx “completely” represents the de-
feat relation def (- - - ) over X? Formally, Gx will be com-
plete with respect to X iff Vo, ag, if def(aq, as) then
Gx(a1 s ag).



Theorem 5 Given a set of arguments X, the problem of
checking whether a graph Gx = (X,E C X x X) is sound
with respect to the defeat relation def (- - - ) over X is co-NP-
complete.

Proof: Consider membership of co-NP. Recall that sound-
ness of Gy with respect to X means that Yoy, o; € X, if
Gx(ai, o) then def (v, o). We work with the complement
of the problem, i.e., the problem of showing that Ja;, o € X
such that Gx(ay, o) and not def (o;, o). The following NP
algorithm decides the problem: (i) Guess «;,; € X and
k propositional valuations &1, ..., &, where k = [S(a;)|;
(ii) Verify that Gx(«;, ;) and that & = (C(oy) A1) V
—(Ca) V), &2 | (Clai) Ap2)V(Clai)Viba), ... & =
(Cleu) ANbe) V —(C(eu) Vibr), where S(ay) = {t1,..., ¥}
The algorithm is clearly in NP. For hardness, we reduce
TAUT, the problem of deciding whether a propositional logic
formula ¢ is a tautology. Given a TAUT instance ¢, define
Gx = ({a1, a2}, {(a1,02)}) where ar = (¢, {p}) and
ag = (L, {L}). Gy is sound w.r.t. X iff o is a tautology. o

Theorem 6 Given a set of arguments X, the problem of
checking whether a graph Gy = (X,E C X x X) is com-
plete with respect to the defeat relation def (- --) over X is
NP-complete.

Proof: Membership of NP is by the following algorithm:
For each a1, a2 € X such that not Gx(«, az), and for each
€ S(az) guess a valuation £ and verify that £ = C(ay) A
. For NP-hardness we reduce SAT. Given a SAT instance
®> define GX = ({Oll, 062}, {(ala Oél), (042, a2)7 (QQ, 041)})
where a; = (¢, {¢}) and ag = (T,{T}). Gx is complete
w.r.t. X iff ¢ is satisfiable. o

Now consider the problem of determining whether a graph
Gy over a set of arguments X is both sound and complete.

Theorem 7 Given a set of arguments X, the problem of
checking whether a graph Gx = (X,E C X x X) is
both sound and complete with respect to the defeat relation
def (- - -) over X is DP-complete.

Proof: Membership in D” follows from Theorems 6 and
Theorem 5. For completeness, we reduce SAT-UNSAT (Pa-
padimitriou 1994, p.415), instances of which comprise a pair
{(p, 1) of propositional formulae. Such an instance is ac-
cepted if ¢ is satisfiable and 1 is unsatisfiable. First, from
(o we create a new formula ¢* = ¢ A p, where p is a new
Boolean variable, which does not appear in either ¢ or .
The formula * has the following properties, all of which
are used in what follows: (i) ¢* will be satisfiable iff ¢
is satisfiable; (ii) ¢* is not a tautology, even if ¢ is; and
(iii) neither * ~ 1 nor ¢* ~ —). We then create an ar-
gument set X = {aq, aa, a3, ay} where: ay = (¢, {¢*}),
az = (4, {¢}), ag = (T,{T}). and ay = (L, {1}). Our
argument graph Gy = (X, E) has X as defined above, and
E = {(042, 043)7 (012, Oég), (043, 044)7 (a4, 043)}. Table 1 re-
lates the graph Gy in this construction to the defeat relation
def (- - - ) induced over X for possible properties of ¢ and .
Note that the properties in the def (- - -) column of Table 1
are by established by simple propositional logic reasoning.

(i, o) | def(ai,cy)? | Gx(o, )?
(a1,1) | no no
(a1,a2) | no no
(a1, a3) | iff " is unsatisfiable no
(a1, 4) | no (since * is not a tautology) | no
(a2, 1) | no no
(az, ag) no no
(a2, a3) | iff 4p is unsatisfiable yes
(a2, aq) | iff ¢ is a tautology no
(as, 1) | iff " is unsatisfiable no
(a3, a2) | iff ¢ is unsatisfiable yes
(az,a3) | no no
(a3, q) | yes yes
(aa, 1) | no (since ¢ is not a tautology) | no
(aa, ar2) | iff ) is a tautology no
(aa,03) | yes yes
(a4, q) | no no

Table 1: Defeat relation and argument graph properties for
the construction of Theorem 7.

We claim that ¢ is satisfiable and ) is unsatisfiable iff Gx
is sound and complete w.r.t. X. (—) Suppose ¢ is satisfi-
able and 1 is unsatisfiable. We must show that Gy is sound
and complete w.r.t. X. Soundness means that if Gx(o, a;)
then def(a;, o;). With respect to Table 1, this means show-
ing that a “yes” in the Gx(«, o) column implies a “yes” in
the def(a;, oj) column. That def (a3, vs) and def (o, a3)
is obvious, so consider whether def (s, a3): since by as-
sumption @ is unsatisfiable, then it must defeat avs. Com-
pleteness means that if not Gx(a;, o) then not Gx(ay, o).
This can be verified by examination of Table 1. («+) Sup-
pose Gy is sound and complete w.r.t. X, i.e., that Gx(c, o))
iff def (cyi, ). We must show that this implies ¢ is satisfi-
able and ¢ is unsatisfiable. This can be done by examination
of cases in Table 1. o

Suppose that instead of being given a graph over a set of
arguments, we are given an arbitrary graph, G = (V,E),
where V is simply an abstract set of verticesand E C V x V,
and we are asked whether G “captures” a given deductive
argument system. Here, G really is simply a Dung-style ar-
gument system: the nodes in the graph are not arguments,
and hence we are not given any interpretation of them with
respect to the given deductive argument system. How might
we establish a link between such a graph and a deductive
argument system? It depends on the way in which the de-
ductive argument system itself is presented:

1. as a graph Gy over A(A);
2. as a (sub)set of arguments X C A(A); or
3. as a database A C ®.

In the first case, we are given both a graph G = (V,E)
and an argument graph Gx = (X,Ex C X x X). The
problems of soundness and completeness in this case reduce
to standard graph theoretic problems: Soundness means
checking whether G is isomorphic to some subgraph of Gy,
while completeness means checking whether Gy is isomor-
phic to some subgraph of G, and checking soundness and



completeness means checking that G and Gx are isomor-
phic. From standard results in complexity theory, (in par-
ticular the fact that the SUBGRAPH ISOMORPHISM problem
is NP-complete) it follows immediately that the problems of
checking soundness or completeness for this representation
are both NP-complete. The problem of checking both sound-
ness and completeness, however, is exactly the well known
open problem GRAPH ISOMORPHISM. A classification of
the complexity of this problem would in itself represent a
major event in the theory of computational complexity.

With respect to the second representation, we are given
a set of arguments X C A(A) and a graph G = (V,E).
Here, we have less information: we have no argument graph
to compare G with, just a set of arguments X. Thus we do
not know a priori what the vertices of G are supposed to
correspond to in X — we thus need to “interpret” vertices in G
with respect to members of X in our definitions of soundness
and completeness. Formally, we will say:

e a graph G = (V,E) is a sound abstraction of a set of
arguments X C A(A) if there exists an injective func-
tion f : V — X such that Vv,va € V, if G(v1,v2) then
def (f(v1).f(v2)); and

e a graph G = (V,e) is a complete abstraction of X C
A(A) iff there exists an injective function f : X — V such
that Vo, s € X, if def (a1, i) then G(f (o), f(a2)).

The proofs of Theorems 5 and 6 can be readily adapted to
show the following:

Theorem 8 The problem of checking whether a graph G is
a sound abstraction of a set of arguments X C A(A), is co-
NP-hard, while the problem of checking whether a graph G
is a complete abstraction of a set of arguments X C A(A),
is NP-complete.

With respect to the third representation, we are given sim-
ply a database A and a graph G = (V, E). This case seems
the most elaborate computationally but also perhaps the least
interesting practically. Once again, we are given even less
information to work with: we only have the database of for-
mulae from which arguments may be constructed. So, how
are we to interpret the soundness and completeness ques-
tions? Recalling that for any database A C &, the set of
canonical argument sets over A is denoted by can(A), we
can give the following interpretation to soundness and com-
pleteness for graphs G = (V, E) against databases A:

e a graph G = (V,E) is a sound canonical abstraction of
a database A if 3X € can(A) such that G is a sound ab-
straction of X; and

e agraph G = (V,E) is a complete canonical abstraction
of a database A if 3X € can(A) such that G is a complete
abstraction of X.

It should be clear that these concepts, are much more
baroque (and much less amenable to formal analysis) than
those we have studied above. They involve quantifying over
canonical argument sets, which as we noted in Corollary 1
will be exponentially large in the number of falsifying as-
signments for A, and hence in general doubly exponential
in the number of Boolean variables. We will thus not inves-
tigate these latter problems further here.

Related Work & Conclusions

The work described in this paper has been concerned with
the computational complexity of answering certain ques-
tions about sets of arguments. The particular questions we
have considered have not previously been considered, but
there are several authors whose work is related to ours in
one way or another. For example, the work of Besnard and
Hunter (Besnard & Hunter 2001) has some elements in com-
mon with our work — a definition of equivalence between
arguments that is the same as ours, and a notion of canon-
icity of argument. Their work, however, is focussed exclu-
sively on the properties of a specific deductive argumenta-
tion system while ours deals with properties that apply to a
range of argumentation systems. Other authors have consid-
ered the computational complexity of answering questions
related to arguments. Most notable, perhaps, is the work
of Dimopoulos et al. who have investigated the complex-
ity of computing the acceptability of individual deductive
arguments — a surprisingly hard process because of the re-
cursive nature of the relationships between arguments (Di-
mopoulos, Nebel, & Toni 2002).
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