
Towards robust multi-agent systems: Handling
communication exceptions in double auctions

Simon Parsons1,2 and Mark Klein2

1 Dept of Computer and Information Science
Brooklyn College, City University of New York

Brooklyn, NY 11210, USA.
parsons@sci.brooklyn.cuny.edu

2 Center for Coordination Science
Massachusetts Institute of Technology

Cambridge, MA 02142, USA
m klein@mit.edu

Abstract. This paper addresses an important question in the development of
multi-agent systems—how can we create robust systems out ofthe often unreli-
able agents and infrastructures we can expect to find in an open systems’ context?
Here we examine an approach based on distinct exception handling services, and
apply it to systems performing resource allocation by meansof a double auction.
The exception handling system provides protocol-specific but domain indepen-
dent strategies for monitoring the auction, and for ameliorating problems when
they occur. We describe a number of experiments that suggestthe exception han-
dling approach works well for various kinds of message loss in double auctions.

1 Introduction

This paper studies the following question. “How can we develop robust multi-agent sys-
tems from the kind of unreliable agents and infrastructures—whether buggy, malicious,
or just dumb—we can expect to have to deal with in the context of open systems?” This
is an increasingly important question because of the emerging changes in the way that
human organizations work.

One result of globalization, coupled with the increasing power and ubiquity of cheap
telecommunications, is that organizations are under increasing pressure to re-configure
within short time-frames. This can have the effect of bringing together partners who
have never worked together before, and force these partnersto make their infrastructure
inter-operate in ways that it was never designed to. Examples of this requirement can be
found in military coalitions, disaster recovery operations, open electronic marketplaces
and virtual supply chains [7, 35, 37]. One way to deal with thechallenge of enabling this
interoperation is to build the infrastructure as a multi-agent system, and benefit from
the ability of such systems to dynamically self-organize astheir tasks and constituents
change [17]. However, a critical problem remains.

Much of the work in multi-agent systems has consideredclosedsystems in which
well-behaved agents have run on reliable infrastructures in relatively simple domains



[13]. Both agents and infrastructure have been developed for a specific multi-agent sys-
tem, and have been engineered to work together. These assumptions do not hold for the
opensystems described above, where agents may have been developed by many differ-
ent organizations and must be able to operate on whatever infrastructure is provided.

For open contexts, we can expect to have to deal with the following problems:

– Unreliable infrastructureIn large distributed systems like the Internet, unpredictable
host and communication problems can cause agents to slow down or die unexpect-
edly, and messages to be delayed, garbled or lost. These problems become worse as
the applications increase in size, because of the growth in possible points of failure.

– Non-compliant agentsIn open systems, agents are developed independently, come
and go freely, and cannot always be trusted to follow the rules properly due to
bugs or even outright malice. This can be expected to be especially prevalent and
important in e-commerce or military scenarios where the incentives for fraud or
malice can be considerable1.

– Emergent dysfunctionIn large, multi-agent systems interactions between agentsare
complex and using the kinds of coordination mechanisms thathave proved popular
can lead to chaotic behavior and other emergent dysfunctions [4, 39].

These problems all give rise toexceptions, situations which fall outside the normal
operating conditions of the multi-agent system.

This paper, building on previous work by the second author [24], considers the
first of these problems in the context of agents engaged in resource allocation using
a double auction. This is a scenario that one can imagine easily arising in an open
electronic market or supply chain. We focus on the specific matters of message loss and
corruption, complementing earlier work by the second author on agent death [24].

2 Exception handling

Now, one way to deal with exceptions is to elaborate the individual agents so that they
are able to cope with all the exceptions that they might face.Most previous research
on dealing with exceptions has taken this approach. For example the contract net [33]
includes an “immediate response bid”, which allows an agentto determine whether
receiving no response to its request for bids is due to all eligible sub-contractors being
busy (in which case a retry is appropriate) or due to the outright lack of subcontractors
with the necessary skills (in which case some other action needs to be taken). This
survivalistapproach to exception handling faces a number of serious shortcomings.

First, developing survivalist agents greatly increases the burden on agent develop-
ers. For this to be an effective approach, all the agents haveto be carefully coordinated
and provided with potentially complex mechanisms for exception handling. Agent de-
velopers have to anticipate and correctly prepare for all exceptions an agent may face in
any environment it may have to operate in. Changing existingexception handling tech-
niques is equally hard, since it requires coordinated changes across many agents built

1 Note that “fraud” here is meant in terms of collusive behavior rather than deviation from bid-
ding at one’s private value for a good—in other words in the sense that is usually not considered
in market design.



by many developers, and in general agents become harder to maintain, understand, and
reuse.

Second, the survivalist approach can lead to poor exceptionhandling. In open sys-
tems it is always possible that some agents won’t have the necessary exception handling
code, or may violate some of the assumptions built into the exception handling oper-
ated by others. Agents might not, for example, meet the assumption that they are fully
rational [31]—they may be buggy, or too computationally limited. In addition, the best
interventions—like killing an agent that is broken—might not be easily implemented
because agents do not have the necessary authority, while detecting emergent dysfunc-
tions can be a problem without a global view of the system—something that it is hard
for individual agents to acquire without heavy bandwidth requirements.

In order to overcome these limitations Kleinet al. [24] suggested attaining robust-
ness by off-loading exception handling to distinct domain-independent services. We
refer to this as thecitizenapproach, by analogy with the way that exceptions are han-
dled in human society. Citizens of such societies typicallyadopt relatively simple and
optimistic rules of behavior, and rely on a range of social institutions (law enforce-
ment, the legal system, disaster relief agencies, the UN, and so on) to handle most of
the exceptions that arise. This results in generally betterhandling of exceptions than
individual citizens can manage—because the exception handling institutions are spe-
cialised, widely accepted as legitimate, and benefit from economies of scale—while
placing few demands upon them—like paying taxes and reporting crimes.

The key insight in the citizen approach is that highly reusable anddomain inde-
pendentexception handling expertise can be separated from the knowledge that agents
use to achieve their main tasks. There is considerable support for the validity of this
idea. In the expert systems field there is evidence that it is useful to separate domain-
specific knowledge from generic control information [2, 12], and that the same is true
in collaborative design conflict management [21] and managing exceptions in workflow
applications [22]. Previous work on the citizen approach has found that every coordi-
nation protocol has its own set of domain-independent exceptions, and that these can
be turned into domain-independent strategies for handlingexceptions [24]. This paper
extends this earlier work to a new set of coordination protocols—auction protocols—
identifying a new set of exceptions and exception handling mechanisms. Due to the
popularity of auctions in the agents community, we believe that these results will be
interesting to a large number of agent developers.

3 Exception handling in double auctions

3.1 Exceptions and double auctions

Double auctions are markets that include both buyers and sellers. A classic example of
a double auction was the trading pit at the old Chicago Board of Trade. Here buyers and
sellers, or rather human agents operating on their behalf, would call out offers,bids—
offers to buy a good at a given price—orasks—offers to sell a good at a given price.
Although such markets have long since become electronic, the same basic principles
apply with buyers and sellers “gathering” in a virtual spacein which bids and asks are



auctioneer
..
.

buyer 1

buyer 2

buyer n

..

.

seller 1

seller 2

seller n

buyer 1

buyer 2

buyer n

..

. ..
.

seller 1

seller 2

seller n

sentinel

sentinel

sentinel

auctioneer

sentinel

sentinel

sentinel

sentinel

(a) (b)

Fig. 1.Double auction archiectures, (a) basic, and (b) with exception handling facilities.

broadcast. When a bid is greater than an ask, a trade is possible, and a price between
the bid price and theask priceis decided on as thetrade price. This is acontinuous
double auction in which a trade is possible after every offer, anotherperiodicvariant of
the double auction collects bids and asks until some deadline and then finds possible
trades [8].

The wide applicability of auctions as resource-allocationmechanisms [5] and the
fact that double auctions can be composed into supply chainshave led to a great deal
of interest in double auctions within the agents community.Indeed, following Smith
[34], there has been much investigation of double auctions within both the fields of
economics and computer science. This work has primarily tried to identify what makes
double auctions effective [10, 25, 34], to find ways of analysing optimal behavior in a
double auction [11, 32, 38], and to identify efficient bidding strategies for double auc-
tions [5, 9, 27, 29]. The only work we are aware of on ensuring robustness in double
auctions is that which looks to explain how such auctions areeffective—that is provide
highallocative efficiencyand ensure prices are set close to the theoretical equilibrium—
even with a small number of traders (since the underlying theory only guarantees such
properties [10, 25, 34] for many traders).

As already stated, the investigation of exceptions explored in this paper concentrates
on the first class of exceptions listed above—unreliable infrastructure. We considered
that in practice2 agents participating in an auction will be physically somewhat removed
from the auction site and communicate with it through some form of message passing.
The overall architecture of the kind of system we consider isshown in Figure 1 (a) with
the auctioneer agent taken as embodying the functions of theauction market. There
are several different types of message that need to be sent between auctioneer and the
traders.

2 This is in contrast to the experimental conditions used by most workers on double auctions—
[36], where asynchronous communication is considered, being an honourable exception—
who have run experiments in which communication between agents is considered to be syn-
chronous, instantaneous, and completely reliable, understandably since their focus is entirely
on the behavior of the bidding aspects of the agents.



– Bid callsMessages indicating that buyers should start bidding.
– Ask callsMessages indicating that sellers should start asking.
– BidsOffers to buy.
– AsksOffers to sell.
– Quote PricesIndicators of the price of the last trade.
– Winner messagesIndicators that the addressee has provided a winning ask or bid.

Any of these messages can then be lost, delivered late, or corrupted, and these are
exactly the exceptions that we consider in this paper.

To provide a citizen approach to exception handling we also define an exception
handling infrastructure, which, following the approach in[24], associates asentinel
with every agent, resulting in a system like that in Figure 1 (b). These sentinels can then
provide exception handling services. For example, a sentinel for a trader can identify
the loss of a bid or ask call message intended for that trader (which would otherwise
shut that trader out of the auction) by spotting messages (like quote prices) that indicate
the auction is in progress. It can then work with the auctioneer sentinel to ensure that
its agent is included in the auction by having the necessary call message be resent.

Note that in order to provide this kind of exception handlingservice, the sentinel
need have no access to the internal state of the agent it is associated with. Indeed, the
essence of the approach is that it does not have such access. In our first example, the
sentinel needs only to know the type of the messages being transmitted, and in the
second need only perform a parity check. Other exception handling services (such as
detecting fraudulent behavior on the part of the auctioneer) may require sentinels to
“look inside” messages, but to do this the sentinel has no more access to information
than, for example, the auctioneer does.

The advantage of the citizen approach is that the mechanismsfor detecting and
resolving the exceptions, the exceptionhandlers, are generic. Exactly the same mech-
anisms can be used for other classes of auction since (as described elsewhere [26]) the
specific exceptions that are detected and resolved by for a double auction may be found
across all kinds of auction, and so may be handled by the same mechanisms. Indeed,
these kinds of exception—exceptions due to message delay, loss and corruption—will
be common to all coordination mechanisms operating over unreliable infrastructures,
and potentially the same handlers can be used for a wide rangeof multi-agent systems.

3.2 A general approach to exception handling

The way that we have built the auction exception handlers explicitly acknowledges
this. Klein’s previous work has described how knowledge about multi-agent coordina-
tion mechanisms can be described in the framework of the MIT Process Handbook3, a
repository of taxonomic information about general business processes—the tasks car-
ried out and the exceptions that may occur. Building on this we have added knowledge
of mechanisms for detecting and resolving exceptions in coordination mechanisms in
this same framework, and furthermore have added knowledge about the specific ex-
ception handling mechanisms discussed here. The Process Handbook does more than

3 http://ccs.mit.edu/ph/



provide abstract knowledge of the different process components and capture the rela-
tionship between them. It plays an active role in handling exceptions.

In essence we use the Process Handbook to perform model-based diagnosis when
we encounter an exception. The Handbook itself is the model.Thus, when we spot an
exception, we can use the Handbook to relate it to the task that the exception is an ex-
ception to, and hence to the right mechanism for dealing withthe exception (the precise
approach we use is detailed in [23]). In fact, in the segment of the Process Handbook
that we built during our work on auctions, we even included the code that detects—the
detection handlers—and the code that resolves—theresolution handlers—the excep-
tions in the Handbook. When the sentinels are created, they are informed of the kinds
of exception that they should be trying to detect. They use the Handbook to identify
what detection handlers should be used to do this for the specific kind of coordination
mechanisms they are surveying, and then load the detection handlers. When the de-
tection handlers first encounter a specific kind of exception, they use the Handbook to
locate the correct resolution handler to resolve the exception, and then load and run it.

This method adds further generality to the citizen approachto exception handling. In
our experiments the taxonomy was included as part of the local system on which all the
agents were running, but it could equally well be in some remote location. This offers a
number of advantages. The main advantage is that it makes thedevelopment of sentinels
very easy. They do not need to be programmed with any exception handlers. They just
have to be programmed with the knowledge that they need to load and apply handlers at
certain points. For example, our sentinels are programmed to run any detection handlers
relating to messages in every message they pass. The handlers themselves take care of
knowing about, and calling, the requisite resolution handlers.

The second advantage is that sentinels (and thus the agents they survey) do need to
be altered in any way when they switch between different coordination mechanisms.
All they need to do is to load the new handlers. Indeed, they don’t even need to know
what handlers are required—this information can be stored with the handlers, and all the
sentinel needs to do is to request a list of handler names for the new kind of mechanism.
When the mechanism start running, the detection handlers are loaded, and when excep-
tions occur, resolution handlers are loaded. This lazy approach to loading the handlers
then provides a third advantage. Updating handlers is straightforward. The new handler
is just added to the central repository, and will be automatically uploaded into exactly
the sentinel that needs it, when it is required.

All these advantages are, of course, just the classic advantages of making problem
solving knowledge declarative as far as possible rather than purely procedural.

3.3 Some specific handlers

As examples of specific exception handlers, consider those that provide the basis of the
experimental work in this paper.

The first pair of handlers deal with the loss of a bid call message (the loss of an
ask call message can be handled in the same way, and the handlers for this are imple-
mented). In the absence of any exception handling, the loss of a bid call means that a
particular trader is effectively shut out of the auction. This may have no impact on the



auction—if a buyer has a private value that is too low for it tobe able to trade—but
typically the loss of the bid call will cause some loss of trade.

A sentinel for a buyer can easily rectify the situation. Since many of the messages
transmitted during the auction are broadcast (in the particular case on which we have
been experimenting, these are just quote prices, but in manyauctions bids and asks are
also broadcast) these can be used as a proxy for the bid call. Since the auction must
have started for these messages to be flying around, their existence can be taken as an
indication that the bid call was somehow lost. It is simple towrite a detection handler
that spots this. The resolution handler is equally straightforward— it sends a message
to the sentinel for the auctioneer, requiring it to send a further bid-call to the trader that
did not receive the original message.

The second example of exception handlers, are those that deal with corrupted mes-
sages. Here we assume that messages are corrupted by some stochastic process on the
communication lines between the auctioneer and the trader,and that corrupted mes-
sages are indechiperable by the traders. Under such circumstances corrupted messages
will have a less severe impact than lost bid/ask calls—no trader will be shut out of the
auction by such a message4, but traders will lose valuable information like price quotes
and some potentially winning bids will not be received by theautioneer. Both of these
happenings may affect the efficiency of the auction.

Both the detection and resolution handlers for corrupted messages are very straight-
forward. The detection handler invoked by the seninel can detect the corrupted message
by some simple mechanism like a parity check, and the resolution handler simply sends
a message (which itself can be corrupted of course) to the sentinel of the agent from
which the message was sent, asking for that message to be retransmitted.

Our current implementation also provides a detector for lost trade messages (the
auctioneer sentinel receives a bid from an agent that has been sent a winner) and a
resolver (the trade message is resent). The implementationalso includes detectors for
exceptions in auctioneer behavior—where the auctioneer matches bids and asks incor-
rectly, or sets the wrong price. These involve the auctioneer sentinel recording incoming
bids and asks, duplicating the correct behavior of the auctioneer, and checking the out-
going messages against its own computation of which offers match. The exceptions can
then be resolved by having the sentinel substituting a message based on its computation
for that of the auctioneer (though this is not currently implemented).

4 Empirical work

4.1 Experimental setup

We tested this approach to exception handling in a small simulated double auction mar-
ket. The auction simulator is extremely flexible, allowing many different auction con-
figurations to be examined. We will report results across thefull range of possibilities
in due course. For now we describe some preliminary experiments.

4 We do not allow bid/ask calls to be corrupted in our current experimental setup to allow us to
determine the effect of the two kinds of error independently.



(a) (b)

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

ziu zic dumb zip preist
 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

ziu zic dumb zip preist

Fig. 2. Results of the bid-call loss experiments, (a) Efficiency, and (b) Messages

All the experiments we describe here involve a market of 10 buyers and 10 sellers,
each of which is trading a single good and has a randomly selected private value. Each
auction is run once, so we do not measure results over severalperiods. Because we are
simulating an unreliable infrastructure, and so simulate that infrastructure, messages
take time to travel from agent to auctioneer and from auctioneer to agent. Traders also
bid asynchronously—each starts bidding/asking some random time after the receipt of
a bid/ask call, and updates its bid/ask when it chooses to.

Our traders can use a range of mechanisms to pick their offer.While it is possi-
ble to create markets in which different agents use different mechanisms, so far we
have only studied homogeneous markets. The strategies we use are the familiar zero-
intelligence strategies of Gode and Sunder [10], both constrainedZIC and unconstrained
ZIU5, Cliff’s zero-intelligence plusZIP strategy [5], Preist and Van Tol’s [27] variation
on ZIP, and a variation of our own which we call the “dumb trader” (this was designed
to be robust and easy to implement rather than particularly effective6).

With this setup, we ran experiments in which we introduced two main kinds of
error. First we ran a series of auctions in which there were noerrors. Then we introduced
errors in the initial broadcast by the auctioneer of calls for bids, so that some agents were
not informed of the start of the auction, but turned off the resolution handlers which
responded to the detection of these errors (the detection handlers were still run, though
equally well they they could be turned off). Then we ran a third set of experiments in
which the same error was introduced at the same rate, but the resolution handlers were
also run. We then repeated the process for an error in which the content of messages
was corrupted.

5 A zero-intelligence trader picks a random offer within a predefined range of possible prices,
typically from 0 up to the maximum private value that any agent has for the good. The uncon-
strainedZIU trader bids or asks this price. The constrainedZIC buyer will bid no more than its
private value, and the constrained seller will ask no less than its private value.

6 It can be thought of as a simple-minded version ofZIP—it decreases an initial profit margin by
a predetermined amount when a previous offer fails to win a good, so that bids rise and asks
fall.



(a) (b)

-0.1

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

ziu zic dumb zip preist
 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

ziu zic dumb zip preist

Fig. 3. Results of the corrupt message experiments, (a) Efficiency,and (b) Messages

4.2 Results

The results of these experiments are shown in Figures 2 and 3.For each experiment
we use two metrics of market performance. One isallocative efficiency—a measure
of how well the market runs. We measure this as a ratio of the profit made during the
auction to the profit that could be made if the agents traded inthe most efficient way (if
each offered at its private value, and the traders were matched to maximise the profits
obtained). This provides a measure of the effectiveness of the market in economic terms.
The second measure is the number of messages sent during the course of the auction.
This gives a computational measure of efficiency—how many resources the auction
consumes in a run. All measures are plotted with standard deviations after 200 iterations
(except for theZIP results for corrupt data which are based on 75 iterations). These
results show the broad effectiveness of the exception handling approach for auctions.

For all bidding mechanisms exceptZIU, the loss of some bid calls causes a sig-
nificant drop in efficiency (exactly as one might expect). This indicates that this is an
exception that needs to be handled by the operators of the market—without fixes, traders
in such auctions will lose profits, and may well move to other exchanges. When the ex-
ception is resolved, for all trading strategies exceptZIP, efficiency is restored to a level
that is not significantly different to the level without exceptions. For the case ofZIP, the
efficiency may not be entirely restored by the resolution handler—we need more data
(which we are currently collecting) to determine if this difference is significant.

ZIU is impervious, at least within the bounds of what is statistically significant,
to the bid-call loss exception. Presumably this is just because it is so bad at extracting
profit from the market, which in turn is because of its stochastic behaviour. Since agents
generate bids randomly, and may trade at a loss as well as at a profit, taking agents out
of the auction is as likely to reduce the chance to make a loss as it is to reduce the
chance to make a profit.

Turning to the number of messages sent, the introduction of bid-call losses has the
expected impact. Since some traders are taken out of the market, the number of mes-
sages falls. The important conclusion we can reach is that the resolution handler does
not create a significant computational overhead (not that wewould expect it to). When



the handler is run, the number of messages returns to a level that is not significantly
different to that without the exceptions.

Corrupt message errors at this rate of incidence have a much smaller effect on effi-
ciency than bid call losses. This is understandable. As described above, the agents are
all bidding, so the only real impact on efficiency will be when(a) an trader makes what
would have been a winning offer, only to have that offer corrupted, and (b) a quote
is lost that would otherwise have caused a trader to make a newbid/ask that would
then have been a winning offer. We would only really expect these exceptions to hurt
strategies likeZIP and the Preist and van Tol strategy since they are the only ones that
try to take detailed account of how failure to win a good, or a change in quote price,
should affect the next offer. These strategies show some loss of efficiency, but nothing
too significant. (“Dumb” takes account of failure to win a good too, but in such a naive
way that it is not surprising that a subtle effect is missed.)When the corrupt message
exception handlers are turned on, any loss in efficiency is erased. Again this confirms
the effectiveness of the handlers.

Looking at the number of messages passed for this second experiment confirms
what one would expect. When messages are getting corrupted,then more are sent (be-
cause the total includes the corrupt messages and extra messages that are needed to re-
place the corrupted messages that would otherwise have secured trades) and this number
broadly rises again when the handlers are switched on. The effect is particularly marked
for the adaptiveZIP and Preist and van Tol strategies. This indicates that therecan be
an expense in running the handlers (unlike the case for the bid-call loss handler).

Two other observations, more general than those about the exception handlers, are
worth making here. One is that the Preist and van Tol strategydoes surprisingly badly
across the board. We suspect this is due to the random values that agents have for their
goods since efficiencies overall are below what one would expect in more structured
markets. However, if this is the case, it makes it surprisingthat the similarZIP strategy
does comparatively well. This is something else we will investigate more in the future.
The second observation is the message cost of runningZIP and Preist and van Tol traders
compared with the simpler traders in our markets—the adaptation achieved by such
strategies comes a price. This may be significant in some resource allocation scenarios
(such as those where bandwidth is a limited or valuable resource).

4.3 Discussion

One might ask how the approach we have adopted would work better than classical
networking techniques such as parity checks and message acknowledgement. In other
words, why bother with exception handling? There are at least four answers.

The first answer is that we are providing exception handling at the system level,
the auction infrastructure level, rather than at the networking level. This is important
because we are interested in open systems. In such systems traders will be wandering
in and out of electronic institutions (possibly in the middle of auctions—agents that
are bidding in several different auctions will have to leavesome of them when they
secure the goods that they want) and so the transmitter of a message may well not know
whether it is appropriate for all the intended receivers to respond. Network-level mecha-



nisms like waiting for acknowledgement simply won’t work under such circumstances,
whereas the sentinel approach will.

The second answer is that where we use the same mechanism as can be handled at
the network level, as is the case with the corrupt message handler, we abstract away the
need to alter the trader by altering the handler. In other words, relying on network level
handlers means we have to settle for a survivalist approach to exeception handling, and
lose the advantages of the citizen approach that we argued for above.

The third answer is that the sentinel level solution can be more efficient because it
is more intelligent. Adopting a solution to bid call loss that forces every message to be
acknowledged will double the number of messages passed. In contrast the sentinel level
solution requires a modest increase in the number of messages.

The fourth answer is that we can provide handlers for exceptions that can’t be caught
at the network level. While lost and corrupt messages are easy to detect at the network
level, other kinds of exception cannot be detected without domain knowledge. We have
already mentioned handlers that detect invalid trades—these clearly could not be han-
dled by any network-level mechanism. Similiarly, network-level mechanism would not
be able to deal with exceptions caused by agent death of the kind discussed in [24].

5 Related work

The work described here is clearly very close to Kaminka’s work on execution moni-
toring [18–20] (and also [3] which builds on it). In execution monitoring, agents have
a normative model of a process (which is basically a plan thatall the agents are meant
to be following) and use this to detect variations from the norm by some of their peers.
Since team members are assumed to be both cooperative and under the control of the
same organization, this work is set in the context of closed rather than open systems.
That is one point of contrast with out work.

Now, the execution monitoring problem requires the agents identifying exceptions
to infer the plan of the peer they are considering (since the former agents don’t nec-
essarily know which plan the latter is meant to be following), and this means carrying
out successful plan recognition. To do this the agents require a lot of detailed knowl-
edge about the domain and the intentions of their peers, whereas the exception handling
approach only requires very general information about the infrastructure and the co-
ordination mechanism. As a result, execution monitoring can probably do more in the
way of handling problems in a narrow domain (while requiringa whole new knowledge
base to handle a different domain) while exception handlingcan do less in a particular
domain, but is applicable across a wide range of domains withlittle alteration.

In this respect our work, just like Kaminka’s (as acknowledged in [20]) is an out-
growth of work on planning [6] that sought to ensure the correct outcome of a plan
by checking that it was unfolding successfully. This work unfolded through a series of
papers [30], [14], [28], and by the end the basic model was exactly that which we fol-
low. Each keystone provides a checkpoint where expected progress is checked against
actual progress, and a problem flagged up if one exists. However, our work goes further
in fixing the exceptions once they are detected.



Since our work is concerned with finding handlers to overcomethe exceptions, and
to then get the system being monitored running again, our work is very much in the
same domain asCIRCA [1]. However, an important difference is that whileCIRCA tries
to deal with states that are “unplanned for” our approach hasthe long term aim of
engineering the very idea of “unplanned for” states out of existence by providing a
compact knowledge base of general purpose processes to handle anyunplanned states
that emerge. Another important difference betweenCIRCA and our approach is that the
former assumes access to the internal state of the agents being monitored.

We can also relate our approach to [15, 16]. Once again there is a close relation
between the two approaches, but with a rather different emphasis. Both approaches
make use of a causal model of a system in order to diagnose problems with it, and
both make use of this diagnosis to overcome the problem. However, [15, 16] once again
seems intended to operate in a closed system, and only considers a single exception—
inadequately managed dependencies between a set of fully cooperative agents. It can
therefore be subsumed by our approach.

6 Conclusions

This paper studied the question “How can we develop robust multi-agent systems from
unreliable components?”, and proposed the use of domain-independent exception han-
dling services as a solution. In the context of multi-agent systems that implement dou-
ble auctions, we showed empirically that the particular exception handling approach we
describe here is able to provide this robustness.

While the idea of using exception handling services is not novel per sesince it was
suggested in previous work by the second author, there is still considerable novelty
in this paper. First, we have extended the kinds of exceptionhandling service beyond
handling agent death exceptions to handling infrastructure issues like the unreliability
of communication. This provides support for the generalityof the exception handling
approach. Second, we have extended the kinds of coordination mechanism covered by
exception handling from the rather specific contract net model, to the much more gen-
eral double auction model (indeed the same framework could be used to handle single
sided-auctions without much alteration). We have also extended the range of handlers
from very specific handlers for agent death to much more general handlers for dealing
with message loss. This provides results that will be of interest to the large number of
researchers who are interested in auctions.

Acknowledgments

This work was partially supported by NSF IIS-0329037, and byHP under the “Always
on” grant.

References

1. E. Atkins, E. H. Durfee, and K. G. Shin. Detecting and reacting to unplanned-for world
states. InProceedings of the 14th National Conference on Artificial Intelligence, 1997.



2. J. A. Barnett. How much is control knowledge worth? A primitive example. Artificial
Intelligence, 22:77–89, 1984.

3. B. Browning, G. A. Kaminka, and M. M. Veloso. Principled monitoring of disributed agents
for detection of coordination failure. InProceedings of Distributed Autonomous Robotic
Systems, 2002.

4. M. H. Chia, D. E. Neiman, and V. R. Lesser. Poaching and distraction in asynchronous agent
activities. InProceedings of the Third International Conference on Multi-Agent Systems,
Paris, France, 1998.

5. D. Cliff and J. Bruten. Minimal-intelligence agents for bargaining behaviours in market-
based environments. Technical Report HP-97-91, Hewlett-Packard Research Laboratories,
Bristol, England, 1997.

6. R. Doyle, D. Atkinson, and R. Doshi. Generating perception requests and expectations to
verify the execution of plans. InProceedings of the National Conference on Artificial Intel-
ligence, 1986.

7. K. Fischer, J. P. Müller, I Heinmig, and A-W. Scheer. Intelligent agents in virtual enter-
prises. InProceedings of the First International Conference on the Practical Applications of
Intelligent Agents and Multi-AgentTechnology, Blackpool, UK, 1996.

8. D. Friedman. The double auction institution: A survey. InD. Friedman and J. Rust, editors,
The Double Auction Market: Institutions, Theories and Evidence, Santa Fe Institute Studies
in the Sciences of Complexity, chapter 1, pages 3–25. Perseus Publishing, Cambridge, MA,
1993.

9. S. Gjerstad and J. Dickhaut. Price formation in double auctions. Games and Economic
Behaviour, 22:1–29, 1998.

10. D. K. Gode and S. Sunder. Allocative efficiency of marketswith zero-intelligence traders:
Market as a partial sustitute for individual rationality.The Journal of Political Economy,
101(1):119–137, February 1993.

11. D. K. Gode and S. Sunder. Lower bounds for efficiency of surplus extraction in double
acuctions. In D. Friedman and J. Rust, editors,The Double Auction Market: Institutions,
Theories and Evidence, Santa Fe Institute Studies in the Sciences of Complexity, chapter 7,
pages 199–219. Perseus Publishing, Cambridge, MA, 1993.

12. T. R. Gruber. A method for acquiring strategic knowledge. Knowledge Acquisition, 1:255–
277, 1989.

13. S. Hägg. A sentinel approach to fault handling in multi-agent systems. InProceedings of the
Second Australian Workshop on Distributed AI, Cairns, Australia, 1996. Workshop held in
conjunction with the Fourth Pacific Rim Conference on Artificial Intelligence.

14. D. Hart, S. Anderson, and P. Cohen. Envelopes as a vehiclefor improving the efficiency
of plan execution. InProceedings of the DARPA Workshop on Innovative Approachesto
Planning, Scheduling and Control, 1990.

15. B. Horling, B. Benyo, and V. Lesser. Using self-diagnosis to adapt organizational structure.
In Proceedings of the 5th International Conference on Autonomous Agents, 2001.

16. B. Horling, V. Lesser, R. Vincent, A. Bazzan, and P. Xuan.Diagnosis as an integral part of
multi-agent adaptability. Technical Report 99-03, Department of Computer Science, Univer-
sity of Massachusetts, January 1999.

17. N. R. Jennings, K. P. Sycara, and M. Wooldridge. A roadmapof agent research and devel-
opment.Journal of Autonomous Agents and Multi-Agent Systems, 1(1):7–36, 1998.

18. G. A. Kaminka, D. V. Pynadath, and M. Tambe. Monitoring deployed agent teams. In
Proceedings of the 5th International Conference on Autonomous Agents, 2001.

19. G. A. Kaminka and M. Tambe. What is wrong with us? improving robustness through social
diagnosis. InProceedings of the 15th National Conference on Artificial Intelligence, 1998.



20. G. A. Kaminka and M. Tambe. I’m ok, you’re ok, we’re ok: Experiments in distributed and
centralized socially attentive monitoring. InProceedings of the 3rd International Conference
on Autonomous Agents, 1999.

21. M. Klein. Supporting conflict resolution in cooperativedesign systems.IEEE Systems, Man
and Cybernetics, 21:1379–1390, 1991.

22. M. Klein. Exception handling in process enactment systems. Working paper, MIT Center
for Coordination Science, Cambridge, MA, December 1997.

23. M. Klein and S. Parsons. Diagnosing faults in open dstributed systems. Working paper, MIT
Center for Coordination Science, Cambridge, MA, February 2003.

24. M. Klein, J. A. Rodriguez-Aguilar, and C. Dellarocas. Using domain-independent excep-
tion handling services to enable robust open multi-agent systems: The case of agent death.
Journal of Autonomous Agents and Multi-Agent Systems, 7(1/2), 2003.

25. J. Nicolaisen, V. Petrov, and L. Tesfatsion. Market power and efficiency in a computational
electricity market with discriminatory double-auction pricing. IEEE Transactions on Evolu-
tionary Computation, 5(5):504–523, 2001.

26. S. Parsons. Exception analysis for double auctions. Working paper, MIT Center for Coordi-
nation Science, Cambridge, MA, May 2002.

27. C. Preist and M. van Tol. Adaptative agents in a persistent shout double auction. InProceed-
ings of the 1st International Confernece on the Internet, Computing and Economics, pages
11–18. ACM Press, 1998.

28. G. Reece and A. Tate. Synthesizing protection monitors from causal structure. InProceed-
ings of the Conference on Artificial Intelligence Planning Systems, 1994.

29. J. Rust, J. H. Miller, and R. Palmer. Characterizing effective trading strategies.Journal of
Economic Dynamics and Control, 18:61–96, 1994.

30. J. Sanborn and J. Hendler. A model of reaction for planning in dynamic environments.
Artificial Intelligence in Engineering, 3(2):95–102, 1988.

31. T. Sandholm, S. Sikka, and S. Norden. Algorithms for optimizing levelled commitment
contracts. InProceedings of the International Joint Conference on Artificial Intelligence,
Stockholm, Sweden, 1999.

32. M. A. Satterthwaite and S. R. Williams. The Bayesian theory of the k-double auction. In
D. Friedman and J. Rust, editors,The Double Auction Market: Institutions, Theories and
Evidence, Santa Fe Institute Studies in the Sciences of Complexity, chapter 4, pages 99–123.
Perseus Publishing, Cambridge, MA, 1993.

33. R. G. Smith and R. Davis. Distributed problem solving: The contract net approach. In
Proceedings of the Second National Conference of the Canadian Society for Computational
Studies of Intelligence, 1978.

34. V. L. Smith. An experimental study of competitive marketbehaviour.The Journal of Political
Economy, 70(2):111–137, April 1962.

35. A. Tate, editor.Proceedings of the International Workshop on Knowledge-based Planning
for Coalition Forces, Edinburgh, Scotland, 1999.

36. G. Tesauro and R. Das. High-performance bidding agents for the continuous double auction.
In Proceedings of the 3rd ACM Conference on Electronic Commerce, pages 206–209, 2001.

37. M. B. Tsvetovatyy, M. Gini, B. Mobasher, and Z. Wieckowski. Magma: An agent-based
virtual marketplace for electronic commerce.Applied Artificial Intelligence, 11:501–524,
1997.

38. W. E. Walsh, R. Das, G. Tesauro, and J. O. Kephart. Analyzing complex strategic interactions
in multi-agent systems. In P. Gymtrasiwicz and S. Parsons, editors,Proceedings of the 4th
Workshop on Game Theoretic and Decision Theoretic Agents, 2001.

39. M. Youssefmir and B Huberman. Resource contention in multi-agent systems. InProceed-
ings of the First International Conference on Multi-AgentSystems, San Francisco, CA, 1995.


