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Abstract. Many electronic markets are linked together into larger “network mar-
kets” where the links reflect constraints on traders. These constragas that

a choice to trade in one market limits the trader’s choice of other marketeto u
This kind of network market is important because so many basic ptedaoclud-

ing gas, water, and electricity, are traded in such markets, and yetitleadittle
studied until now. This paper studies networks of double auction markets p
ulated with automated traders, concentrating on the effects of diffeetwork
topologies. We find that the topology has a significant effect on the equitibr
behavior of the set of markets.

1 Introduction

An auction according to [8], is a market mechanism in which messagen fraders
include some price information — this information may be #&eroto buy at a given
price, in the case of hid, or an offer to sell at a given price, in the case obak— and
which gives priority to higher bids and lower asks. The raiean auction determine, on
the basis of the offers that have been made, the allocatignafs and money between
traders. When well designed [13], auctions achieve desiceda@nic outcomes like
high allocative efficiencyvhilst being easy to implement. Auctions have been widely
used in solving real-world resource allocation problen®],[in structuring stock or
futures exchanges [8], and, despite the current recesaieithe basis of a vast volume
of trade in electronic markets.

There are many different kinds of auction. One of the mostWidsed kinds is the
double auctionDA), in which both buyers and sellers are allowed to exchanfggsof
simultaneously. Since double auctions allow dynamic pgan both the supply side
and the demand side of the marketplace, their study is oft grgaortance, both to
theoretical economists, and those seeking to implemehtwadd market places. The
continuous double auctiofcbDA) is a DA in which traders make deals continuously
throughout the auction. TheDA is one of the most common exchange institutions, and
is in fact the primary institution for trading of equitiespramodities and derivatives
in markets such as the New York Stock Exchang&qg) and Chicago Mercantile
Exchange¢ME). Another common kind of double auction market is ¢hesaring-house
(cH) in which the market clears at a pre-specified time, allowafigraders to place



offers before any matches are found. Theis used, for example, to set stock prices at
the beginning of trading on some exchange markets.

Our focus in this paper is on the behavior of multiple audifor the same good.
This interest is motivated by the fact that such situatiorscammon in the real world.
Company stock is frequently listed on several stock exceandS companies may be
listed on both thelYSE, NASDAQ and, in the case of larger firms, non-US markets like
the London Stock ExchangedE). Indian companies can be listed on both the Na-
tional Stock ExchangensE) and the Bombay Stock Exchangesg). The interactions
between such exchanges can be complex, like that when tHg nmated Singapore
International Monetary Exchangei(ex) claimed much of the trade in index futures
on Nikkei 225 from Japanese markets in the late 1980s [2%Yhen unfulfilled orders
on thecMmE overflowed onto thenyse during the global stock market crash of 1987
[17]. This kind of interaction between markets has not betely studied, especially
when the markets are populated by automated traders.

One multiple market scenario that is particularly intarests that ofnetwork mar-
kets markets in which individual markets are linked togethéo larger markets, where
the links between markets reflect constraints on tradeteimarkets. Network markets
are important because so many basic products, includinfd.§isvater, and electricity,
are traded in such markets — the products proceed throughes $¢ transactions at
different locations from producer to final consumer, andrtbed to convey the product
through a complex transportation network provides the taims.

Our specific focus in this paper is to examine the differetetaeen network mar-
kets with different topologies. We describe some experimesing network markets
where the nodes in the network are double auction markatiets can move between
the markets, and the connections between markets aretlongaon such moves. These
experiments identify whether network topology has a sigaift effect on the steady
state behavior of a set of connected markets and the speedhiith the set of markets
converges to that steady state. We see this work as a firstastepds understanding
the relationship between market topology and performa®ee.long-term goal is to
be able to use our understanding of this relationship toreginetwork markets with
appropriate properties.

2 Background

2.1 Double auctions

Double auctions have been extensively studied using dupsed methods. Gode and
Sunder [10] were the first to use multi-agent simulationshis tvay, testing the hy-
pothesis, suggested by [30], that the form of the market ha® fpearing on obtaining
efficient allocation than the intelligence of traders intth@arket. [10] introduced a
“zero-intelligence” trading strategy (denoted c) — which involves making offers at
random under the constraint that they don'’t lead to lossingattades — and showed
that agents using this strategy could generate high efigiéndeed, such agents come
close enough to the performance of human traders that GatlS@mder claimed that
trader intelligence is not necessary.



This position was attacked by CIiff [6], who showed that ipply and demand are
asymmetric, the average transaction pricegle€ traders can vary significantly from
the theoretical equilibrium. CIiff then introduced thero intelligence pluézipP) trader,
which uses a simple machine learning technique to decidéoeifeas to make based on
previous offers and the trades that have taken plaedraders outperforrai-c traders,
achieving both higher efficiency and approaching equiliorimore closely across a
wider range of market conditions, prompting Cliff to suggbstzip traders embodied
the minimal intelligence required. A range of other tradaigorithms has been pro-
posed — including those that took part in the Santa Fe doulagam tournament [28],
the reinforcement learninBoth-Erevapproach RE) [26] and theGjer-stad-Dickhaut
approach ¢D) [9] — and the performance of these algorithms has been aeduwin-
der various market conditions. Despite the high perforreasfocD traders, research
into automated trading mechanisms has continued.

This work on trading strategies is only one facet of the nedean auctions. Gode
and Sunder’s results suggest that the structure of theomuetechanism plays an im-
portant role in determining the outcome of an auction, amgithfurther borne out by
the work of [35] and [21], both of which show that the same ddtaxding strategies
can have markedly different behaviors in different auctioechanisms. This leads us
to anticipate that in a set of connected markets the way higatnarkets are connected
will also have an effect on the behavior of the markets.

2.2 Methodology

The basis of our approach comes from Smith [31] via Gode amdl&10] and then
Cliff [6]. We follow these authors in having all traders, wher human or machine,
be chosen to be either buyers or sellers. No trader can bgttardu sell in the same
experiment. On any given day, each seller is given some nuofliadivisible goods
that they are allowed to exchange for money, and is givenwevar each good — the
trader’slimit price or private value A typical restriction, which we adopt, is that no
seller may sell a good for less than its private value. Buliar® a similar private value
for a number of goods, but rather than goods, they are givesilacation of money
which they may exchange for goods. No buyer is permitted yopare than the private
value for any good.

These conditions are what Smith [31] calls “conditions ofmal supply and de-
mand”, the conditions in which the flow of goods through thekatis at equilibrium
and each day sellers bring to market the same goods thaheosaine to produce, and
buyers look to buy the same goods at the same price. The ainr @xperiments is to
identify what this equilibrium would be, and to allow us todithe equilibrium point —
bearing in mind that there is a certain amount of learninggoin that will take time to
converge — we repeat the same trading conditions day afteratlawing our trading
agents to recall the outcomes of trade on the previous dagraicig multiple goods to
speed convergence to equilibrium. Despite this, the slawegence of the learnidg

3 Which we can attribute to the movement of traders between markets sinkeowethat the
trading strategies we use converge in a few days at most in single neaigaiments.



means that to get close to a steady state we run our expesrfei00 trading days
under identical conditions with each day allowing for mulkéi rounds of trading.

Clearly, this is not a realistic model. There is no existingrket in which the same
set of traders will continue to trade with the same limit psdor more than a year of
trading without some price shock altering prices or tragetsring and leaving the mar-
ket. The model is not intended to be realistic in this senbse. Model is just intended
to tell us about the steady state, and we know from the litezathat introducing price
shocks [9] and permitting traders to enter or leave the nig@&} just slows conver-
gence to the steady state.

Our justification for working with such a simplified model Isat we see our work
as fitting within the “class-of-models” approach, due tot&u{18, 32]. According to
Sutton, the aim of modelling economic systems is rarely toeha real market, but is
to model an abstraction from a real market that capturesghavior of a whole class of
markets — exactly those which are the instantiations of bstract model. In this work
we are trying to see what the steady state behavior is in @llacfecompeting markets,
both those with price shocks and those without, both thosehich traders enter and
leave, and those that don’t. To do that we look first at the rabstract market. We can
take the results of our shock-free and fixed-trader experisn@nd use them to predict
the results of removing these restrictions, and in the &utuwe can investigate whether
these predictions are true. This approach, of course sti@gh Rubinstein’s suggestion
[27] that economic modelling be used to help sharpen oura@uanintuitions about
complex phenomena as well as being used to predict the letwdvieal systenfs

3 Experimental Setup

3.1 Software

To experiment with multiple markets, we usetiT [11], the platform that supports the
TAC Market Design Competition [SJiCAT provides the ability to run multiple double
auction markets populated by traders that use a varietyadfrtg strategies. Auctions
in JcAT follow the usual pattern for work on automated trading agentnning for a
number of tradinglays with each day being broken up into a seriesoafnds A round
is an opportunity for agents to make offers (shouts) to buyedly and we distinguish
different days because at the beginning of a day, agentsthaireénventories replen-
ished. As a result, every buyer can buy goods every day, ey seller can sell every
day. Days are not identical because agents are aware of wppéhed on the previous
day. Thus it is possible for traders to learn, over the coafseveral days, the optimal
way to trade. In additionjCAT allows traders to move between markets at the end of a
day, and over the course of many days they learn which mdrkgtgerform best in.

In JCAT there are no restrictions on the movement of traders. Toystatvork ef-
fects, we extendedlc AT to restrict the movement of traders. In particular, our esien

4127] presents four purposes for economic modelling in general: Wigirbehavior; to guide
decision-making by economic agents or policy-makers; to sharpentthian of economists
when studying complex phenomena; and to establish linkages betweeetiteceeconomic
concepts and everyday thinking.
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Fig. 1. The different topologies we consider. Each node is a market, eaalcarmection between
markets. (a) fully connected, (b) ring, (c) chain, (d) star.

allows us to specify which markets a given market is conmktide At the end of ev-
ery day that a trader spends in that market, the trader hasieechf remaining in that
market or moving to any of the markets to which there are cotimes. The decision
mechanism employed by the traders to make this choice issisd below.

In our experiments, market connections have four topotoi¢ Fully connected.
Each market is connected to every other market. (2) Ringh BEsarket is connected
to exactly two other markets. This is what [36] calls a “locahnected network”. (3)
Chain structure. All but two of the markets are connecteavtodther markets as in the
ring. The remaining pair form the ends of the chain and arenected to exactly one
market. (4) Star structure. One market is connected to extber market. There are no
other connections between markets. This is the networkagpastudied in [25]. These
topologies are illustrated in Fig. 1.

3.2 Traders

In JCAT markets, traders have two tasks. One is to decide how to miédes.oThe
mechanism they use to do this is thamding strategy The other task is to choose
the market to make offers in. The mechanism for doing thifiésrimarket selection
strategy We studied markets in which all the traders used the samentratrategy,
and considered two such strategies, Gode and Sunder’'srtetiigience strategyi-c
[10]; and Ciliff's zero intelligence plusz({P) strategy [6]. The reason for picking the first
of these is that given by [34], that sinze-c is not making bids with any intelligence,
any effects we see have to be a result of market structutesrrtitan a consequence of
the trading strategy, and hence will be robust across nmsilieabited by different kinds
of trader. The reason for pickingp is that it is typical of the behavior of automated
traders, rapidly converging to equilibrium in a single merk

In this work we use the standard market selection strateggl bg JCAT. Traders
treat the choice of market as anarmed bandit problem that they solve usingean
greedy exploration policy [33]. Using this approach, a érachooses what it estimates
to be the best available market, in terms of its average thaitling profit in that market
on previous days, with probability — ¢, for somee, and chooses one of the remaining
available markets with equal probability otherwise. Weadw®s to take a constant value
of 0.1. Our previous work suggests that market selection beh&vi@ther insensitive
to the parameters we choose here, and we chedseremain constant so that any



convergence of traders to markets is due to traders pickengrets that work for them
rather than being forced by a reduction in their tendencypbcze.

Each trader is permitted to buy or sell at most five units ofdgoper day, and
each trader has a private value for these goods. Privates/ale set, just as in [6] to
form perfect “staircase” supply and demand curves, witlryebeayer having a unique
private value from the sdt$50, $54, $58. .., $246, $250}. Sellers are allocated values
in the same way. A given trader has the same private valudifgpads that it trades
throughout the entire experiment. All of our experimentsdi$00 traders, divided into
50 buyers and 50 sellers. Initially they are equally distiétd between the markets, and
subsequently use their market selection strategy to pekthrket to operate in.

3.3 Markets

While JcAT allows us to charge traders in a variety of ways, we used juskinds of
charge in the work reported here:

— Registration fees, charges made by the market for entdnmgiarket. We set this
to a low constant value ($0.5) for every market following][28ich suggests that
such afee is effective in motivating extra-marginal tradermove between markets
thus preventing their inertia from distorting results.

— Profit fees, charges made by the market on the bid/ask spfeat/dransactions
they execute. The name arose because the bid/ask spreadrartsaction surplus,
and with thek = 0.5 rule that is usually used incAT for allocating the surplus,
the amount charged by this fee is thus directly related tgtbét realized by both
agents.

Unlike previous work that usetl AT to investigate multiple market scenarios [22], we
used a simple, non-adaptive scheme for the profit fee, @acBo profit charge on all
markets. In all of our experiments we run five markets coretees described above,
and we used botbba andcH markets, both of which are providedJcAT.

3.4 Hypotheses

The aim of this work was to investigate the effect on markefquenance of different

topological connections between markets. In the contetti®tiouble auction markets
that we consider, these connections might reflect a numbdiffefent constraints. For
example, they might reflect the physical layout of market enalon a trading floor,

or they might reflect affiliations between electronic masketr they might reflect the
relationship between the time-zones in which differentkats operate.

In any case, we would expect that, as in [12], the topologyhefrelationships to
have an effect on market behavior. In a model where tradeve foetween markets, we
would expect that placing different restrictions on movaimeetween markets would
lead to differences in the ease with which traders can egpiter space of markets and
then reach their preferred market, affecting the time ietathe set of markets to reach
their steady state. In addition, we might expect that théfereint restrictions might
lead to the steady state favoring some markets over othes€ltonsiderations give us
two hypotheses that we will test:
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Fig. 2. How the markets change over time. (a) shows the total number of trémnsnove at the
end of a given trading day, (b) shows the average transaction pibedas for a set of five fully
connectedDA markets withzip traders. The x-axis gives the trading day, the y-axis gives (a) the
number of traders, (b) the transaction price.

1. The topology of the network market will affect the speedhwivhich the set of
markets reaches its steady-state configuration; and

2. The topology of the network will have a significant effenttbe steady state con-
figuration of the set of markets.

Note that in discussing these hypotheses, we find it helpfdidtinguish the fact that
some of the topologies we consider — the star and chain —asyeametricn the
sense that traders in some markets are more restrictedimaheets that they can move
to as opposed to thgymmetricring and fully-connected markets where, in terms of
connections, all markets are equal.

3.5 Experiments

To test these hypotheses, we ran experiments that testie alifferent combinations
discussed above. That is we ran experimentsciorand cDA markets using each of
the four different topologies, both the trading strategiescribed above and both the
market selection strategies. Each of these experimentswmafor 600 trading days,
with each day being split into 50 0.5-second-long roundsré&geated each experiment
50 times and the results that we give are averages acrogs30asns.

In order to assess the effect of the different topologieshenconvergence of the
markets, we looked at the number of traders that moved eacfda market selection
strategy picks a random market with probabilifyso there will always be some move-
ment of traders, but we would expect to see the number ofrisatkrreasing from an
initial high to a steady state, and the speed with which teadst state is reached is one
way to measure how quickly the system of traders and marketgecges.

To identify any differences between the steady state coriguns of different mar-
ket topologies we looked at two things — the number of trademsach market, and
the efficiency of each market. The number of traders in eackehgives us some idea
of the preference that traders have for markets, and anythatethere is an uneven
distribution it is an indication that from the traders’ pbaf view differences in market



zIC CDA Fully connected 141.25 zIP CDA Fully connected 142.91

Ring 107.48 Ring 108.90
Chain 93.47 Chain 95.61
Star 93.34 Star 98.44
CH Fully connected 184.56 CH Fully connected 155.75
Ring 143.95 Ring 120.73
Chain 125.43 Chain 109.11
Star 127.68 Star 113.43

Table 1. The average number of traders moving each day for the differealdgies.

topologies have an effect. Efficiency, of course, is a stahd@asure of market behav-
ior, and will indicate whether differences in the marketdlmgies have an effect on the
performance of the set of markets as a whole.

4 Results

4.1 Speed of convergence

When we look at the movement of traders between markets ie& étom Fig. 2 (a)
that the markets make an exponential approach to the stéstéy(these results are for
zip traders and fully connected arkets, but the results forageriments are similar).
This is despite the fact that the average transaction pnicach market is, like that
shown in Fig. 2 (b), far from steaélySince, as described above, the market selection
strategies we are using will mean that we always have soméa@uof traders still
moving at the end of each trading day, we can't determinelieguim by looking for

the point at which all traders stop moving. Instead we nedithtba way to estimate the
speed of convergence.

To do this we borrowed from the usual measure of the convesggeha market to
equilibrium [31]. To compute this measure, Smithlphaas it is known, we compute
the average deviation between the price of each transaatidrihe equilibrium price
suggested by theory. Here, we look at the number of tradersnga@ach day and
compute the average difference from the number we wouldatxpne only cause of
trader movement was thidén the market selection strategy (which would mean that, on
average, 10% of the traders would move each day). Marketatbdaster to converge
to the steady state will have lower values of this differenideese results are shown
in Table 1 and show that there is a clear difference betweerspieeds with which
the different tologies converge. In particular, the asyrmiméopologies converge much
faster than the symmetric topologies.

5 Because the transaction price is a function of the traders in a marketrtiouter it depends
on both their private values and when and how they choose to bid), igebas traders move
between markets. Since the reward gained by traders is a function oéttsattion price the
dynamics are more complex than those of a set of n-armed bandi¢tsawnverging to static
rewards.
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Fig. 3. The number of traders in multiple connecteda markets with different connection
topologies on each trading day. The traders in (a)—(d) useithetrategy, those in (e)—(h) use
thezic strategy. The x axis gives the trading days, the y axis the number ofdredeach of the
five markets. In the chain markets, the dark lines give the numbersdan#ikets at the end of
the chain, and for the star markets, the dark line gives the numbersefondrket at the center.
All other markets are marked with dashed lines.

4.2 Trader distribution

To examine the steady-state for differences due to cororettpology, we looked at
the number of traders in each market. Figure 3 shows thisiftr day of the experiment
for both zic andzip traders incbA markets (the other experiments give very similar
results). The graphs in the figure show that the distributidmaders in fully-connected
(Fig. 3(a), Fig. 3(e)) and ring (Fig. 3(b), Fig. 3(f)) markes$ pretty uniform.

Chain markets, however, don't have the same symmetry, asdhiows up in the
distribution of traders. As Fig. 3(c) and Fig. 3(g) show, keds at the end of the chain
end up with fewer traders than the markets in the middle o€tteén. The effect of the
loss of symmetry is even more marked in star markets, Hergh@sn in Figures 3(d)
and 3(h) the hub market in the star collects many more tratlarsthe otherwise iden-
tical markets that are connected to it.

The graphs of Fig. 3 don't make it easy to decide what diffeesrare significant so
we show the actual trader numbers after the 600th tradindttayis at the end of the
experiment) in Table 2. This includes the results of all tkgegiments on star and chain
markets, not just those from Fig. 3 (the ones from the figueeirathe first and third
rows of the table). In the chain markets, the markets at tds efithe chain are MO and
M4. T-tests reveal that the numbers of traders in these rtsaake significantly different
from the numbers of traders in markets M1, M2 and M3 at the 98%I| This holds
for both cba andcH markets whether the traders anec or zip. In the star markets,
the market at the hub of the star is MO. T-tests show that tiebew of traders in this
market is significantly different from that in all other matk at the 95% level again for
bothcba andcH markets forzi-c andzip traders.



Star Chain

CDA ZIC No. of traders 43.67 13.65 15.82 14.14 12.72 16.244£2(1.88 22.21 17.93
Stdev. 11.89 7.88 8.25 8.38 7.23 6.63 8.86 9.86 9.67 7.45

ZIP No. of traders 42.50 13.90 13.57 15.42 14.61 16.10 22.286223.72 15.31
Stdev. 9.08 5.13 5.19 557 476 4.91 552 7.08 589 4.45

CH ZIC No. of traders 44.71 13.16 13.83 14.40 13.89 16.45 230683 22.28 17.28
Stdev. 5.70 2.68 3.01 3.03 3.90 4.82 6.67 5.78 6.03 4.67

ZIP No. of traders 47.41 12.14 12.92 13.60 13.93 15.50 23.0P0224.76 14.63
Stdev. 8.44 3.32 3.07 4.40 458 4.80 6.32 7.01 6.31 4.66

Table 2. The number of traders in each market for star and chain configusdiiofoth market

selection strategies. In the star configuration, MO is the hub, the martket eénter. In the chain
markets, markets MO and M4 are the markets at the end of the chain. Adetaamake the same
charges. In the star configuration the number of traders in MO is signiiffogreater than that in
all the other markets with 95% confidence in all cases and in the chain tsahkeenumber of

traders in MO and M4 is significantly smaller than in all the other markets with 8&8fidence

in all cases.

Chain Ring Star F.C. Chain Ring Star F.C.

ZIC CDA Efficiency 95.49 95.42 95.75 95.38IP CDA Efficiency 95.50 95.33 95.68 95.05
Stdev. 0.30 0.25 0.22 0.16 Stdev. 0.24 0.19 0.22 0.17

CH Efficiency 96.61 96.51 96.81 96.56 CH Efficiency 96.86 96.77 96.96 96.54
Stdev. 0.25 0.19 0.15 0.13 Stdev. 0.24 0.17 0.19 0.15

Table 3. The global efficiencies of sets of market with different connection ltugpes from left
to right, chain, ring, star and fully connected networks. The table gamsts for markets using
bothzi-c andzip traders, and for botbbA andcH markets.

4.3 Allocative efficiency

The final results to consider are those in Table 3 which meastlve allocative effi-
ciency of sets of markets of different topologies. In paiic what they measure is
what we call “global efficiency”, the ratio of the sum of prafilade in all of the mar-
kets to the equilibrium profit that would be made in a markettaming all the traders.
Pairwise t-tests on the efficiency values in Table 3 revesl tihat there are differ-
ences between the efficiencies obtained with different garditions that are significant
at the 95% level. In all the experiments the symmetric markes significantly less ef-
ficient than the asymmetric markets. In all of the experiraenicept thecH with zic
traders, fully-connected markets are less efficient thag markets, ring markets are
less efficient than chain markets, and chain markets aresfésient than star markets
— all of these differences being significant at the 95% lefglossible explanation for
this may be the fact that the asymmetric markets tend to cdrate traders in particular
markets but results from our prior work [22] (on the effecatibwing traders to move
in fully connected markets) suggests that such effectsrayeaopartial explanation.
Note that the efficiency results we report fop traders are somewhat lower than
are reported for such traders in single markets (and arerlthaa the results we have



obtained for the same implementationzof in a single market, results which are sim-
ilar to those seen in the literature). We believe that theeeaacouple of reasons for
this. First, we are computing efficiency as the surplus oletidivided by the surplus
that would be obtained were all the traders in one market hatirarket traded at
theoretical equilibrium. It is easy to see that it is possitd match traders in such a
way that individual markets are efficient, but the combinagbkis will fall below what
would be possible if all traders were in one market and thathiat we believe is hap-
pening here.Z1p achieves higher efficiency when the efficiency is computearimore
conventional fashion.). Second, traders are constantlyngdetween markets, which
means that the equilibrium point of all the markets is cam$yachanging (recall the
transaction prices of Fig. 2 (b)). We know from [6] tizak takes several trading days to
identify market equilibrium, and since this is changingrg\aay, zIP is always playing
catch-up. Naturally this will mean it is less than complgefficient. (When traders are
constrained not to move, the efficiency2pf improves.)

4.4 Discussion
The aim of this work was to test the hypotheses that:

1. The topology of the network market will affect the speedhwishich the set of
markets reaches its steady-state configuration; and

2. The topology of the network will have a significant effenttbe steady state con-
figuration of the set of markets.

The results in Table 1 suggest that the first of these hypeghssorrect — for most of
the experiments that we carried out, the time we estimaskéd the set of markets to
converge varies considerably from topology to topology.

To address the second hypothesis, we measured both the nohtizlers in each
market and the overall efficiency of the set of markets. Wherosked at the num-
ber of traders (Table 2), it was clear that many more trademgiegated in the central
market of the star configuration and many fewer traders ahtosend markets of the
chain configuration, and pairwise t-tests confirmed thatifferences are statistically
significant. This suggests that the second hypothesis ieaoil his suggestion is sup-
ported by looking at the efficiency of different sets of mask@able 3) where we find
that sets of markets with different topologies have sigaifity different efficiencies.

5 Related work

While network markets have not been studied in the same detasingle markets,
there is a growing body of work to consider. [25], for examplescribes a study of a
three-node star network with a uniform-price double auctt each node. The same
authors [24] report experiments using a 9-node gas netwaitk in addition to buyers
and sellers, also includes pipeline owners, and in [15]ysanbther small gas market.
A further small network model, including just two markets,the basis of the study
in [4] into the effects of cheating (that is, either not payifor goods, or failing to
deliver goods that have been paid for) and [7] investigad@sdn6-node railway network



responds to two different pricing mechanisms. While thesekets are similar to those
in our study, the investigations all dealt with markets withman traders.

Agent-based methods were used by [3] to examine the effétittked markets on
financial crises, while [19, 20] consider the behavior ofgyhain$. This work all
studies smaller sets of markets than we have considerecagére-based studies in [2]
and [36] are larger but consider a set of connection topefothat overlap with, but
does not contain, the set we consider. Both [2] and [36] déhl metworks equivalent
to our ring (their term is “local”) as well as small-world meirks, which we don't
consider. Neither looks st chain or star topologies, thetintsresting of the topologies
we looked at, and neither study considers traders that metveslen markets.

The most closely related research we know of is [12], [37][d4dl Judd and Kearns
[12] describe experiments with human traders that cleddysthat restrictions on who
is allowed to trade with who — restrictions that are somevdifférent from those im-
posed in our work — have a significant effect on market cleppierformance. Wilhite
[37], though mainly concentrating on results from netwoeksions of the Prisoner’s
dilemma, describes agent-based experiments in the sami@katenario as studied in
[12] with similar results. Ladley and Bullock [14] looked a¢tworked markets afip
traders and showed that differences in topology affectedggmt’s ability to make a
profit. Like the results reported here, all of this work heligsto understand different
aspects of the effect of network topology on market perforcea

6 Conclusions

This paper has examined the effect of different connectipolbgies on network mar-
kets in which the constituent markets are double auctiodstla connections denote
the allowed movements of traders between markets. This gaitke first systematic
study of the effects of network topology on a set of doubldiananarkets.

Traders in our experiments used eittzfC or zIp strategies, and markets were
either cHs or cbAs. We looked at the behavior of four different topologies —Hyfu
connected, ring, chain and star — and considered the spabkdwvich markets con-
verge to a steady state, the distribution of traders acr@skets in the steady state,
and the overall allocative efficiency in the steady state.foumd that for all of these
aspects, the connection topology can have a significantteffe particular, the asym-
metric topologies, chain and star, lead to an unequal bigtan of traders, and in most
cases an overal increase in efficiency of the markets.

Our main conclusion that topology affects steady state\iehss in line with pre-
vious work on network markets [12, 37]. In addition, since cesults are consistent
across different trading strategies (including the miniynational zi-c) and different
market selection strategies, we believe that they will prtav be robust across other
variants of our experimental scenario. With this in mind, ave currently working to
analyze the performance of network markets with differepbtogies — in particular
small-world, random and scale-free topologies — and to lealadger sets of markets
than we considered here.

5 The TAC supply chain competition also studies supply chains, but comes at it frerpeth
spective of individual traders rather than from the perspective efatvmarket performance.
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