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Categories and Subject Descriptors1.2.11 [Arti�ial Intelligene℄: Distributed Arti�ial In-telligene: Multi-agent systems
General TermsDesign, Eonomis
Keywordsognitive game theory, ontinuous double aution, genetiprogramming, pareto optimisation, mehanism design, multi-agent systems (MAS), reinforement learning, trading strate-gies
1. INTRODUCTIONThe aution mehanism design problem has attrated muhinterest in reent years, and eonomists have had onsider-able suess in applying tehniques from game theory to thedesign of aution-based markets for deregulated ommod-ity markets (e.g., California's deregulated eletriity market)and the sale of government assets (e.g., autions of eletro-magneti spetrum for mobile phones). Alvin Roth has sug-gested that this is akin to an engineering proess in whiheonomists design the rules of a market mehanism in orderto meet partiular soio-eonomi requirements (e.g., max-imising the eÆieny of alloating ommodities in a market).The engineering of aution mehanisms is of partiularimportane to agent-based eletroni ommere and multi-agent systems in general. E-ommere has enabled on-sumers to at as prie-makers instead of just prie-takersin large aution-based markets and has stimulated the useof personalised bidding agents to empower those onsumers
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even more. In addition, aution mehanisms are seen asa promising means of solving many distributed resoure-alloation problems in multi-agent systems and grid teh-nology.One approah to mehanism design is to use tehniquesfrom mahine learning to explore the spae of possible waysin whih agents might at in partiular markets. For exam-ple, reinforement learning has been used to explore biddingpatterns in autions and to establish the ways in whih prie-setting behavior an a�et onsumer markets. Another ap-proah is to use tehniques from evolutionary omputing,e.g., o-evolutionary mahine-learning. Our earlier work hasexplored the use of o-evolutionary GP to determine autionmehanism rules automatially.In that work, mehanism rules and bidding strategies wereo-evolved in ways that sought to maximise, on the one handoverall market eÆieny, and on the other hand the pro�tsof individual agents. This approah lends itself to studyingthe dynamis of the evolution of negotiation mehanisms ina setting where mehanisms hange inrementally in a realenvironment, but it is problemati when we wish to deriveoptimal mehanism designsIn our later work we view mehanism design as a multi-objetive optimisation problem. The key issue that we ad-dress is determining the �tness of individual points in themehanism design-spae. This is non-trivial in the generalase, sine assessing the �tness of an individual mehanisminvolves reasoning about how agents might atually behaveunder the proposed negotiation rules. In the following se-tion we desribe our approah to prediting agents behaviourfor arbitrary mehanisms, and in the �nal setion we presenta summary of our results where we apply this method tomapping the �tness landsape for a k-CDA.
2. EQUILIBRIA FOR N-PLAYER GAMESWhen evaluating a mehanism design, the designer musttake into aount the set of trading strategies that are likelyto be played by agents trading in the mehanism under on-sideration. Deriving the set of the strategies likely to beplayed for a partiular market game, that is \solving" thegame, is a non-trivial problem in the general ase. Thisis beause there is often no lear dominant strategy whih



onstitutes best play; rather the best strategy to play de-pends entirely on the strategies played by other agents. Nashde�ned a solution onept in whih the strategy adoptedby any given agent is a best-response to the best-responsestrategies adopted by all other agents, and proved that alln-player, non-zero-sum games admitted solutions so de�ned.Nash's solution onept is widely adopted in theoretialeonomis. Thus when evaluating an eonomi mehanism,the designer omputes the Nash equilibria of strategies forthe given mehanism; and this forms the basis of preditionsabout how people will atually behave under the rules of thismehanism. The designer an then analyse market outomesin equilibria and quantitively assess, for example, the likelya�et on overall market-eÆieny that a given hange in themehanism rules will yield. Thus the role of the designer isto ensure that the Nash equilibria orrespond to situationsin whih high market eÆieny is obtained.We an view mehanism design as a multi-objetive op-timization problem. We onsider as a separate dimensioneah problem variable we are interested in maximising (forexample, market eÆieny, seller revenue and so on), and thediÆulty lies in simultaneously maximising as many dimen-sions as possible. The designer's task is to hoose mehanismrules whih pareto-optimise di�erent market variables whentraders play Nash-equilibrium strategies. However, there area number of problems beginning with omputing the Nashequilibria:1. Agents with limited omputational power (i.e., \bound-ed rationality" onstraints) may be unable to omputetheir Nash-equilibrium strategy;2. Even with vast amounts of omputational and analytipower, many games defy solution; e.g., in the ase ofthe k-double-aution, analytial tehniques have yet toyield a solution;3. Empirial evidene shows that human agents often failto oordinate on Nash-equilibria for very simple gameswhose solution is easily derivable under bounded-ration-ality assumptions; and4. Often a given game will yield a multitude of Nash so-lutions and there is little guidane for pratitionerson hoosing plausible subsets thereof as predited out-omes.These diÆulties with the standard theory of games haveled to the development of a �eld known as ognitive gametheory, in whih models of learning play a entral role in ex-plaining and prediting strategi behaviour. Erev and Rothshow how simulations of agents equipped with a simple re-inforement learning algorithm an explain and predit theexperimental data observed when human agents play a di-verse range of trading games. Suh multi-agent reinfore-ment learning models form the basis of our solution oneptfor optimising mehanism designs. Rather than omputingthe theoretial equilibria for a given point in the mehanismsearh spae, we run a number of multi-agent simulationsusing agents equipped with a learning algorithm that de-termines their bidding strategies. The stationary points inthese simulations { the states where the learning algorithmsof all agents have onverged { orrespond to the equilibriaof lassial game theory, and the market outomes in thesestable states an be viewed as preditions.
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Figure 1: Fitness plotted against k for adisriminatory-prie k-CDA with 6 buyers and 6sellersNote that we are not attempting to �nd theoretially op-timal strategies for our agents1. Rather, we are attemptingto predit how boundedly-rational agents, who have no priorknowledge of an equilibrium solution nor the means to al-ulate one, might atually play against the mehanism weare (automatially) designing. For this reason, we hose touse the Roth-Erev algorithm , sine it forms the basis of aognitive model of how people atually behave in strategienvironments. In partiular it models two important prin-iples of learning psyhology:� Thorndike's law of e�et | hoies that have led togood outomes in the past are more likely to be re-peated in the future; and� The power law of pratie | learning urves tend tobe steep initially, and then atter.
3. RESULTSFigure 1 shows the mean �tness of a set of k-CDA meha-nisms for 100 values of k in the interval [0, 1℄ at intervals of0.01. Eah sample onsisted of 100,000 runs of the autionsimulation with di�erent seeds for the random number gen-erator. In eah simulation we pit 6 buyers against 6 sellersover a period of 1,000 rounds of trading. Fitness is de�nedas a linear sum of buyer market-power, seller market-powerand overall market eÆieny, normalised to lie in the range[0, 1℄ where higher values indiate better mehanisms. Thesoftware used to run this experiment is available for down-load at:http://www.s.liv.a.uk/�sphelps/jasa.Also available at the same URL is the full version of thispaper, in whih we demonstrate the evolution of a k=0.5CDA using geneti programming.1In other words Nash equilibrium strategies


