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Abstract. Auctions can be thought of as resource allocation mecha-
nisms. The economic theory behind such systems is mechanism design.
Traditionally, economists have approached design problems by studying
the analytic properties of different mechanisms. An alternative is to view
a mechanism as the outcome of some evolutionary process involving buy-
ers, sellers and an auctioneer. As a first step in this alternative direction,
we have applied genetic programming to the development of an auction
pricing rule for double auctions in a wholesale electricity marketplace.

1 Introduction

Much recent work in the field of Multi-Agent Systems (MAS) has focused on
resource allocation problems, for example [8,14]. These problems are especially
difficult to solve efficiently in an open system if the values which agents place on
resources, or the values of their human principals, are private and unobservable.
In such a situation, the difficulty facing somebody wishing to give the resources
to those who value them most highly is that participating agents cannot neces-
sarily be relied upon to report their private values truthfully; there is nothing
to prevent “greedy” agents from exaggerating their resource requirements. Auc-
tion mechanisms attempt to overcome this difficulty by having agents support
their value-claims with hard cash. Such mechanisms can be designed so as to
induce agents to reveal their true valuations, thereby encouraging the allocation
of resources to those agents who genuinely value them most highly.

Designing mechanisms to achieve specific economic requirements, such as
achieving market efficiency or maximising social welfare, against self-interested
intelligent traders, is no trivial matter as can be seen from accounts of the
auction design process for the recent radio spectrum auctions in the UK [15]
and the US [7,17]. The economic theory of mechanism design approaches the



task of designing efficient resource allocation mechanisms by studying the for-
mal, analytical properties of alternative mechanisms [13,26]. However, for some
kinds of mechanisms, including continuous double auctions [10], the mechanisms
are too complex to admit analytical solutions. Because of these complexities,
economists are increasingly turning to computational methods in an attempt to
take an engineering approach to “microeconomic design” [23,25]. We follow such
an approach in this paper.

2 Co-evolution

One approach to computational microeconomic design is to use techniques from
machine learning to explore the space of possible ways in which agents might
act in particular markets. For example, reinforcement learning has been used
to explore bidding patterns in auctions [20,23] and establish the ways in which
price-setting behaviour can affect consumer markets [27]. Another approach is
to use techniques from evolutionary computing, that is from genetic algorithms
[12] and genetic programming [16].

Inspired by the biological metaphor of evolution, genetic algorithms code
aspects of a solution to a problem in an artificial “chromosome” (typically a
binary string) and then breed a population of chromosomes using techniques
like crossover (combining different bits of the strings from different individuals)
and mutation (flipping individual bits). Genetic programming extends this ap-
proach by evolving not a bit-string-encoded solution to a problem, but an actual
program to solve the problem itself. Programs are encoded as s-expressions and
modelled as trees (nodes are function names and branches arguments of those
functions); and these trees are subject to crossover (swapping subtrees from
different programs) and mutation (replacing subtrees with random subtrees).
Whichever approach is used, the best individuals, evaluated using a fitness func-
tion, are kept and “bred”; and bad individuals are rejected. However, deciding
which individuals are the best is a hard problem.

Evolutionary approaches perform a search through a space of solutions with
the theoretical advantage that random jumps around the search space — created
by crossover and mutation — can prevent the system from getting stuck in local
optima, unlike other techniques like hill climbing. Unfortunately, in practice this
is not always the case at least partly because what constitutes the best fitness
measure can change over time. To overcome this problem, researchers turned
to co-evolution [1,11,18], and the aim of our work is to apply co-evolution to
economic mechanism design.

In successful applications of co-evolution, simultaneously evolving popula-
tions of agents interact with each other, each providing a fitness measure for
the other which changes as both populations evolve. When this works, an “arms
race” spiral develops wherein each population spurs the other(s) to advance and
the result is continuous learning for all populations. However, this has been noto-
riously difficult to achieve. Often populations settle into a mediocre stable state,
reaching a local optima and being unable to move beyond it. Consequently, there



is a growing body of work examining the dynamics of co-evolutionary learning
environments in an attempt to identify phenomena that contribute to success [2,
6,9,21]. The following aspects are of particular importance (some of which are
relevant for both evolutionary and co-evolutionary techniques):

1. choice of representation for individuals within each population;

2. definition of a fitness function for determining which individuals in a popu-
lation will reproduce;

3. operators and proportion of population(s) used for reproduction;

4. selection of learning experiences for individuals (i.e., who interacts with

whom, how many times and how frequently);

size of population and number of populations;

6. avoidance of collusion! wherein members of different populations can work
together to make non-optimal moves that may produce better short-term
results for each but cause the populations as a whole to get stuck in local
optima; and

7. a clearly defined vision of the fitness landscape and how to measure progress
so that one can even recognize if a local (or indeed global) optimum has been
reached.

o

We see efficient mechanisms evolving through repeated interactions between par-
ticipants who may also be evolving individually — thus we believe that the
co-evolutionary methodology is highly appropriate for our problem. Thus it is
our long term aim to understand the above aspects for the evolution of trading
strategies and auction rules.

In our work, we are using genetic programming (GP) [16] to represent indi-
viduals with different roles in an auction: the auctioneer, and the two types of
traders (buyers and sellers). Through the interactions of the traders, individual
and group trading strategies evolve, as well as auction mechanisms themselves.
We view the mechanisms as “hosts” and the trading strategies as “parasites”;
as greedy, non-truthful strategies emerge, it would be hoped that the auctioneer
population will adapt defenses, and that strategy-proof, incentive-compatible
mechanisms would evolve. Investigation of such an approach is the long-term
aim of our research, and to our knowledge we are the first to apply genetic pro-
gramming and co-evolution to mechanism design (though [4] describes similar
work—this is discussed in more detail in Section 5).

Here, we report our initial work towards this aim. In Section 3, we describe
the scenario we are studying. Section 4 then describes our use of genetic pro-
gramming to co-evolve trading strategies for buyers and sellers in these auctions,
and some of our preliminary results in using genetic programming to evolve auc-
tion pricing rules. Section 5 discusses how these results fit into our overall plan

! Note that this is not necessarily the same as the notion of collusion in auction
theory. Collusion in co-evolution is where members of the co-evolving populations
help each other to score high fitness, the by-product being that the populations as
a whole settle into a local optimum. Collusion in auction theory is where several
bidders work together to buy goods for less than would have been paid were they
not working together.



of work, and describes some future lines of work. Finally, Section 6 concludes
with a brief summary.

3 The Experimental Scenario

To provide a multi-agent test-bed for such an approach we have adopted the
wholesale electricity market auction simulation model of [20]. In this scenario, a
number of traders buy and sell electricity in a discriminatory-price continuous
double auction. Every trader has a private value for the electricity that they
trade; for buyers this is the price that they can obtain in a secondary retail
market and for sellers this reflects the costs associated with generating the elec-
tricity. Trade in electricity is affected by capacity constraints; every trader has
a finite maximum capacity of electricity that they can generate or purchase for
resale. The market proceeds in rounds of trading. In each round, all the traders
are given the opportunity to bid in a random order. Each trader selects a price
and submits a bid or an ask at that price and with a quantity equal to their gen-
erating capacity. Trade proceeds until the maximum number of auction rounds
is reached.

In [20] agents use a myopic reinforcement learning algorithm which is a mod-
ification of the Roth-Erev algorithm [24]; the learner chooses possible actions
from K possible mark-ups, and receives a reward directly proportional to the
profits that result from this offer. The learner chooses actions by generating ran-
dom numbers according to a probability distribution built up linearly from the
cumulative rewards for each possible action. The modified Roth-Erev algorithm
(MRE) has three main parameters: r the recency parameter; e the experimenta-
tion parameter and s(1) the scaling parameter.

The scenario is investigated in terms of the market power that can be ex-
ercised by buyers or sellers under different market conditions. Market power is
defined as the difference between actual profits earned versus the theoretical
profits available in competitive-equilibrium, expressed as a ratio of the equilib-
rium profits. The different market conditions are represented by two parameters:
relative concentration (RCON) and relative capacity (RCAP). RCON is the ratio of
the number of buyers (NB) to the number of sellers (NS) and RCAP is the relative
generating capacity of each group.

The main results from [20] are summarised in Table 1. Each cell of the table
corresponds to particular values for RCON and RCAP. The outcome under these
conditions is summarised by the variables:

— Buyer MP — market power exercised by buyers

— Seller MP — market power exercised by sellers

— Efficiency —ratio of total profits earned to total profits theoretically available
in competitive equilibrium, expressed as a percentage.

Because traders use stochastic strategies, the sensitivity of these outcomes to
particular values of the pseudo-random number generator seed is tested by run-
ning the experiment 100 times with different seeds on each iteration. For each



Relative Capacity

1/2 1.00 2.00

stdev stdev stdev
Buyer MP -0.13 (0.09)[ Buyer MP -0.15 (0.09)| Buyer MP 0.10 (0.30)
Seller MP 0.55  (0.38)| Seller MP 0.38 (0.33)| Seller MP -0.10 (0.25)

2
Efficiency 99.81 (0.02)| Efficiency 96.30 (0.05)| Efficiency 99.88 (0.06)
Relative Buyer MP -0.22 (0.12)[ Buyer MP -0.13 (0.10)| Buyer MP 0.13 (0.33)
Concentration Seller MP 0.80 (0.53)| Seller MP 0.28 (0.35)| Seller MP -0.10 (0.26)

1

Efficiency 92.13 (0.09)| Efficiency 94.59 (0.07)| Efficiency 100.00 (0.00)
Buyer MP -0.21 (0.12)[ Buyer MP -0.14 (0.08)| Buyer MP 0.09 (0.24)
Seller MP 0.67  (0.46)| Seller MP 0.30 (0.31)| Seller MP -0.07 (0.19)

1/2
Efficiency 91.84 (0.09)| Efficiency 94.24 (0.07)| Efficiency 100.00 (0.00)

Table 1. Market power and efficiency outcomes for the best-fit MRE algorithm with
1000 auction rounds and parameter values s(1) = 9.00, r= 0.10, and e = 0.20. Refer to
[20] for a detailed description of the MRE parameters: r the recency parameter; e the
experimentation parameter and s(1) the scaling parameter.

variable we reproduce the average result, followed by the standard deviation in
parentheses. These results are significant because they indicate that there are
market biases inherent in the discriminatory-price auction rules. For example,
one would expect that Seller MP should increase as RCAP increases, but this is
not what is found by experimentation. [20] concludes that the inherent market-
structure is responsible for failure of this hypothesis.

4 Co-evolution using Genetic Programming

This scenario was selected for our research because of the focus on market power.
As agents evolve successful extra-marginal strategies, their market power indices
will increase. For example, if sellers were able to employ collusive price-fixing
strategies, we should expect to see their market power indices grow. Different
auction rules may have differing abilities to counter this kind of tactic; hence,
market power outcomes are an important quantative metric to consider in as-
sessing auction designs.

4.1 Co-evolution of Trading Strategies

In our initial work, we evolved a separate population of strategies for each trader
in the electricity market scenario. These strategies evolve in competition with
the simultaneously evolving strategies of other traders. The scenario is basically
that described above, the only difference in our approach being that instead of
using the modified Roth-Erev algorithm to select prices, buyers and sellers select
prices by evaluating a function that was evolved using genetic programming.
The heart of our simulation was a Java implementation of the 4-heap algo-
rithm [29] which was used to maintain auction state; all price information was
encoded using double-precision floating point variables and all quantity informa-
tion was encoded using integers. This software is available under an open-source



Function Arguments Return-type Description

+ (+ number number) number Addition

— (— number number) number Subtraction

/ (/ number number) number Division

* (* number number) number Multiplication

1 none number 1

DoubleERC  none number A double precision floating point
ephemeral random constant in the
range (0..1).

QuoteBidPrice none number The current bid quote

QuoteAskPrice none number The current ask quote

Table 2. GP functions common to all function-sets

license at http://jasa.sourceforge.net/. For the genetic programming part
of the experiments, we made use of a Java-based evolutionary computation sys-
tem called ECJ.2 ECJ implements a strongly-typed Gp [19] version of Koza’s
[16] original system. For all of the GP experiments in this paper, the standard
Koza parameters were used in combination with the standard Koza GP opera-
tors. The functions given in Tables 2 and 3 were used as the GP function-set,
and the initial populations were generated randomly using these functions. As is
usually the case with GP, individuals are tree structures composed of these func-
tions. We used six populations of GP-evolved strategies, that is one population
for each buyer and seller in the market. The fitness function for each population
corresponded to the profits earned by the corresponding trader. The use of a sep-
arate co-evolving population for each trader allowed us to explore the potential
emergence of collusive tactics between self-interested traders; each population
attempts to maximise its own profits, but in certain situations populations may
be able to increase their profits by co-operating with rival populations. This
could not be modeled, by, for example, representing all of the buyers as a single
population, since this optimization problem would not account for self-interested
behaviour of individual traders.

Each population contained 100 tree-individuals. When breeding trees for the
next generation, the crossover operator is applied with a probability of 0.9, and
the reproduction operator is applied with a probability of 0.1, as per standard
Koza GP [16]. Individuals are selected for breeding using tournament selection,
with a tournament size of 7. To evaluate the fitness of individuals in each gen-
eration, one member of each population was randomly selected. The strategies
that corresponded to this set of trees were then played against each other in a
10-round version of the electricity market, and each individual’s fitness was set
in proportion to the profits obtained for the corresponding strategy at the end
of the rounds. This process continued until all individuals in all populations had
been evaluated, giving a fitness measure for each individual. Note that wherever
evaluation of the tree resulted in a negative price, or in a division by zero excep-

2 http://www.cs.umd.edu/projects/plus/ec/ecj/



Function Arguments Return-type Description

< (< number number) boolean  Less-than function

= (= number number) boolean Equals function

> (> number number) boolean Greater-than function

True none boolean True

PrivateValue none number The agent’s private valua-
tion for electricity

Nand (Nand boolean boolean) boolean  Not-and boolean operator

IfElse (IfElse boolean number number) number Return 2nd argument if

condition is true, other-
wise return 3rd argument.

Table 3. Additional GP functions used in evolving trading strategies

tion, the price was set to 0 and this was used as the requisite bid or ask3. These
fitness values, established by competition between populations, are then used,
as described above, to select which individuals from a single population will be
permitted to reproduce (both in terms of being copied to the next generation
and undergoing crossover).

Initially, we were interested in whether high-efficiency outcomes are sustained
in this experiment. As with the original experiments, high levels of market ef-
ficiency indicate that overall, traders are successfully “discovering” profits that
are available in the market. We would not necessarily expect to see stability, or
gradual improvement, of each strategy’s individual profits in this co-evolutionary
scenario. However, if overall market efficiency were to decline temporarily, we
would expect the co-evolving strategy set as a whole to adapt and reaquire the
“lost” profits. Thus if strategy sub-populations were to successfully adapt to new
market conditions, we would expect to see mean market efficiency remain stable
at around 100% since mean market efficiency measures the performance of the
different varieties of buyer and seller as a whole. Figure 1 shows the evolution
of the mean market efficiency for each generation of the experiment in the case
RCAP=1 and RCON=1 over 10,000 generations. Note that by generation 2000,
the market efficiency has become relatively stable, and the mean efficiency is
74.3%.

The use of co-evolution to evolve trading strategies is not new in experimental
economics; for example, see [22]. Our interest in co-evolving strategies was mainly
to verify that such an approach worked for this scenario, which it appears to. The
work described in this section was also a step towards the use of co-evolutionary
techniques to evolve trading strategies and auction rules—in other words to
evolve mechanisms along with the best way to trade within them. This is the
main focus of our research, and our preliminary work towards doing this will be
the subject of the next section.

3 In double auction terminiology, buyers make “bids” and sellers make “asks”. Bids
are offers to buy at a given price, asks are offers to sell at a given price.
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Fig. 1. Evolution of mean efficiency for RcoN=1 and RcAP=1 over 10,000 generations
using a fixed discriminatory-pricing auctioneer, and 6 sub-populations of co-evolving
strategies each of size 100.

Function Arguments Return-type Description

AskPrice none number The price of the ask (offer to sell) currently being
matched in the auction
BidPrice none number The price of the bid currently being matched in

the auction

Table 4. Additional GP functions used in evolving auctioneer pricing rules

4.2 Co-evolution of Auction Pricing Rules

An additional population of auctioneers was introduced into our experiment.
These agents were derived from the auctioneer classes that we implemented
for our previous experiments, but instead of using the standard code to set the
clearing price for a given transaction, they used a function that was evolved using
GP. The set of functions used for the auction pricing rule are those functions in
Tables 2 and 4. The space of possible pricing rules thus encompasses, but is
not restricted to, both uniform-price and discriminatory-price versions of the k-
double auction; pricing rules making use of the AskPrice or BidPrice functions*

4 AskPrice and BidPrice are the current prices that the auctioneer is considering as
possible matches.
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Fig. 2. Evolution of mean efficiency for RcoN=1 and RcAP=1 over 10,000 generations
using an auctioneer with a GP-evolved pricing rule, and 6 additional populations of
co-evolving strategies.

correspond to discriminatory-price auctions, whereas pricing rules not making
use of these functions correspond to uniform-price auctions. Whereas the trading-
strategy populations’ fitness was proportional to their individual profits, the
fitness for the auctioneer population was set proportional to the total profits
earned in the market.

Intuitively, the auctioneer population can be thought to be “learning” auction-
pricing rules that maintain market efficiency in the face of co-evolving buying
and selling strategies. Our hypothesis is that in this version of the experiment,
in which there are a small number of traders with fixed private values, the most
robust auction pricing rule is the one that sets the price for electricity at the
equilibrium price, regardless of what traders actually bid. We believe that the
auctioneer population should discover this rule — it should discover the equi-
librium price for the market. It should do this because private values are fixed,
and the auctioneer population has indirect access to meta-information about the
market — market efficiency — that is based on the (in-practice unobservable)
private values. Of course, this pricing rule would not work in practice, because
in practice private values are not from a fixed, predefined set. However, by con-
sidering the hypothesis that the most robust pricing rule is the one that sets
prices at the equilibrium level, we will be able to assess the validity of our un-
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2 | QuoteBidPrice — 0.39| QuoteBidPrice QuoteBidPrice

RCON 1 =~ Quote AskPrice ~ QuoteAskPrice| ~ QuoteAskPrice

35.47 — 35.47AskPrice BidPrice QuoteBidPrice

=

Table 5. GP-evolved auction pricing rules at generation 1000 for different market
conditions, i.e. different values of RCON and RCAP

Seller 1 | QuoteAskPrice
Seller 2 | QuoteBidPrice
Seller 3 | QuoteBidPrice
Buyer 1 | QuoteAskPrice
Buyer 2 | Quote AskPrice
Buyer 3 | QuoteBidPrice

Table 6. The set of trading strategies at generation 1000 for RCON =1, RCAP =1

derlying assumption. Future work will consider scenarios in which agents with
randomized private-values enter and leave the market.

The experimental set-up was a slight variation of the previous experiment. We
added a seventh population, auctioneers, and evaluated their fitness by running
auctions with randomly selected buyer and seller individuals (again picking one
random individual from each of the six populations) and looking at the overall
profits obtained. The same auctions were used to evaluate the buyers and sellers,
though their fitness was still based on local profit. Figure 2 shows the evolution of
the mean market efficiency for each generation of this version of the experiment
in the case RCAP=1 and RCON=1 over 10,000 generations. As can be seen from
the graph, the adaptive auctioneers are able to improve mean market efficiency
when compared to the fixed discriminatory-price auctioneer used in the previous
section — the mean efficiency for the adaptive auctioneer is 94.5%, as compared
to 74.3% for the case where the auctioneer does not evolve. In addition, the
market reaches stability more quickly, after only 500 generations.

Table 5 shows the stable pricing function evolved for the auctioneers’ pricing
rule under different market conditions. In all cases the pricing rule is a linear
function of the Bid and Ask Prices and the function only uses either Bid Price
or Ask Price®. When the number of buyers and sellers is equal, the pricing rule

% Some of the pricing rules also use QuoteBidPrice or QuoteAskPrice which are the
values made public by the auctioneer to give buyers and sellers an idea of what the



is only determined by the Ask Price, suggesting that the sellers control the
market whatever the relative capacity. Table 6 shows the trading strategy-set
for the auction after 1000 generations in the case RCON = RCAP = 1. These
expressions are simplifications of the s-expressions generated by the Gp. Most
reduce exactly to the expressions given, but several seem to resist simplification—
these were plotted against QuoteAskPrice and were found to be approximately
equal to it. They are thus given as ~ QuoteAsk Price.

5 Discussion

In terms of the seven aspects of any application of co-evolution that were raised
in Section 2, we believe that the work described here has provided an adequate
start to dealing with the first four — how to represent individuals, what counts
as fitness, how to carry out reproduction, and how to perform selection. We can
claim this because the choices we have explained above lead to the evolution
of reasonable individuals as evidenced by the high level of market efficiency
obtained in our experiments. However, there is still much work to be done.
Even the results obtained so far have raised some interesting questions, such as
how to interpret the different auction rules that can be evolved for each of the
combinations of RCAP and RCON, and how to incorporate market-power metrics
into the fitness function for auction rules. Clearly we also have to address the
final three issues mentioned in Section 2 as well — correct population size, how
to detect and avoid collusion, and how to measure progress.

This latter is a particularly important question since we need to be able
to track the adaptive progress, as opposed to the instantaneous fitness, of the
auctioneers verses the trading strategies. We are currently investigating the pos-
sibility of using CIAO (Current Individual vs. Ancestral Opponents) metrics as
proposed in [6], in order to gain insights into the co-evolutionary dynamics of
these experiments, and using pareto co-evolution [28] in order to ensure that
auction designs are robust in the face of a diverse range of strategies.

Finally we should discuss the relation of our work with that of Cliff [4],
which is the only other work that we are aware of in which the auction mecha-
nism itself evolves. Cliff’s work in this area builds on his Zero-Intelligence-Plus
[3] traders, and first used genetic algorithms to determine the parameters that
control the bidding behaviour of the agents [5]. This work is analagous to our
use of genetic programming to decide how buyers and sellers bid. The next
stage of the work, which was undertaken concurrently with, but independently
of, ours was to add an extra parameter into the genetic algorithm representing
the probability with which a buyer or seller is selected to make a Bid or AskS.
This, then, has the same kind of aim as our work, but uses a genetic algorithm
rather than genetic programming, and, as a result, is only concerned with tuning

current trading price is. It is the equivalent of the prices displayed on stock exchange
tickerboards.

% The experiment thus explores a continuum between auctions in which only buyers
act, like an English auction, and auctions in which only sellers act.



one, admittedly important, parameter rather than constructing the auction rules
from scratch. Furthermore, since Cliff’s work involves just a single population
of chromosomes—which capture the parameters which determine buyers, sellers
and auctioneers—it is an evolutionary but not a co-evolutionary approach.

6 Summary

In this paper we have reported on the preliminary stages of work aiming to
explore the evolution of economic auction mechanisms. In our initial work, we
have adopted a multi-agent systems test-bed involving auctions in an electricity
marketplace. We first described work in which buyer and seller strategies are
co-evolved using genetic programming. The genetic programming approach was
able to produce reasonably high efficiency outcomes in this case. Next we pre-
sented some of our preliminary work on evolving auction designs using genetic-
programming which again was able to produce relatively high efficiency outcomes
and was able to reach stability quicker than when the buyer and seller strate-
gies evolved alone. We believe that this is the first attempt to evolve auction
mechanisms, and, though far from complete, makes it possible to frame further
research in this area.
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