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Abstract. Many electronic markets are linked together into larger “network mar-
kets” where the links reflect constraints on traders. These constraints mean that
a choice to trade in one market limits the trader’s choice of other markets to use.
This kind of network market is important because so many basic products, includ-
ing gas, water, and electricity, are traded in such markets, and yet it hasbeen little
studied until now. This paper studies networks of double auction markets pop-
ulated with automated traders, concentrating on the effects of different network
topologies. We find that the topology has a significant effect on the equilibrium
behavior of the set of markets.

1 Introduction

An auction, according to [8], is a market mechanism in which messages from traders
include some price information — this information may be an offer to buy at a given
price, in the case of abid, or an offer to sell at a given price, in the case of anask— and
which gives priority to higher bids and lower asks. The rulesof an auction determine, on
the basis of the offers that have been made, the allocation ofgoods and money between
traders. When well designed [13], auctions achieve desired economic outcomes like
high allocative efficiencywhilst being easy to implement. Auctions have been widely
used in solving real-world resource allocation problems [16], in structuring stock or
futures exchanges [8], and, despite the current recession,are the basis of a vast volume
of trade in electronic markets.

There are many different kinds of auction. One of the most widely used kinds is the
double auction(DA), in which both buyers and sellers are allowed to exchange offers
simultaneously. Since double auctions allow dynamic pricing on both the supply side
and the demand side of the marketplace, their study is of great importance, both to
theoretical economists, and those seeking to implement real-world market places. The
continuous double auction(CDA) is a DA in which traders make deals continuously
throughout the auction. TheCDA is one of the most common exchange institutions, and
is in fact the primary institution for trading of equities, commodities and derivatives
in markets such as the New York Stock Exchange (NYSE) and Chicago Mercantile
Exchange (CME). Another common kind of double auction market is theclearing-house
(CH) in which the market clears at a pre-specified time, allowingall traders to place



offers before any matches are found. TheCH is used, for example, to set stock prices at
the beginning of trading on some exchange markets.

Our focus in this paper is on the behavior of multiple auctions for the same good.
This interest is motivated by the fact that such situations are common in the real world.
Company stock is frequently listed on several stock exchanges. US companies may be
listed on both theNYSE, NASDAQ and, in the case of larger firms, non-US markets like
the London Stock Exchange (LSE). Indian companies can be listed on both the Na-
tional Stock Exchange (NSE) and the Bombay Stock Exchange (BSE). The interactions
between such exchanges can be complex, like that when the newly created Singapore
International Monetary Exchange (SIMEX) claimed much of the trade in index futures
on Nikkei 225 from Japanese markets in the late 1980s [29], orwhen unfulfilled orders
on theCME overflowed onto theNYSE during the global stock market crash of 1987
[17]. This kind of interaction between markets has not been widely studied, especially
when the markets are populated by automated traders.

One multiple market scenario that is particularly interesting is that ofnetwork mar-
kets, markets in which individual markets are linked together into larger markets, where
the links between markets reflect constraints on traders in the markets. Network markets
are important because so many basic products, including gas[15], water, and electricity,
are traded in such markets — the products proceed through a series of transactions at
different locations from producer to final consumer, and theneed to convey the product
through a complex transportation network provides the constraints.

Our specific focus in this paper is to examine the differencesbetween network mar-
kets with different topologies. We describe some experiments using network markets
where the nodes in the network are double auction markets, traders can move between
the markets, and the connections between markets are limitations on such moves. These
experiments identify whether network topology has a significant effect on the steady
state behavior of a set of connected markets and the speed with which the set of markets
converges to that steady state. We see this work as a first steptowards understanding
the relationship between market topology and performance.Our long-term goal is to
be able to use our understanding of this relationship to engineer network markets with
appropriate properties.

2 Background

2.1 Double auctions

Double auctions have been extensively studied using agent-based methods. Gode and
Sunder [10] were the first to use multi-agent simulations in this way, testing the hy-
pothesis, suggested by [30], that the form of the market has more bearing on obtaining
efficient allocation than the intelligence of traders in that market. [10] introduced a
“zero-intelligence” trading strategy (denotedZI-C) — which involves making offers at
random under the constraint that they don’t lead to loss-making trades — and showed
that agents using this strategy could generate high efficiency. Indeed, such agents come
close enough to the performance of human traders that Gode and Sunder claimed that
trader intelligence is not necessary.



This position was attacked by Cliff [6], who showed that if supply and demand are
asymmetric, the average transaction prices ofZI-C traders can vary significantly from
the theoretical equilibrium. Cliff then introduced thezero intelligence plus(ZIP) trader,
which uses a simple machine learning technique to decide what offers to make based on
previous offers and the trades that have taken place.ZIP traders outperformZI-C traders,
achieving both higher efficiency and approaching equilibrium more closely across a
wider range of market conditions, prompting Cliff to suggest thatZIP traders embodied
the minimal intelligence required. A range of other tradingalgorithms has been pro-
posed — including those that took part in the Santa Fe double auction tournament [28],
the reinforcement learningRoth-Erevapproach (RE) [26] and theGjer-stad-Dickhaut
approach (GD) [9] — and the performance of these algorithms has been evaluated un-
der various market conditions. Despite the high performance of GD traders, research
into automated trading mechanisms has continued.

This work on trading strategies is only one facet of the research on auctions. Gode
and Sunder’s results suggest that the structure of the auction mechanism plays an im-
portant role in determining the outcome of an auction, and this is further borne out by
the work of [35] and [21], both of which show that the same set of trading strategies
can have markedly different behaviors in different auctionmechanisms. This leads us
to anticipate that in a set of connected markets the way that the markets are connected
will also have an effect on the behavior of the markets.

2.2 Methodology

The basis of our approach comes from Smith [31] via Gode and Sunder [10] and then
Cliff [6]. We follow these authors in having all traders, whether human or machine,
be chosen to be either buyers or sellers. No trader can both buy and sell in the same
experiment. On any given day, each seller is given some number of indivisible goods
that they are allowed to exchange for money, and is given a value for each good — the
trader’slimit price or private value. A typical restriction, which we adopt, is that no
seller may sell a good for less than its private value. Buyershave a similar private value
for a number of goods, but rather than goods, they are given anallocation of money
which they may exchange for goods. No buyer is permitted to pay more than the private
value for any good.

These conditions are what Smith [31] calls “conditions of normal supply and de-
mand”, the conditions in which the flow of goods through the market is at equilibrium
and each day sellers bring to market the same goods that cost the same to produce, and
buyers look to buy the same goods at the same price. The aim of our experiments is to
identify what this equilibrium would be, and to allow us to find the equilibrium point —
bearing in mind that there is a certain amount of learning going on that will take time to
converge — we repeat the same trading conditions day after day, allowing our trading
agents to recall the outcomes of trade on the previous day andtrading multiple goods to
speed convergence to equilibrium. Despite this, the slow convergence of the learning3

3 Which we can attribute to the movement of traders between markets since weknow that the
trading strategies we use converge in a few days at most in single marketexperiments.



means that to get close to a steady state we run our experiments for 600 trading days
under identical conditions with each day allowing for multiple rounds of trading.

Clearly, this is not a realistic model. There is no existing market in which the same
set of traders will continue to trade with the same limit prices for more than a year of
trading without some price shock altering prices or tradersentering and leaving the mar-
ket. The model is not intended to be realistic in this sense. The model is just intended
to tell us about the steady state, and we know from the literature that introducing price
shocks [9] and permitting traders to enter or leave the market [22] just slows conver-
gence to the steady state.

Our justification for working with such a simplified model is that we see our work
as fitting within the “class-of-models” approach, due to Sutton [18, 32]. According to
Sutton, the aim of modelling economic systems is rarely to model a real market, but is
to model an abstraction from a real market that captures the behavior of a whole class of
markets — exactly those which are the instantiations of the abstract model. In this work
we are trying to see what the steady state behavior is in all sets of competing markets,
both those with price shocks and those without, both those inwhich traders enter and
leave, and those that don’t. To do that we look first at the mostabstract market. We can
take the results of our shock-free and fixed-trader experiments and use them to predict
the results of removing these restrictions, and in the future we can investigate whether
these predictions are true. This approach, of course, ties in with Rubinstein’s suggestion
[27] that economic modelling be used to help sharpen our economic intuitions about
complex phenomena as well as being used to predict the behavior of real systems4.

3 Experimental Setup

3.1 Software

To experiment with multiple markets, we usedJCAT [11], the platform that supports the
TAC Market Design Competition [5].JCAT provides the ability to run multiple double
auction markets populated by traders that use a variety of trading strategies. Auctions
in JCAT follow the usual pattern for work on automated trading agents, running for a
number of tradingdays, with each day being broken up into a series ofrounds. A round
is an opportunity for agents to make offers (shouts) to buy orsell, and we distinguish
different days because at the beginning of a day, agents havetheir inventories replen-
ished. As a result, every buyer can buy goods every day, and every seller can sell every
day. Days are not identical because agents are aware of what happened on the previous
day. Thus it is possible for traders to learn, over the courseof several days, the optimal
way to trade. In addition,JCAT allows traders to move between markets at the end of a
day, and over the course of many days they learn which market they perform best in.

In JCAT there are no restrictions on the movement of traders. To study network ef-
fects, we extendedJCAT to restrict the movement of traders. In particular, our extension

4 [27] presents four purposes for economic modelling in general: to predict behavior; to guide
decision-making by economic agents or policy-makers; to sharpen the intuition of economists
when studying complex phenomena; and to establish linkages between theoretical economic
concepts and everyday thinking.
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Fig. 1.The different topologies we consider. Each node is a market, each arca connection between
markets. (a) fully connected, (b) ring, (c) chain, (d) star.

allows us to specify which markets a given market is connected to. At the end of ev-
ery day that a trader spends in that market, the trader has a choice of remaining in that
market or moving to any of the markets to which there are connections. The decision
mechanism employed by the traders to make this choice is discussed below.

In our experiments, market connections have four topologies (1) Fully connected.
Each market is connected to every other market. (2) Ring. Each market is connected
to exactly two other markets. This is what [36] calls a “localconnected network”. (3)
Chain structure. All but two of the markets are connected to two other markets as in the
ring. The remaining pair form the ends of the chain and are connected to exactly one
market. (4) Star structure. One market is connected to everyother market. There are no
other connections between markets. This is the network topology studied in [25]. These
topologies are illustrated in Fig. 1.

3.2 Traders

In JCAT markets, traders have two tasks. One is to decide how to make offers. The
mechanism they use to do this is theirtrading strategy. The other task is to choose
the market to make offers in. The mechanism for doing this is their market selection
strategy. We studied markets in which all the traders used the same trading strategy,
and considered two such strategies, Gode and Sunder’s zero intelligence strategyZI-C

[10]; and Cliff’s zero intelligence plus (ZIP) strategy [6]. The reason for picking the first
of these is that given by [34], that sinceZI-C is not making bids with any intelligence,
any effects we see have to be a result of market structure, rather than a consequence of
the trading strategy, and hence will be robust across markets inhabited by different kinds
of trader. The reason for pickingZIP is that it is typical of the behavior of automated
traders, rapidly converging to equilibrium in a single market.

In this work we use the standard market selection strategy used by JCAT. Traders
treat the choice of market as ann-armed bandit problem that they solve using anǫ-
greedy exploration policy [33]. Using this approach, a trader chooses what it estimates
to be the best available market, in terms of its average dailytrading profit in that market
on previous days, with probability1 − ǫ, for someǫ, and chooses one of the remaining
available markets with equal probability otherwise. We chooseǫ to take a constant value
of 0.1. Our previous work suggests that market selection behavioris rather insensitive
to the parameters we choose here, and we chooseǫ to remain constant so that any



convergence of traders to markets is due to traders picking markets that work for them
rather than being forced by a reduction in their tendency to explore.

Each trader is permitted to buy or sell at most five units of goods per day, and
each trader has a private value for these goods. Private values are set, just as in [6] to
form perfect “staircase” supply and demand curves, with every buyer having a unique
private value from the set{$50, $54, $58 . . . , $246, $250}. Sellers are allocated values
in the same way. A given trader has the same private value for all goods that it trades
throughout the entire experiment. All of our experiments used 100 traders, divided into
50 buyers and 50 sellers. Initially they are equally distributed between the markets, and
subsequently use their market selection strategy to pick the market to operate in.

3.3 Markets

While JCAT allows us to charge traders in a variety of ways, we used just two kinds of
charge in the work reported here:

– Registration fees, charges made by the market for entering the market. We set this
to a low constant value ($0.5) for every market following [23] which suggests that
such a fee is effective in motivating extra-marginal traders to move between markets
thus preventing their inertia from distorting results.

– Profit fees, charges made by the market on the bid/ask spread of any transactions
they execute. The name arose because the bid/ask spread is the transaction surplus,
and with thek = 0.5 rule that is usually used inJCAT for allocating the surplus,
the amount charged by this fee is thus directly related to theprofit realized by both
agents.

Unlike previous work that usedJCAT to investigate multiple market scenarios [22], we
used a simple, non-adaptive scheme for the profit fee, placing a 5% profit charge on all
markets. In all of our experiments we run five markets connected as described above,
and we used bothCDA andCH markets, both of which are provided inJCAT.

3.4 Hypotheses

The aim of this work was to investigate the effect on market performance of different
topological connections between markets. In the context ofthe double auction markets
that we consider, these connections might reflect a number ofdifferent constraints. For
example, they might reflect the physical layout of market makers on a trading floor,
or they might reflect affiliations between electronic markets, or they might reflect the
relationship between the time-zones in which different markets operate.

In any case, we would expect that, as in [12], the topology of the relationships to
have an effect on market behavior. In a model where traders move between markets, we
would expect that placing different restrictions on movement between markets would
lead to differences in the ease with which traders can explore the space of markets and
then reach their preferred market, affecting the time it takes the set of markets to reach
their steady state. In addition, we might expect that these different restrictions might
lead to the steady state favoring some markets over other. These considerations give us
two hypotheses that we will test:
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Fig. 2. How the markets change over time. (a) shows the total number of tradersthat move at the
end of a given trading day, (b) shows the average transaction price each day for a set of five fully
connectedCDA markets withZIP traders. The x-axis gives the trading day, the y-axis gives (a) the
number of traders, (b) the transaction price.

1. The topology of the network market will affect the speed with which the set of
markets reaches its steady-state configuration; and

2. The topology of the network will have a significant effect on the steady state con-
figuration of the set of markets.

Note that in discussing these hypotheses, we find it helpful to distinguish the fact that
some of the topologies we consider — the star and chain — areasymmetricin the
sense that traders in some markets are more restricted in themarkets that they can move
to as opposed to thesymmetricring and fully-connected markets where, in terms of
connections, all markets are equal.

3.5 Experiments

To test these hypotheses, we ran experiments that tested allthe different combinations
discussed above. That is we ran experiments forCH and CDA markets using each of
the four different topologies, both the trading strategiesdescribed above and both the
market selection strategies. Each of these experiments wasrun for 600 trading days,
with each day being split into 50 0.5-second-long rounds. Werepeated each experiment
50 times and the results that we give are averages across those 50 runs.

In order to assess the effect of the different topologies on the convergence of the
markets, we looked at the number of traders that moved each day. The market selection
strategy picks a random market with probabilityǫ, so there will always be some move-
ment of traders, but we would expect to see the number of traders decreasing from an
initial high to a steady state, and the speed with which the steady state is reached is one
way to measure how quickly the system of traders and markets converges.

To identify any differences between the steady state configurations of different mar-
ket topologies we looked at two things — the number of tradersin each market, and
the efficiency of each market. The number of traders in each market gives us some idea
of the preference that traders have for markets, and any timethat there is an uneven
distribution it is an indication that from the traders’ point of view differences in market



ZIC CDA Fully connected 141.25
Ring 107.48
Chain 93.47
Star 93.34

CH Fully connected 184.56
Ring 143.95
Chain 125.43
Star 127.68

ZIP CDA Fully connected 142.91
Ring 108.90
Chain 95.61
Star 98.44

CH Fully connected 155.75
Ring 120.73
Chain 109.11
Star 113.43

Table 1.The average number of traders moving each day for the different topologies.

topologies have an effect. Efficiency, of course, is a standard measure of market behav-
ior, and will indicate whether differences in the market topologies have an effect on the
performance of the set of markets as a whole.

4 Results

4.1 Speed of convergence

When we look at the movement of traders between markets it is clear from Fig. 2 (a)
that the markets make an exponential approach to the steady state (these results are for
ZIP traders and fully connected arkets, but the results for other experiments are similar).
This is despite the fact that the average transaction price in each market is, like that
shown in Fig. 2 (b), far from steady5. Since, as described above, the market selection
strategies we are using will mean that we always have some number of traders still
moving at the end of each trading day, we can’t determine equilibrium by looking for
the point at which all traders stop moving. Instead we need tofind a way to estimate the
speed of convergence.

To do this we borrowed from the usual measure of the convergence of a market to
equilibrium [31]. To compute this measure, Smith’salphaas it is known, we compute
the average deviation between the price of each transactionand the equilibrium price
suggested by theory. Here, we look at the number of traders moving each day and
compute the average difference from the number we would expect if the only cause of
trader movement was theǫ in the market selection strategy (which would mean that, on
average, 10% of the traders would move each day). Markets that are faster to converge
to the steady state will have lower values of this difference. These results are shown
in Table 1 and show that there is a clear difference between the speeds with which
the different tologies converge. In particular, the asymmetric topologies converge much
faster than the symmetric topologies.

5 Because the transaction price is a function of the traders in a market (in particular it depends
on both their private values and when and how they choose to bid), it changes as traders move
between markets. Since the reward gained by traders is a function of the transaction price the
dynamics are more complex than those of a set of n-armed bandit learners converging to static
rewards.



0 100 200 300 400 500 600
10

20

30

40

50

(a) Full conn.,ZIP CDA

0 100 200 300 400 500 600
10

20

30

40

50

(b) Ring,ZIP, CDA

0 100 200 300 400 500 600
10

20

30

40

50

(c) Chain,ZIP, CDA

0 100 200 300 400 500 600
10

20

30

40

50

(d) Star,ZIP, CDA

0 100 200 300 400 500 600
10

20

30

40

50

(e) Full conn.,ZIC CDA

0 100 200 300 400 500 600
10

20

30

40

50

(f) Ring, ZIC, CDA

0 100 200 300 400 500 600
10

20

30

40

50

(g) Chain,ZIC, CDA

0 100 200 300 400 500 600
10

20

30

40

50

(h) Star,ZIC, CDA

Fig. 3. The number of traders in multiple connectedCDA markets with different connection
topologies on each trading day. The traders in (a)–(d) use theZIP strategy, those in (e)–(h) use
theZIC strategy. The x axis gives the trading days, the y axis the number of traders in each of the
five markets. In the chain markets, the dark lines give the numbers for the markets at the end of
the chain, and for the star markets, the dark line gives the numbers for the market at the center.
All other markets are marked with dashed lines.

4.2 Trader distribution

To examine the steady-state for differences due to connection topology, we looked at
the number of traders in each market. Figure 3 shows this for each day of the experiment
for both ZIC andZIP traders inCDA markets (the other experiments give very similar
results). The graphs in the figure show that the distributionof traders in fully-connected
(Fig. 3(a), Fig. 3(e)) and ring (Fig. 3(b), Fig. 3(f)) markets is pretty uniform.

Chain markets, however, don’t have the same symmetry, and this shows up in the
distribution of traders. As Fig. 3(c) and Fig. 3(g) show, markets at the end of the chain
end up with fewer traders than the markets in the middle of thechain. The effect of the
loss of symmetry is even more marked in star markets, Here, asshown in Figures 3(d)
and 3(h) the hub market in the star collects many more tradersthan the otherwise iden-
tical markets that are connected to it.

The graphs of Fig. 3 don’t make it easy to decide what differences are significant so
we show the actual trader numbers after the 600th trading day(that is at the end of the
experiment) in Table 2. This includes the results of all the experiments on star and chain
markets, not just those from Fig. 3 (the ones from the figure are in the first and third
rows of the table). In the chain markets, the markets at the ends of the chain are M0 and
M4. T-tests reveal that the numbers of traders in these markets are significantly different
from the numbers of traders in markets M1, M2 and M3 at the 95% level. This holds
for both CDA andCH markets whether the traders areZI-C or ZIP. In the star markets,
the market at the hub of the star is M0. T-tests show that the number of traders in this
market is significantly different from that in all other markets at the 95% level again for
bothCDA andCH markets forZI-C andZIP traders.



Star Chain
CDA ZIC No. of traders 43.67 13.65 15.82 14.14 12.72 16.24 22.74 20.88 22.21 17.93

Stdev. 11.89 7.88 8.25 8.38 7.23 6.63 8.86 9.86 9.67 7.45
ZIP No. of traders 42.50 13.90 13.57 15.42 14.61 16.10 22.22 22.66 23.72 15.31

Stdev. 9.08 5.13 5.19 5.57 4.76 4.91 5.52 7.08 5.89 4.45
CH ZIC No. of traders 44.71 13.16 13.83 14.40 13.89 16.45 23.6620.33 22.28 17.28

Stdev. 5.70 2.68 3.01 3.03 3.90 4.82 6.67 5.78 6.03 4.67
ZIP No. of traders 47.41 12.14 12.92 13.60 13.93 15.50 23.02 22.10 24.76 14.63

Stdev. 8.44 3.32 3.07 4.40 4.58 4.80 6.32 7.01 6.31 4.66

Table 2.The number of traders in each market for star and chain configurations for both market
selection strategies. In the star configuration, M0 is the hub, the market atthe center. In the chain
markets, markets M0 and M4 are the markets at the end of the chain. All markets make the same
charges. In the star configuration the number of traders in M0 is significantly greater than that in
all the other markets with 95% confidence in all cases and in the chain markets the number of
traders in M0 and M4 is significantly smaller than in all the other markets with 95%confidence
in all cases.

Chain Ring Star F.C.
ZIC CDA Efficiency 95.49 95.42 95.75 95.38

Stdev. 0.30 0.25 0.22 0.16
CH Efficiency 96.61 96.51 96.81 96.56

Stdev. 0.25 0.19 0.15 0.13

Chain Ring Star F.C.
ZIP CDA Efficiency 95.50 95.33 95.68 95.05

Stdev. 0.24 0.19 0.22 0.17
CH Efficiency 96.86 96.77 96.96 96.54

Stdev. 0.24 0.17 0.19 0.15

Table 3. The global efficiencies of sets of market with different connection topologies from left
to right, chain, ring, star and fully connected networks. The table gives results for markets using
bothZI-C andZIP traders, and for bothCDA andCH markets.

4.3 Allocative efficiency

The final results to consider are those in Table 3 which measures the allocative effi-
ciency of sets of markets of different topologies. In particular what they measure is
what we call “global efficiency”, the ratio of the sum of profitmade in all of the mar-
kets to the equilibrium profit that would be made in a market containing all the traders.

Pairwise t-tests on the efficiency values in Table 3 reveal that that there are differ-
ences between the efficiencies obtained with different configurations that are significant
at the 95% level. In all the experiments the symmetric markets are significantly less ef-
ficient than the asymmetric markets. In all of the experiments except theCH with ZIC

traders, fully-connected markets are less efficient than ring markets, ring markets are
less efficient than chain markets, and chain markets are lessefficient than star markets
— all of these differences being significant at the 95% level.A possible explanation for
this may be the fact that the asymmetric markets tend to concentrate traders in particular
markets but results from our prior work [22] (on the effect ofallowing traders to move
in fully connected markets) suggests that such effects are only a partial explanation.

Note that the efficiency results we report forZIP traders are somewhat lower than
are reported for such traders in single markets (and are lower than the results we have



obtained for the same implementation ofZIP in a single market, results which are sim-
ilar to those seen in the literature). We believe that there are a couple of reasons for
this. First, we are computing efficiency as the surplus obtained divided by the surplus
that would be obtained were all the traders in one market and that market traded at
theoretical equilibrium. It is easy to see that it is possible to match traders in such a
way that individual markets are efficient, but the combined surplus will fall below what
would be possible if all traders were in one market and that iswhat we believe is hap-
pening here. (ZIP achieves higher efficiency when the efficiency is computed ina more
conventional fashion.). Second, traders are constantly moving between markets, which
means that the equilibrium point of all the markets is constantly changing (recall the
transaction prices of Fig. 2 (b)). We know from [6] thatZIP takes several trading days to
identify market equilibrium, and since this is changing every day,ZIP is always playing
catch-up. Naturally this will mean it is less than completely efficient. (When traders are
constrained not to move, the efficiency ofZIP improves.)

4.4 Discussion

The aim of this work was to test the hypotheses that:

1. The topology of the network market will affect the speed with which the set of
markets reaches its steady-state configuration; and

2. The topology of the network will have a significant effect on the steady state con-
figuration of the set of markets.

The results in Table 1 suggest that the first of these hypotheses is correct — for most of
the experiments that we carried out, the time we estimate it takes the set of markets to
converge varies considerably from topology to topology.

To address the second hypothesis, we measured both the number of traders in each
market and the overall efficiency of the set of markets. When welooked at the num-
ber of traders (Table 2), it was clear that many more traders congregated in the central
market of the star configuration and many fewer traders choose the end markets of the
chain configuration, and pairwise t-tests confirmed that thedifferences are statistically
significant. This suggests that the second hypothesis is correct. This suggestion is sup-
ported by looking at the efficiency of different sets of markets (Table 3) where we find
that sets of markets with different topologies have significantly different efficiencies.

5 Related work

While network markets have not been studied in the same detailas single markets,
there is a growing body of work to consider. [25], for example, describes a study of a
three-node star network with a uniform-price double auction at each node. The same
authors [24] report experiments using a 9-node gas network that, in addition to buyers
and sellers, also includes pipeline owners, and in [15] study another small gas market.
A further small network model, including just two markets, is the basis of the study
in [4] into the effects of cheating (that is, either not paying for goods, or failing to
deliver goods that have been paid for) and [7] investigates how a 6-node railway network



responds to two different pricing mechanisms. While these markets are similar to those
in our study, the investigations all dealt with markets withhuman traders.

Agent-based methods were used by [3] to examine the effects of linked markets on
financial crises, while [19, 20] consider the behavior of supply chains6. This work all
studies smaller sets of markets than we have considered. Theagent-based studies in [2]
and [36] are larger but consider a set of connection topologies that overlap with, but
does not contain, the set we consider. Both [2] and [36] deal with networks equivalent
to our ring (their term is “local”) as well as small-world networks, which we don’t
consider. Neither looks st chain or star topologies, the most interesting of the topologies
we looked at, and neither study considers traders that move between markets.

The most closely related research we know of is [12], [37] and[14]. Judd and Kearns
[12] describe experiments with human traders that clearly show that restrictions on who
is allowed to trade with who — restrictions that are somewhatdifferent from those im-
posed in our work — have a significant effect on market clearing performance. Wilhite
[37], though mainly concentrating on results from network versions of the Prisoner’s
dilemma, describes agent-based experiments in the same kind of scenario as studied in
[12] with similar results. Ladley and Bullock [14] looked atnetworked markets ofZIP

traders and showed that differences in topology affected anagent’s ability to make a
profit. Like the results reported here, all of this work helpsus to understand different
aspects of the effect of network topology on market performance.

6 Conclusions

This paper has examined the effect of different connection topologies on network mar-
kets in which the constituent markets are double auctions and the connections denote
the allowed movements of traders between markets. This workis the first systematic
study of the effects of network topology on a set of double auction markets.

Traders in our experiments used eitherZI-C or ZIP strategies, and markets were
either CHs or CDAs. We looked at the behavior of four different topologies — fully
connected, ring, chain and star — and considered the speed with which markets con-
verge to a steady state, the distribution of traders across markets in the steady state,
and the overall allocative efficiency in the steady state. Wefound that for all of these
aspects, the connection topology can have a significant effect. In particular, the asym-
metric topologies, chain and star, lead to an unequal distribution of traders, and in most
cases an overal increase in efficiency of the markets.

Our main conclusion that topology affects steady state behavior is in line with pre-
vious work on network markets [12, 37]. In addition, since our results are consistent
across different trading strategies (including the minimally rational ZI-C) and different
market selection strategies, we believe that they will prove to be robust across other
variants of our experimental scenario. With this in mind, weare currently working to
analyze the performance of network markets with different topologies — in particular
small-world, random and scale-free topologies — and to handle larger sets of markets
than we considered here.

6 The TAC supply chain competition also studies supply chains, but comes at it from the per-
spective of individual traders rather than from the perspective of overall market performance.
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