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Abstract

We introduce a novel method for strategy-acquisition in-mero-sum n-player
games, and empirically validate it by applying it to a wetlekvn benchmark prob-
lem in this domain, viz the double-auction market. Many &g approaches to
strategy-acquisition focus on attempting to find stratediet are robust in the
sense that they are good all-round performers againsbalecs. We argue that
in many economic and multi-agent scenarios the robustnéssian is inappro-
priate; in contrast, our method focusses on searching fategfies that arkkely
to be adoptedy participating agents. We conclude by discussing seyeran-
tial applications of our algorithm, including the mechanidesign problem from
economics.

1 Introduction

Much work in the design of multi-agent systenms) [35] has focused on the design
and engineering of individual agents; for example, the [@wois of designing and im-
plementing effective trading strategies for agents pigdiing in e-commerce market



places, or the design of effective learning algorithms fdaive agents. However,
increasingly attention is being turned to the design of tifeastructure, or the envi-
ronment, underlying the interactions between individggrgs in avAs; for example,
the problem of designing rules governing the operation oé-@wommerce market in-
stitution, or the design of interaction protocols govegnagent argumentation. The
justification for the latter approach is that oftennass designers we are responsible
for engineeringpensystems, in which we do not have control over the exact behavi
of the agents connecting to our system; these agents arealifautonomous. Rather,
we build a set of standards and protocols with which our agarg free to interact,
and if we have designed our infrastructure robustly, théesysas a whole will ex-
hibit our desired design properties despite the fact thadrisists of possibly millions
of autonomous agents interacting with each other in ways ave not prescribed in
advance.

Economists have studied similar design problems in theextaif auction theory
[13] andmechanism desigf28]. In a mechanism design problem, the task of the de-
signer is to choose the rules of a game, such as an auctioncinaway that the
designer’s objectives are met when agents play their opstretegies. Thus mecha-
nism design has become an important foundation of distbdtrtificial Intelligence,
as summarised by Wellman:

“Within economics, the problem of synthesizing an intémacproto-
col via which rational agents achieve a socially desirabtelés called
mechanism design. This is exactly the problem we face iguieg dis-
tributed software systems, which suggests an opportumigxploit exist-
ing economic ideas. 134]

One of the main difficulties in solving such problems is cotim the optimal
strategies, as the best strategy to play depends on whiggsémare being played by
other agents; the number of agents can vary significantty tih@ strategy space can
be very large. The standard technique is to view each pess#il of auction rules
as defining a particular game, and then to use game theorytee*sthis game by
finding the set of strategies comprisindNash equilibriumof the game [17]. Once
we know the equilibrium behavior of each agent in the syst@mcan then compute
system-level design properties such as the overall maffigieacy. This approach has
been very successful when applied to the restricted spaneohanisms considered
by auction theory, but suffers from several drawbacks wheratiempt to apply it to
more complex mechanism-design scenarios.

Firstly, the game-theoretic approach assumes that there @mall nhumber of
apriori-known strategies for each player of the game, witigh be structured into
a normal-form payoff matrix. However, in any realistic nhggent interaction, the
space of possible actions for each agent can be extremgly (and may not be fully
known) making computation of the Nash equilibria intraé¢dh the general case [4].

Secondly, in the general case we may observe multiple egailior a given game
and it may not be clear which of these multiple potential oates ardikely to be
adopted in the long-run, or indeed how long the system wik t@ equilibrate. Tradi-
tional game theory is a static analysis and does not giverasigtit into thedynamics



of adjustment to equilibrium, making it extremely diffictdt gain meaningful insights
into equilibrium selection, or off-equilibrium behavior.

These difficulties have led to researchers to use heurigtihoas, such as evo-
lutionary computing, to sample the strategy space to stiddyow the behaviour an
ensemble of agents is likely to converge in any given setting ii) to search for new,
previously unconsidered strategies for the game at handieAghall see both of these
problems are strongly interrelated.

The most promising technique from evolutionary computiogdiscovering new
strategies iso-evolution, in which the fitness of each individual in an et popula-
tion® of strategies is assessed relative to other individual®byputing the payoffs ob-
tained when the selected individuals interact [12]. Cohation can sometimes result
in arms-racesin which the complexity and robustness of strategies impitygulation
increases as they counter-adapt to adaptations in theimapyts.

Often, however, co-evolutionary learning can fail to cageéeon robust strategies.
In this paper we explore some of the limitations of currenegolutionary algorithms,
and review a field known asmpirical game theoryvhich combines game-theoretic
analysis together with simulation methods in order to aselye strategic interaction
amongst arexistingset of strategies. We then introduce a novel technique based
empirical game-theory that is able to acquiewstrategies for the game at hand.

This paper focuses on a specific problem domain — the doubt@®au The double
auction has come to be recognized as an impolianthmark problemin both eco-
nomics and multi-agent systems. In particular, a landmamikshop held in Santa Fe
[25] motivated much contemporary research in this areadpyligihting the difficulty of
agents’ decision problems in non-idealized variants aftyye of marketplace, and the
Santa Fe double-auction tournament was one of the firstestwahich used advanced
agent-based simulation in order to explore the properfiagealistic economic mech-
anism [25]. To this day the double-auction represents aitapt benchmark problem
by simultaneously admitting of precise representationigsitretching the bounds of
both analytical tractability and computational bruteefyrfor example equilibria are
only known for restricted versions of the mechanism [37].

The outline of this paper is as follows. In section 2 we giveoaerview of game-
theory and discuss the use of co-evolutionary algorithniseanpirical game-theory
to search for approximations of game-theoretic equilibimesection 3 we describe in
detail the specific problem domain we will attack, viz. thelde-auction. In section 4
we describe the search space of strategies for this gam@) aadtion 5 we use empir-
ical game-theory to analyse the strategic-interactiowbeh existing strategies within
this space with a view to identifying potential candidatesdptimisation. In section
6 we describe a novel method for strategy acquisition, arsgéation 7 we present the
results of an empirical validation of our technique. In 8@t8 we discuss generaliza-
tions and applications of our approach, and finally we cahelwith a discussion of
strengths and weaknesses in section 9.

10r sometimes several populations.



2 Co-evolution and empirical game theory
2.1 Nash Equilibrium

The failure of certain types of co-evolutionary algorithtngonverge on robust strate-
gies in certain scenarios is well known [2, 7, 32], and hasymmssible causes; for
example, the population may enter a limit cycle if stratedgarnt in earlier generations
are able to exploit current opponents and current opporevs “forgotten” how to
beat the revived living fossil. Whilst many effective te@jures have been developed to
overcome these problems, there remains, however, a desyidem which is only be-
ginning to be addressed successfully. In some games, si@hess, we can safely bet
that if playerA consistently beats playé?, and playetB consistently beats playér,
then playerA is likely to beat player”. Since the dominance relationship is transitive,
we can build meaningfulating system$26] for objectively ranking players in terms
of ability, and the use of such ranking systems can be useds®sa the “external”
fitness of strategies evolved using a co-evolutionary m®amd ensure that the popu-
lation is evolving toward better and better strategies. amynother games, however,
the dominance graph is highly intransitive, making it imgibke to rank strategies on a
single scale. In such games, it makes little sense to talktdbest”, or even “good”,
strategies since even if a given strategy beats a large nuofitopponent strategies
there will always be many opponents that are able to beahit. best strategy to play
in such a game is always dependent on the strategies adgptertls opponents.

Game theory provides us with a powerful concept for reagpainout the best
strategy to adopt in such circumstances: the notion Nfah equilibrium A set of
strategies for a given game is a Nash equilibrium if, and dnho player can improve
their payoff by unilaterally switching to an alternativeagegy.

If there is no dominant strategy (a strategy which is alwdngsttest one to adopt
no matter what any opponent does) for the game, then we sipteydthe strategy
that gives us the best payoff based on what we believe ourrgye will play. If we
assume our opponents are payoff maximisers, then we knawhawill play a Nash
strategy set byeductio ad absurdumif they did not play Nash then by definition at
least one of them could do better by changing their stratayy,hence they would not
be maximising their payoff. This is very powerful concephcg although not every
game has a dominant strategy, every finite game possessessabhesquilibrium
solution [17].

Note, however, that the Nash strategy is not alwaystststrategy to play in all
circumstances. In 2-player zero-sum games, the minimaxdhetells us that even if
there are multiple equilibria, any equilibrium strategygisaranteed to obtain a certain
payoff known as the security-level of the game regardlesh@fpponent’s actions.
Thus in these scenarios, we have a clear metric fordhastnes®f a strategy since
if a particular course of action yields less than the valu¢hef game we can infer
that we are being exploited. However, this result does ntit inhen we generalise
to n-player non-zero-sum games; in such games, if there atgpie equilibria they
may yield different payoffs to the same player, and thus iiteame is not clear-cut.
Additionally, in any game constant-sum or otherwise, ptaymay be able to obtain
a better payoff than their security-level by countering a-equilibrium strategy with



another non-equilibrium strategy.

2.2 Beyond Nash equilibrium

Standard game theory does not tell us which of the many pesiiash equilibria
are likely to be played.Evolutionarygame theory [16] and its variants attack this
problem by positing that, rather than computing the Nashtesgies for a game using
brute-force and then selecting one of these to play, our @mps are more likely to
gradually adjust their strategy over time in response tea&gd observations of their
own and others’ payoffs. One approach to evolutionary greery uses theeplicator
dynamicq16] equation to specify the frequency with which differgntre strategies
should be played depending on our opponent’s strategy:

rij = [u(ej, m) —u(m,m)| m; 1)

whereni is a mixed-strategy vectou(n, 7m) is the mean payoff when all players play
strategym, u(e;, m) is the average payoff to pure strategwhen all players playi,
andri; is the first derivative ofn; with respect to time. Strategies which gain above-
average payoffs become more likely to be played, and thistegumodels a simple
co-evolutionaryprocess of mimicry learning, in which agents switch to siyas that
appear to be more successful.

For any initial mixed-strategy we can find the eventual ootedrom this co-
evolutionary process by solvinge = 0 V; to find the final mixed-strategy of the
converged population, i.e., the stationary points of thecess. This model has the
attractive properties that: (i) all Nash equilibria of trenge are stationary points under
the replicator dynamics; and (ii) all Lyapunov stable st4fet] and interior limit states
are also Nash equilibria [33, pp. 88—89]

Thus the Nash equilibrium solutions are embedded in thestaty points of the
direction field of the dynamics specified by equation 1. Althl not all stationary
points are Nash equilibria, by overlaying a dynamic modégafning on the equilibria
we can see which solutions are more likely to be discoveretidundedly-rational
agents. Those Nash equilibria that are stationary pointghéth a larger range of
initial states will end up, are equilibria that are more likio be reached (assuming an
initial distribution of strategies that is uniform).

This is all well and good in theory, but the model is of limitechctical use since
many interesting real-world games arailti-staté. Such games can be transformed
into normal-form games, but only by introducing an intrétydarge number of pure
strategies, making the payoff matrix impossible to compute

2.3 Co-evolution

But what if we were to approximate the replicator dynamicsibinng an evolutionary
search over the strategy space? Rather than considerimglarge population consist-
ing of a mixture of all possible pure strategies as per eimhary game theory, we use

2]t is important to note, nevertheless, that it is not the ¢hatall stationary points are Nash equilibria.
3The payoff for a given move at any stage of the game dependsedristory of play.



a small finite population of randomly sampled strategiepfareximate the game. By
introducing mutation and cross-over, we can search hiheréxplored regions of the
strategy space. Might such a process converge to some kapgbodximation of a true
Nash equilibrium? Indeed, this is one way of interpretinigiirxg co-evolutionary al-
gorithms; fitness-proportionate selection plays a sinndée to the replicator dynamics
equation in ensuring that successful strategies propagjatiegenetic operators allow
them to search over novel sets of strategies. There are aegnwhproblems with such
approaches from a game-theoretic perspective, howevahwie shall discuss in turn.

Firstly, the proportions of the population playing diffatestrategies serve a dual
role in a co-evolutionary algorithm [9]. On the one hand,ghaportion of the popula-
tion playing a given strategy represents the probabilitglafing that pure strategy in
a mixed-strategy Nash equilibrium. On the other hand, ¢imiary search requires di-
versity in the population in order to be effective. This segig that if we are searching
for Nash equilibria involving mixed-strategies where ori¢he pure strategy compo-
nents has a high frequency, corresponding to a co-evolnjosearch where a high
percentage of the population is adopting the same strategry,we may be in danger
of over-constraining our search as we approach a solution.

Secondly and relatedly, although the final set of strateigieke converged pop-
ulation may be best responses to each other, there is norgeartat the final mix
of strategies cannot be invaded by other yet-to-be-eneoedistrategies in the search
space, or even by strategies that became extinct in eadiggrgtions because they
performed poorly against an earlier strategy mix that défifrom the final converged
strategy mix. Genetic operators such as mutation or cresswaill be poor at search-
ing for novel strategies that could potentially invade tealy established equilibrium
because of the dual role played by population frequencietheke conditions hold,
then the final mix of strategies is implausible as a true Naghlibrium or Evolu-
tionay Stable State (ESS), since there will be unsearchatkgtes that could poten-
tially break the equilibrium by obtaining better payoffs feertain players. We might,
nevertheless, be satisfied with the final mix of strategiemnaspproximation to a true
Nash equilibrium on the grounds that if our co-evolutionalgorithm is unable to find
equilibrium-breaking strategies, then no other algorithith be able to do so. How-
ever, as discussed above, we expgegiriori that co-evolutionary algorithms will be
particularlypoor at searching for novel strategies once they have discoeefealtial)
equilibrium.

Finally, co-evolutionary algorithms employ a number offeliént selection meth-
ods, not all of which yield population dynamics that coneeog game-theoretic equi-
libria [8].

These problems have led researchers in co-evolutionarpeting to design new
algorithms employing game-theoretic solution concep}s [6 particular, Ficici and
Pollack [9] describe a game-theoretic search techniquadquiring approximations
of Nash strategies in large symmetric 2-player constant-games with type indepen-
dent payoffs. In this paper, we address n-player non-cotistan multi-state games
with type-dependent payoffs. In such games, playing anlibguim strategy (or an
approximation thereof) does not guarantee a participanirgg against exploitation if
there are multiple equilibria, and thus there is no cleamotion of a scalar robustness
metric for assessing different strategies and ranking tremsingle scale. In Section 6



we introduce a new metric for ranking equilibrium strategiased on their likelihood
of actually being played. Meanwhile in the next section weegin overview of an ex-
isting technique for obtaining approximate versions of gaimeoretic equilibria upon
which our algorithm is based.

2.4 Empirical Game-Theory

Reevest al. [22] and Walshet al. [29] obviate many of the problems of standard
co-evolutionary algorithms by restricting attention toadhrepresentative sample of
“heuristic” strategies that are known to be commonly plajre@ given multi-state
game. For many complex n-player games representative lefvaéd economic inter-
actions, such as the double-auction, unsurprisingly nétteecstrategies commonly in
use can be proven to be dominant over the others. Given tlemed®f a dominant
strategy, it is then natural to ask if there are mixtures eséh“pure” strategies that
constitute game-theoretic equilibria.

For small numbers of players and heuristic strategies, weoastruct a relatively
small normal-form payoff matrix which is amenable to garneeretic analysis. This
heuristicpayoff matrix is calibrated by running many iterations cf ttame; variations
in payoffs due to different player-types (e.g., privateunaions) or stochastic environ-
mental factors (e.g., PRNG seed) are averaged over manyesaofype information
resulting in a single mean payoff to each player for eachicdiie payoff matrix. Play-
ers’ types are assumed to be drawn independently from the datribution, and an
agent’s choice of strategy is assumed to be independerg tfe, which allows the
payoff matrix to be further compressed, since we simply rieegecify the number of
agents playing each strategy to determine the expectedfgaygach agent. Thus for
a game withy strategies, we represent entries in the heuristic payadifixas vectors
of the form

ﬁ: (pla;pj)

wherep; specifies the number of agents who are playingithestrategy. Each entry
p € P is mapped onto an outcome vectoe () of the form

(j: (q177QJ)

whereg; specifies the expected payoff to tié strategy. For a game with agents,
the number of entries in the payoff matrix is given by

o (nJr.j—l)! @)
nl(j —1)!

For smalln and smallj this results in payoff matrices of manageable size;jfot
3 andn = 6, 8, and10 we haves = 28, 45, and66 respectively. Although this
technique is only tractable for small numbers of simultargeplayersn, these are
precisely the scenarios that are typicafigredifficult to analyse. Interactions amongst
small numbers of agents afford more opportunity for indidbagents to have a large
effect on the final outcome, whereas systems with large ntsrdfénteracting agents



can be more readily modelled as a collection of homogeneatigle-like entities.
The constraint on smajlis more limiting; we shall return this issue in Section 8.1.

Once the payoff matrix has been computed we can subject ititgpeous game-
theoretic analysis, search for Nash equilibria solutiam&l apply different models of
learning and evolution, such as the replicator dynamicsehad order to analyse the
dynamics of adjustment to equilibrium.

In this paper, we use the framework described above to séarehnovel strategy
for a specific trading game, viz: the double-auction. In thetrsection we describe
this game in detalil.

3 The double auction market

A double-auction is a generalisation of the more commomigvin single-sidecauc-
tions in which a single seller sells goods to multiple corimgebuyers (or the reverse).
In a doubleauction, as well as multiple buyers competing against edletr result-
ing in price rises, multiple sellers of the same commoditynpete against each other
resulting in price falls. Institutions of this type are alsmown as exchanges, and are
typically used to trade commaodities whose valuations abgestito much uncertainty
and can vary rapidly over time; for example, equity sharaded on stock exchanges.

There are many different variants of double-auction martkats it is important
to clearly describe the particular mechanism under sgrutin this paper we study
a uniform-price clearing-house market, which we formakscribe below. Note that
we use formal notation merely to provide a concise and ungmatis description of
our model in order to avoid any confusion, and not becausesgefarmal methods
to prove any properties of this mechanism. Readers who exadyl familiar with the
operation of a double-sided clearing-house can skim ovwes#ttion.

3.1 The auction model

In this section we give a formal description of the varianttef double-auction used
in this paper. This model is adapted from [3, 10, 18, 36], arahi attempt to describe
these different market scenarios within a unified model.hla model, time is repre-
sented in discrete slicess N. We will follow the convention of representing the value
of any time-dependent variable X at timby subscripting witht: X;.

The market place is populated by a finite numbetraflers represented by the
setA = {aj,az,...a,}. A single commodity is traded in the market place. The
commaodity is traded in discrete, indivisible units.

Traders are divided into two distinct setsuyers represented by the sé& C A;
andsellers represented by the s6tC A, suchthatS U B = AandSN B = . We
assume that agents are risk-neutral (utility increasesatig with increased wealth).
Buyers purchase resource for consumption, and sellersipeagsource for sale. Each
agenta; has a private valuation; € R which determines the utility of a transaction in
the marketplace. If a single unit is transacted at pritteen buyers obtain utility; — p
whereas sellers obtajpn— v;.



3.1.1 Rounds

Trading in the market proceedstiounds Each round may consist of variable number
of time slices. During each round, every trader in the mapkate is given the oppor-
tunity to submit ashoutto the auctioneer. During any given time-slice only oneérad
may place ashout

3.1.2 Shouts

A shout is a commitment to buy or sell a prespecified quantitgaanmodity at a
particular price. Shouts are divided into two sub-clasgesoffer to sell is called an
ask and an offer to buy is calledl@#d. Shouts are represented as tuples of the form:

p = (pe € {bid,ask,0},pa € A, pp € R, p, € N,p, € N) € P

wherep, is the class of offerp,, is the trader making the offep,, is the price that the

trader is willing to buy or sell a, is the quantity of commodity that they are commit-

ted to trade, ang, is the time at which the shout was submitted to the auction®er

buyer who submits a bitl € P is committed to buying at any prige< b,. Similarly,

a seller who submits an aske P is committed to selling, units at any price > ay,.

A trader may submit aull shoutby settingp. = # meaning that the trader does not

currently wish to trade and will not be held to buying or selliat any price.
Alternatively, we also use the following functions to demtite subfields of a shout

tuple

price(p) = pp
class(p) = pe
agent(p) = pa
time(p) = p
3.1.3 Active traders
The finite setl\; = {ku, kio, - . ., kit denotes the traders who are eligible to place

shouts in the auction at time We pick the next trader whose turn it is to shout,
randomly from this set:
Tt = kté,,

whered, € Nis a discrete random variable distributed according to foumidistribu-
tion on the intervall, | K,|], and we then remove this trader from the active set:

Kt+1 =K;—1

3.1.4 Events

Some of our state variables change in responswémts The possible types of event
in our market are represented by the set:

e = {eor, eod, sp, clr}



These events denote “the end of a round”, “the end of a dayious placed” and
“market clearing” respectively, and are defined formaltgtaEvents are time-stamped
according to the time-slice at which they occurred. We detlois by subscripting
events thus:

er = {eort,eody, ...}

Thus, we have:

€1 = {eor1,eods, ...}

e = {eora,cods, ...}

The setF; denotes the set of events tloacurredat timet, as well as the set of events
that were previously active in prior time slices. An evepbccurredat timet if, and
only if z; € F.

3.1.5 The end of round event

The end of round eventpr, is defined thus:

K = {} = eo0rty1 € Et+1
eors € By, = K1 = AN roundir, = round; + 1

That s, the end of round event occurs once all traders hdmaisted offers, and when
this event occurs we resat to allow all traders to submit shouts in the next round.
3.1.6 Shout processing

The auctioneer maintains four sets of shouts. The&e$s and M B, represent the set
of matched asks and matched bids respectively. A
We denote thé'" highest matched bid at timeoy mby ), where

price(w%b(m)) > price(n%b(m)) > price(nfzb(ng)) >...
Similarly, for matched asks we have:

price(ms 1)) < price(nis ) < price(nisg,z) < ...
The match sets are maintained such that the following cainssrhold:

Vi price(n%b(m-)) > price(ms,;)) 3)
|MSe| = |MB] (4)

The sets) S’, and M B’ contain all unmatched shouts at timelntuitively, the sets
M S, andM B, can be thought of as the potential “winning” shouts at timand the
setsM S’; andM B/, as the “runner-up” or “outbid” shouts at time

Let p denote the shout submitted to the auctioneerby- the trader who is cur-
rently shouting. These sets are updated as follows:

10



pC:bidA(ﬂaE]\/fS’t:pp >a,) =
MStJrl :MStU{a}

R X (5)
N MS/tJrl = MS/t - {a}
AN MBt-l—l = MBt @] {p}
pc:bid/\(ﬂaeMS’t:pPZaP) = ©)
MB'y iy = MB', U{p}
pe =ask A (Fb € MB, : by > pp) =
MByy 1 = MB, U{b} -
AMB' 41 = MB', — {b}
AN MBt-l—l = MBt U {p}
pc:ask/\(iﬂbEMBl tbp > pp) = ®)
MSlt+1 = MAB/t @] {p}
pe#0 = sp € E 9)
3.1.7 Quotes
The auctioneer provides the following information abowt $ftate of the auction:
éq,(t) = min(min(MS’;), min(M B;)) (20)
éqy(t) = max(maX(MSt), maX(MAB’t)) (12)

The pair(ég,(t), €g,(t)) is called themarket quoteand is public information to all
traders participating in the market.

3.1.8 Trading days

A trading day consists of a number of rounds of trading. Défe events may take
place at the end of a day depending on the scenario we are lingdé&or example, in
many scenarios we will allocate new randomly drawn valuetifor traders at the end
of each trading day. These conditions will be introduceerlafor now, we introduce
the variablelay; which denotes the current trading day:

eody € By, = dayi41 = day; +1
—eody € By, — dayi+1 = day,

11



3.1.9 The clearing operation

The key role of the auctioneer is to compute a paymentseind a transaction set
R, as a function of the auction stat&/ S;, M B, M S’;, M B';). Different variants of
the double-auction mechanism compaGiedifferently in order to bring about different
design objectives. The specific variant we discuss in thigep# theclearing-house
(cH) mechanism [10, p. 5] with uniform-pricing, in which the &ooceer batches up
shouts from multiple traders before computing a clearingepwhich applies to all
trades. These rules are formalised as follows.

A uniform pricing policy specifies that all traders with mlagd offers (that is, all
the potentially efficient trades) should all trade with eatrer at the same price com-
puted as a function of the market quote (as determinedghyandeg,). Thus, at
any given time, all traders are transacting at the same bfoaeket price (which may
change over time):

cdry € By, —

i1 = pay(Ci,T't)
AQiy1 = trans(Ry, Q)
ANMSip = {3
ANMBiyy = {}
—clry € By =
G o= {}
ARy = {}
where:
viSIMBI = (agent(w%b(m)), agent(ms i), Pt)
and:

pt = €q,(t)k + €q,(t)(1 — k)

wherek € [0, 1] is a constant chosen by the market designer. In this papeseau
k = % mechanism.
In acH mechanism, the clearing operation is scheduled at the eexkoy round:

eor € By, = cry € By
cdrie By, — Ct:{cl,CQ,...}

4 Search space

In the previous section we described in detail the game tahwvie apply our method
for strategy acquisition. In this section we describe a spdstrategies for this game.
Each agenti; has an associated trading strategy, which specifies a n@ppin
between its valuation; and the shoup € P that it will place at time.. For simplicity,
we shall assume that: buyers always submit bids, selleey/alaubmit asks, each agent

12



only submits shouts for a single unit, and only the activddraK; place shouts (see
3.1.3). Thus:

Z(i,t) = (bid, a;,((i,1),1,t) <= a; € BAa; € K;
Z(i,t) = (ask,a;,((i,t),1,t) <= a; € SAa; € K;
Z(’L',t) = ((Z),ai,0,0,t) < a; ¢ Kt

where( is a function that sets thgrice of the shout according to the strategy being
deployed.

4.1 The Truth-Telling Strategy

The truth-telling strategy (abbreviatiarr) simply places shouts equal to the agent’s
valuation:

¢(i,t) = v (12)
Although it is extremely simple, the truth-telling straydg of fundamental importance,
since in arincentive-compatiblenechanism by definition this strategy is guaranteed to
obtain the optimal payoff for agemnt; no matter what strategies are adopted by the
other agents [13].

4.2 The Gjerstad-Dickhaut strategy

The Gjerstad-Dickhaut (abbreviati@p) strategy estimates the probability of a shout
being accepted based on historical observations and theapits shout to maximise
the agent’s expected profit [11].

Agents using thesD strategy make use of a memory mechanism that records the
shouts that gave rise to the lastransactions in the market, whete= GDy € N is
the parameter that determines the size of the memory. Theonyasdivided into four
sets:

HS, c P The history of accepted asks up until time
HB, C P The history of accepted bids up until time
HS', c P The history of unaccepted asks up until time
HB', c P The history of unaccepted bids up until tihe

The history is empty at the start of trading:
HSy=HBy=HS"y=HBy={} (13)

As shouts areplaced (Section 3.1.6) they are recorded in the historyuofccepted
shouts:

HAS/IH_l = HAS/t U p < pc MS/t (14)
HB/t+1 = HBIt @] p = pc MAB/t (15)
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As shouts arenmatched(Section 3.1.6) they are recorded in the historyaotepted
shouts:
HSii1=HS;Up < pe MS, (16)
HByy1 =HB,Up < pe MB, (17)
Note that the history is unaffected by the clearing opergt8ection 3.1.9), hence once
a shout is recorded as accepted it remains so, unless it @/eghtdue to memory-size

restrictions as defined below.
Let

h;t = {hS(lyt), hS(g_’t), ey hs(GDN,t)} (18)
wherehs(, ;) € N represents the total number of asks that were recordedebter™*
most recent transactiohs, ) is the total number of asks before the? most recent
transactioretc

Similarly let .

hbs = {hbe 4y, hbaty, - -, hbapy )} (19)
wherehb, ;) € N represents the total number of bids that were recorded déiet **
most recent transactiohp, ;) is the total number of bids before thé? most recent
transactioret cetera

Let the scalah; € [0, GDy) represent the current transaction number defined as
follows

Cth S Et — ht+1 = ht + |Ct| mod GDN (20)

dp:pe=tAp.=ask =
hs(hy41,641) = MS(hyt1,e) + 1 (21)

Agents using th&D strategy use the history data to form an estimatd,, ,,) of the
probability of a shout with priceg being accepted, based on:

o the number of asks accepted at prices greater than or eqpial to

GDracpn ={p:p€HS: App >} (22)

¢ the total number of bids in the history at prices greater tvaequal top;

~ ~_ !
GDpapyy = Hp:p€ (HByUHB,) Apy > p}| (23)

e the number of rejected asks in the history at prices lessahagualp;

~ !
GDprarpy =I{p:p€ HS; A p, < p} (24)

e the number of accepted bids at prices less than or equal to
GDrprpey = {p:p € HBy Apy < p}| (25)
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¢ the total number of asks in the history at prices less thamoalgop;

A ~ I
GDarpey =Hp:p € (HS  UHS,) A pp < pll (26)

¢ and the number of rejected bids at prices greater than ol emjpa

GDrpcpry = {p:p € {p € HB{ A p, > p}| 27)

Where we have recorded an ask at pricie the history (i.e.3p : p € (IfSt U

HASQ) A pp = p), the estimated probability of a new ask being acceptedeaséme
price is given by the following equation:

) _ GDracps) + GDpap,b
pa(p,t) GDracps + GDpapt) + GDraLp.

GD (28)

Similarly, where we have recorded a bid at prici& the history, the estimated proba-
bility of a new bid being accepted is:

GDrBrp,t) + GDar(p.)

GDy, =
pa(pt) GDrprps + GDarpy + GDrpcpy

(29)

For prices not recorded in the history, the function

GDpa(p,t) = O‘(&t)p3 + 04(2,15)172 + a,HP + o,

is obtained using cubic-spline interpolation over the palefined by the function
GDya(p,t)-

Now that we have an estimate of the probability of a shout dpeiccepted at a
particular price, we are in a position to estimate the exgmbsurplus as a result of
bidding at different prices. For buyér

GDE(p,i,t) = (vi — pp)GDpa(P) (30)
and for seller:

GDgp,ip) = (pp — Ui)GDpa(p) (31)
Finally, theGD strategy chooses prices in order to maximise expectedusarpl

C(i,t) = argmax GDg(ps i ¢) (32)

p*

4.3 Reinforcement-learning Strategies

Reinforcement-learning strategies rely only on the imratdieedback from interact-
ing with the mechanism; the surplus that each agent was alétain in the most
recent round of trading (thus they are general-purposegintmbe used in any auction-
mechanism, even where we do not have access to market-ataaaimple, in repeated
sealed-bidauctions).

15



These strategies choose their markup over their valuatioa thus:

C(i,t) = v; + RLy,(t)RL,, <> a; €S (33)
((i,t) =v; — RLy,(t)RL,, <= a; € B (34)

based on seward signalR L, (t) which represents the most recent profits of agent
RL,,(t) = T(ai) — T'i—1(ai) (35)

The functionRL,, : N — O, represents the output of learning algoritinwhere
©; = [0, RLg,) C Nis the set of possible outputs frok

Parameter name Semantics

RL,,(t) | Afunction specifying the output from a
reinforcement learning algorithm
RL,, | Ascaling factor used to map learning outputs
onto actual prices
RLyg, | The number of possible outputs fraRYL ,

Table 1: Reinforcement-learning parameters

4.3.1 The Dumb-Random learning algorithm
The dumb-random learning algorithm (abbreviatizg) is a control algorithm that in
fact performs no learning and chooses actions randomly:

RLy, = 6;, (36)

where;, is a discrete random variable distributed uniformly in thage[0, RLg, ).
This algorithm can be used in control experiments by sulistg it for one of the
other algorithms below; if an observation is preserved utitis substitution we can
conclude that our observation is not likely to be due to lemybehaviour.

4.3.2 The Roth-Erev learning algorithm

The Roth-Erev algorithm (abbreviati®e) is designed to mimic human game-playing
behaviour in extensive form games [5]. Agents bid probstiiially according to:

RLy,(t) = RE;(t) = 6, (37)
whered;, € ©; is a discrete random variable distributed:

P(0;, = x) = REp(z,i,t) (38)
The propensities are initialised based on the scaling paterR E;,; Va; € A and

Vo e 91
RE,,

REq(G, a;, to) = m

(39)
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the RE, are then updated based on the experience funétibn

RE,(0,a;,t) = (1 — RE,,)RE(0,a,,t — 1) (40)
+ REE(G,GZ')

where the experience function depends on the most receatdesignalR L, and the
last action chosen by the ageRE; (t — 1):

RE.(0,a;,t) = RL,, (t —1)[1 — RE,]

< 0 =RE;(t—1) (412)
RE.(0,a;,t) =  RLy,(t— 1) gy
< 0#RE;(t—1) (42)

and then normalized to produce a vector of probabilitiesle denote the sum of all
the propensities for aget

Qi, = > RE,(0,a;,t) (43)
0€O;
ThenVvl € ©; andVa; € A:
RE(0,0,,1) = 200000 (@)

Parameter name Semantics
REy, | The number of possible outputs
RE,, | The recency parameter
RE,, | The experimentation parametgr
RE;, | The scaling parameter

Table 2: Parameters for the Roth-Erev learning algorithm

State variable| Semantics

RE;(t) | The output of the learning algorithm at time
RE,(0,a;,t) | The probability distribution over each possible action
0e0O,;
RE4(8,a;,t) | Thepropensityfor each possible action
0e0O,;
RE.(0,a;,t) | The experience function

Table 3: State variables for the Roth-Erev learning alganit
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4.3.3 Nicolaisen et al.’s modified Roth-Erev algorithm

Nicolaisen, Petrov and Tesfatsion [18] (abbreviati;T) used a modified version of
the Roth-Erev algorithm for their trading strategy whiclkeythused to explore market
power effects in a simulated electricity market:

RL,(t) = REX(t) (45)

whereRE!(t) is computed identically t&? E;(¢) but for a modification to the experi-
ence function:

REGI(G, a;, t) = RLpi (t — 1)[1 — REm]

> 0=RL;(t—-1) (46)
RE.(0,a;,t) = RE,, s
< 0#RE;(t—1) (47)

4.3.4 The Stateless Q-Learning algorithm

The Stateless Q-learning algorithm (abbreviatg) is a single-state version of a
temporal-difference reinforcement-learning algorithaiied Q-Learning [31]. The al-
gorithm maintains a tabl&Qq (0, a;, t) which can be thought of as an estimate of the
payoff to each possible actighe O,. The estimates are updated using the rule:

SQo(0,a;,t+1) = (48)
SQQ(@, ag, t) +
SQa, [RL,, + 5Q-, max SQq(0,ai,t) — SQq(0, ai, t)]
whereSQ,, € Ris a discount factor and@).,, is a parameter controlling the rate of

convergence.
Actions are chosen to maximise estimated payoff usinggreedy rule:

RLy,(t) =64 <= €, <8Q.,
RLy,(t) = argmax SQq(0*,a;,t) < €, > SQ.,
0%

wheree], € R is a random variable distributed uniformly on the interi@ll] and
0;+ € Nis adiscrete random variable distributed uniformly on titerival[0, RLj, —1].

Parameter nameg Semantics
SQ., | The exploration paramete
SQ, | The discount factor
SQ.; | The learning rate

=

Table 4: Parameters for the stateless Q-Learning algorithm
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5 Interaction between strategies

In the previous section we described a space of strategigsfaouble-auction. In this
section we analyse the strategic-interaction between i@septative subset of these
strategies using the empirical game-theory methodologgriteed in Section 2.4. As
in [29], at the start of each game half the agents are randasdigned to be buyers
and the remainder as sellers. For each run of the game, iealaatre drawn as in [29]:

Vi v, o~ U(a,aer)
a ~ U(161,260)
b~ U(60,100)

but valuations remain fixed across periods in order to allgaenss to attempt to learn
to exploit any market-power advantage in the supply and dencarves defined by
the limit prices for that game. Additionally, although wesclrd limit-prices which
do not yield an equilibrium price, we do not ensure that a minih quantity exists

in competitive equilibrium as this introduces a floor effedtich fails to expose the
inferior efficiency of acDA. The 64-bit version of the Mersenne Twister random num-
ber generator [15] was used to draw all random values usdteisimulation and all
floating point calculations were performed usiege 754 double-precision arithmetic
[27]. Each entry in the heuristic payoff matrix was compubgdaveraging the payoff
to each strategy acro$8* simulations.

We use the representative strategigs RE, GD as described in table 5: ther
strategy was chosen since it is the simplest strategy trettlesto achieve high effi-
ciency outcomes in a homogenous population indhemechanism; th&b strategy
was chosen as a representative of the class of highly-ptettand highly-engineered
strategies that analyse historical market data, and fitlarE strategy was chosen
to represent naive human-like behaviour, and thus was aoefigvith parameters that
best-fit human game-playing [24]:

Vi RE,, = 50
Vi RE,, = 0.1
Vi RE,, = 0.2
Vi RE;, = 9
Vi RL,, = 1
Abbreviation| Description
TT The truth-telling strategy, (section 4.1)
RE The reinforcement-learning strategy (section 4}3),
configured with Roth-Erev (section 4.3.2)
GD The Gerstad-Dickhaut strategy (section 4.2)

Table 5: The initial heuristic strategies chosen for the i
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In a conventional game-theoretic analysis, we solve theeglaynfinding either a
dominant strategy or the Nash equilibria: the sets of siiasethat are best-responses
to each other. However, because classical game-theoryati@analysis, it is not able
to make any predictions about which equilibria are morelyike occur in practice.
Such considerations are of vital importance in analysiadrwerld problems. For ex-
ample, if we are interested in using game-theory to analgse@mic outcomes, we
should give more consideration to outcomes that are moegylikan low probability
outcomes; if there is a Nash equilibrium for our mechanisnictvlyields very low
allocative efficiency, we should not worry too much if thisudipria is extremely un-
likely to occur in practice. On the other hand, we should giae weight to equilibria
with high probability.

As in [29], we will useevolutionarygame-theory [16] to model how agents might
gradually adjust their strategies over time as they learimfmrove their behavior in
response to their payoffs. We use the replicator dynamiostén (Equation 1), to
recap:

i = [u(e;, ) — u(ii, )] m,

wherern. is a mixed-strategy vectou(r, ) is the mean payoff when all players play
m, andu(e;,m) is the average payoff to pure strategywvhen all players playi,
andrn; is the first derivative ofn; with respect to time. Strategies that gain above-
average payoff become more likely to be played, and this temuanodels a simple
co-evolutionaryprocess of mimicry learning, in which agents switch to siyas that
appear to be more successful. Since mixed strategies espneobability distribu-
tions, the components ofi sum to one. The geometric corollary of this is that the
vectorsizi lie in theunit-simplexA™ = {Z e R" : 3" | ; = 1}. Inthe case of, = 3
strategies the unit-simplex? is atwo-dimensional plane triangle embedded in three-
dimensional space which passes through the coordinatesponding to pure strategy
mixes: (1,0,0), (0,1,0), and(0,0, 1). We shall use a two dimensional projection of
this triangle to visualise the replicator dynamics in thetrsectiort.

For any initial mixed-strategy we can find the eventual ootedrom this co-
evolutionary process by solvirigj, 7; = 0 to find the final mixed-strategy of the
converged population. As discussed in Section 2.2, thisahsignificant advantage
over non-game-theoretic co-evolutionary search, such s in that we carguaran-
tee[33, pp. 88-89]:

e all Nash equilibria of the (approximated) game are statipmaints under the
replicator dynamics; and

o all interior limit states are Nash equilibria; and

¢ all Lyapunov stable states [14] are Nash equilibria.

Thus the Nash equilibrium solutions are embedded in thegaty points of the direc-
tion field of the dynamics specified by Equation 1. Although albstationary points
are Nash equilibria, by overlaying a dynamic model of leagndon the equilibria we
can see which solutions are more likely to be discovereodundedly-rationahgents.

4See [33, pp. 3—7] for a more detailed exposition of the gegnuétmixed-strategy spaces.
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Those Nash equilibria that are stationary points at whicdrger range of initial states
will end up, are equilibria that are more likely to be reack@ssuming an initial dis-
tribution of m; that is uniform); in the terminology of dynamic systems tiaye a
largerbasin of attraction The basin of attraction for a stationary point is propartio
of mixed strategies i\ which have flows terminating at that pointThe larger the
basin, the larger the region of strategy-space which leatteetattractor, and hence the
stronger the attractor, and the mat&inablethe corresponding equilibrium [1]. This
intuitive definition of basin size is formalized as followet the function

T:A"x2%" 5N

represent the trajectories that terminate at each codalinahe n-dimensional unit-
simplexA™ C R"”, so that we have:

T(Z,M C A") = (49)
{7: 7€ MAmO) =FAItmt) =7 Am(t) =0}

where M is a set of starting points and is a limit state. Let3(Z, M) denote the
proportionof the elements o/ that terminate af:

T(&, M)
| M|

If we choose a random samplé C A that is distributed uniformly over the simplex,

the functiong will provide us with an estimate of the probability of arrig at any

given stationary point, assuming that all starting pointhie simplex are equally likely;

that is, it will provide an estimate of the true basin sizehf imit statez, denoted by
B(Z), and:

p(@, M) = (50)

lim G(F, M) = ()

Figure 1 shows the direction-field of the replicator-dynesr@quation for our three
heuristic strategies. In this and the subsequent diredi@bth diagrams, the points in
the simplex represent alternative mixed and pure stregegied the arrows indicate the
direction of convergence when any such strategy is adofiteel three pure strategies
(here,TT, RE andGD) are represented by the three vertexes of the simplex. At poin
on an external edge of the simplex represents a mixed syrategprising two of the
three pure strategies, and a point strictly inside the sss@presents a mixed strategy
comprised of all three pure strategies. Thus, for exampke pbint on the left-most
edge between the vertexes labetexd and RE which is one-third the way from the
vertex labeledrT represents a mixed strategy where strategys chosen 66.7% of
the time, strategRre is chosen 33.3% of the time, and strategy not chosen at all;
this position on the simplex is denoted (66.7, 33.3, 0). Ateefa line with an arrow)

5In many cases this will be theolumeof the state space which terminates at the attractor, asd thi
provides a useful intuition for thinking about attractaresigth. However, in the general case this definition
breaks down. For example, if we have chaotic dynamics theéraage attractor may capture many flows,
but the volume of its basin will be zero.
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shows the likely direction of strategic play from any giveritial position. In other
words, if the arrows converge on some point in the simples, dtrategy represented
by that point is the end-point of repeated interactions agime proceeds.

Looking at Figure 1, we can see there are two points whereiteetin vectors
converge: these two points correspond to alternative iegiuim solutions of the evo-
lutionary game. The first such point is the vertex at the lmottagght, labeledGp.
Since this point represents a pure strategy, the fact tispdint is also a convergence
point indicates that&b is a best-response strategy to itself, i.e., a pure-styaqgi-
librium. We can also see that this point has a very ldrgsin of attraction for any
randomly-sampled initial configuration of the populationshof the flows end up in
the bottom-right-hand-corner. The second point in the Emphere direction vec-
tors converge is on the left-most edge between the poinedddbT andRE. This
point corresponds to a second equilibrium, but is a mixeategy equilibrium, with
co-ordinates of (0.88, 0.12, 0). This point represents &b B88x of strategyrT and a
12% mix of RE. However, the basin of attraction for this equilibrium is chismaller
than for the pure-strategyd equilibrium; only 6% of random starts terminate at this
mixed equilibrium vs. 94% for pureD. Hence, according to this analysis, we would
expect most of the population of traders to adoptdimestrategy. Note also that nei-
ther of the vertexes labeled or RE are the convergence points of direction flows; this
indicates that neither strategy is the best response tb itse

RE

T GD

Figure 1: The original replicator dynamics direction fietd & 12-agent clearing-house
auction with the original unoptimized Roth-Erev stratelgpéledrE).

How much confidence can we give to this analysis given thaptyoffs used to
construct the direction-field plot were estimates basedroalation? One approach to
answering this question is to conduct a sensitivity anajyge perturb the mean payoffs
for each strategy in the matrix by a small percentage to seerikquilibria analysis
is robust to errors in the payoff estimates. Figure 2 showsltfection-field plot after
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RE’

Equilibrium 1

Equilibrium 2

T GD

Figure 2: Replicator dynamics direction field for a 12-ageearing-house auction
perturbed with +5% payoffs to the Roth-Erev strategy (labele’)

performing a perturbation where 2.5% of the payoffs are resddrom each of the
TT and GD strategies and an additional +5% payoffs added torthetrategy. This
peturbation results in a qualitatively different set of diqua. the two new equilibria
are shown in Figure 2: one is a pure strategy, and the other a mix b andrRE
strategies. Th&E strategy thus becomes a best-response to itself with a kagie
of attraction (some 61%). We conclude from this peturbasinalysis that the initial
equilibrium analysis is sensitive to small changes or erimipayoff estimates, and so
our initial prediction of widespread adoption @b may not occur if the payoffs tee
have been under-estimated.

If we observe a mixture of all three strategies in actual peyvever, the pertur-
bation analysis also suggests that we could bring aboutspréad defection t&Ee
if were able to tweak the strategy by improving its payof§btly; the perturbation
analysis thus points teE as a candidate for potential optimization

6 Strategy Acquisition

In the previous section we saw how heuristic-strategy appration could be used to
identify a potential candidate strategy for optimizatitve also introduced an intrigu-
ing metric for ranking strategies on a single fully-ordesedle: viz, the size of the
strategy’s basin of attraction under the replicator dyramiln this section we shall
use this metric to perform a heuristic search of a space ategfies closely related to
the RE strategy. In the following we shall define the space of stjiatethat are to be
searched, and the details of the search algorithm.

TheRE strategy discussed in the previous section belongs to agemeral class of
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strategies: those based on reinforcement-learning. Téis of strategies is described
in detail in section 4.3. To recap, these strategies adjest markup in response to
the most recent profits obtained in the market using one dbileving reinforcement
learning algorithms: the Roth-Erev algorithmg), NPT's modifications tore (NPT),
the stateless Q-learning algorithstj), and the control algorithnbR). The parameters
governing these algorithms are detailed in Tables 1 to 4.

Individuals in this search space were represented as at 5@ihg, where:

e bits 1-8 coded for paramet&L,, in the rangg1, 10);

e bits 9-16 coded for the paramete&t§. or RE,, in the rang€g0, 1);
e bits 17-24 coded for paramet&L,, in the rangg2, 258);

e bits 25-32 coded for parametess)., or RE, in the rang€g0, 1);

e bits 33-40 coded for paramet&¥ in the range 1, 15000);

e hits 41-42 coded for the choice of learning algorithm amomgs NPT, SQ or
DR; and

e hits 43-50 coded for paramet8t),, in the rang€0, 1).

6.1 Search algorithm

A genetic-algorithm@A) was used to search this space of strategies, where thesfitnes
of each individual strategy in the search space was compaytedstimating its basin
size under the replicator dynamics under interaction withexisting three strategies:
GD, TT andRE. As in Section 5, basin size was estimated using the fun¢tide-
fined in Equation 50, but since we recompute all entries irhgistic-payoff matrix
in support of each candidate strategy, we used lower sanzgle in order to facilitate
evaluation of many strategies. The sample size for the nuwibgames played for
each entry in the heuristic payoff matrix was increased asnation of the genera-
tion number:10 + int(1001n(g + 1)) allowing the search-algorithm to quickly find
high-fitness regions of the search-space in earlier gaoasaaind reducing noise and
allowing more refinement of solutions in later generatidfis.used a constant number
of replicator-dynamics trajectoriéd/| = 50 in order to estimate the basin size from
the payoff matrix once it had been recomputed for our candidaategy. Thus our
fithess function is:

F(i, S, [H]) = Z ﬁ[H](faM)'xi (51)

fEC[H]S

where:i is the index of the candidate heuristic strategy being etatlifrom amongst
the set of heuristic strategi€swith heuristic payoff$H|, ;) denotes the basin size of
an equilibrium in the game defined by paydff] as specified by Equation 50 (p. 21),
ande ) is the set of heuristic equilibria:

€[H]S = {fE AlSI ﬁ[H](f, M) > 2 X 10_2}
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Since we are comparing with our three existing strategiethis experiment we have:

S = {s*, TT,GD,RE}

wheres* is our candidate strategy (i.é.= 1). Thus the fitness function estimates the
expected frequency with which our candidate strategy véllpbayed in equilibrium
outcomes. The entire search process is summarised in psedddan Algorithm 1; we
call this theFi SHalgorithm, since we will use it to “fish” for a new heuristicategy.

Algorithm 1: FiSH

input : A set of heuristic strategie$ = {s1, $2,...5n}
output: A new heuristic strateg®)S
[H] < GetHeuristicPayoffMatrix(S);
F—0;
for i — 1tondo

[H]" < perturb payoffs ifH] in favour of s;;

if F(i,S,[H]") > F then

F « F(i,S,[H]);

end

end

IT — create a search space based on generalisation9$if
OS « argmaxg«cpy F'(1,5%U S, GetHeuristicPayoffMatrix(s* U \S));

A GA was chosen to search the sp&tef potential variations oRRE, principally
because of its ability to cope with the additional noise thatlower sample size in-
troduced into the objective function. Tl was configured with a population size
of 100, with single-point cross-over, a cross-over rate 0 nutation-rate of0—*
and fithess-proportionate selection. Teae was run for 32 generations, which took
approximately 1800 CPU hours on a dual-processor Xeon Z &@hkstation.

7 Results

Figure 3 shows the mean fitness of the population for each generation. As can
be seen, the variance in fitness values in later generatastsllilarge. However, in-
spection of a random sample of strategies from each geoenavealed a partial con-
vergence of phenotype, but with significant fluctuationstimes values due to small
sample sizes (see above). Most notably, the fittest indalidtigeneration 32 had also
appeared intermittently as the fittest individual five tinreshe previous 10 genera-
tions, and thus this was taken as the output from the search.

The optimised strategy that evolved used the statelessi@ue algorithm $Q)
with the following parameters:
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Figure 3: Mean fitness of thea population with one standard deviation

RL, = 1210937
RL, = 6

5Q. = 0.18359375
5Q, = 0.4140625
SQn = 0.1875

The notable feature of this strategy is the small number e$iate markups? L,
and the narrow range of the markups(RLy — 1)RL,] as compared with the distri-
bution of valuation distribution widths. This feature wédmred by all of the top five
strategies in the last ten generations, and is anotherfd@bindicated convergence
of the search.

We proceeded to analyze our specimen strategy under a tuiktie-strategy anal-
ysis usingl0* samples of the game for each of the 455 entries in the paydffmbls-
ing JASA theJava Auction Simulator APldeveloped by the first author [21], this anal-
ysis was completed in under twenty-four hours using a duatgssor 3.6Ghz Xeon
workstation.

Figure 4 shows twenty trajectories of the replicator-dyitanplotted as a time-
series graph for each strategy, and shows the interactioveba the new, optimised
strategy0s, together with the existing strategiesd, TT andRE.

Shttp://freshneat.net/projects/jasa
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Figure 4: Replicator dynamics time series plot for a 12-agearing-house auction
showing interaction between optimised strategg)(versusGD, TT and the original

Roth-Erev strategyRE)

Taking M C A* : |M| = 10° randomly sampled initial mixed-strategies, we
calculate that there are two attractors:

A = (0,0,1,0)

—

B = (0.67,0.32,0,0)
over(OS, TT, GD, RE). Attractor A captures only

B(A, M) = 0.03
that is, three percent of trajectories, whereas attraBteaptures virtually the entire
four-dimensional simplex:
B(B, M) =0.97
Although this basin is very large, our optimized strateggrsB this equilibrium with
the truth-telling strategy (TT), giving us a final total matlkshare
F =0.67x0.97=0.65

This compares favourably with a market-share of 32% forttetling and 3% for
GD. The originalrRe strategy is dominated by our optimised strategy. Figuresdta
show the direction field for two of the 3-strategy combinasiicnvolving our optimised
strategy:(OS, TT, GD) and(OS, GD, RE) respectively.
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8 Discussion

It is somewhat remarkable that our fairly simplistic opted strategy is able to gain
defectors from a highly sophisticated strategy like, whilst at the same time truth-
telling is able to retain a share of followers in a populatwadominated bysers (I'T
appears to bgarasiticon 0s). What accounts for the ability of smatls mixes to
invade high-probability mixes of a sophisticated adapsivategy ¢D), whilst remain-
ing vulnerable to invasion by a low-probability mix of a nadaptive strategyt? A
possible explanation is as follows.

Equilibrium A

Equilibrium B

N\ Equilibrium C

QAN
N
NN
\t‘ N\ \
S
i GD

Figure 5: Replicator dynamics direction field for a 12-ageearing-house auction
showing interaction between optimised strategg)(versustT andGb

As discussed earlier, we use the same method of assigningtiais as in [29];
that is, for each run of the game, the lower-bounaf the valuation distribution is se-
lected uniformly at random from the ranffd, 160] and the upper-bourid is similarly
drawn from[b + 60, b + 209]. For that run of the game, each agent’s valuation is then
drawn uniformly from[b, &’]. However, it is possible that this results in a statisticat ¢
relation between the meta-bounds and the average slopghfidrsupply and demand
schedules— that is, given these distribution parametergtis insufficient variance in
the difference between valuations of traders who are neighbn the supply or de-
mand curve. Since we are using a uniform-p#ce 0.5 clearing rule, the mechanism
is vulnerable to price-manipulation from the least effitizades; the buyer with the
lowest matched bid, and the seller with the highest matchlkdan potentially manip-
ulate the final clearing priceprovided that they do not overstate their value claim to
the extent that it impinges on the 2nd-lowest matched bith@2nd-highest matched
ask For example, in the case of buyer € B who finds themselves with the lowest
matchable valuation, and if we assume that the other agemtsudh-tellers then our
competitors’ bids will be given by a subset 8f B = {mb;, mbs,...,mb,}. The
2nd-lowest matched bid will beub,,_; and our valuation will be givemb,,. Let:
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Equilibrium B

os RE

Figure 6: Replicator dynamics direction field for a 12-ageetrring-house auction
showing interaction between optimised strategy)(versuscdD and the original Roth-
Erev strategyKE)

Amb = mb,_1 — mb,,

This is a random variable. However if we know the distribntaf Amb, we can cal-
culate the probability of our bid being accepted as a funaibits price: Pyccept ().
Since our profit will bev; — 9;, given knowledge of the distribution dmb it would
be straightforward to choose a bid prigethat maximises our expected profit:
arg plax E‘(UZ (’ljz)) = (Ui — 61')Paccept (131>
Vi

Given sufficient variance in the distribution &fmb this feature of the market is not
easily exploited. However, in a market with a small numbetraflers and a narrow
distribution forAmb there is an opportunity to trade at small margin above tifutbu
find yourself with a valuation close to the equilibrium prige This is precisely the
behaviour of the strategies that we observe to be predomimane later generations
of our GA: they all use a small number of possible markups, each of thraall in
comparison to the possible valuation bounds. The reinfoesg-learning component
of the strategy is then able to fine-tune the markup deperatinghere the trader finds
themselves on the supply or demand curve after valuatiendrawn. If the trader’s
valuation is far away from the equilibrium-price, the tradan adjust its margin close
to zero, whilst if the trader’s valuation is near to the eipilim-price, the trader can
find a small margin that does not impinge on its nearest-ieigh This hypothesis is
also consistent with parasitic truth-telling; it is easyste that truth-telling is a best-
response for a 2nd-lowest matched bidder to a lowest matukldér playingos.

In future work we will examine this hypothesis in more detaitl conduct a statis-
tical analysis in which we determine the distributionofnb for different parameters
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of the valuation distribution range, and attempt to coteelawith the parameters of
the evolved strategy. Meanwhile, we have demonstratediiragearch technique pre-
sented here is capable of finding a new strategy that not asdyaHarge attractor, but
also has interesting properties worthy of further analysis

8.1 An iterative approach

We started out by asking whether our original equilibriunalgisis of TT, GD andRE
was sensitive to small perturbations in payoff estimateg.dBing so, we identified
that hypothetical variations on thee strategy might be able to easily invade our ex-
isting equilibria. We then identified a new entrayg that was able to penetrate the
original mix of strategies and displace the ancestral inmemRe, forming two new
equilibria comprising mixes obs, TT andGD. Thus by performing this analysis we
haverefinedour original equilibrium analysis, since our original éldhria did not take
into account the existence of. This process can be generalised to an arbitrary set of
initial heuristic-strategies, as shown in Algorithm 1, &ieSH Algorithm.

We have validate&i SHempirically by applying it to a highly complex game, the
double-auction, and demonstrated that it is capabfefinding a new strategy with
interesting properties, as demonstrated in the previoct®se However, one might
ask whether our new strate@s, or more accurately our new set of equilibria over
OS U S, is not susceptible to the same process of systematicadiclsimg for an
invader? Of course, the answer is that this is indeed a plitysi/e could straightfor-
wardly test for this by applying exactly the same analysisuonew set of equilibria;
that is, we could perform another sensitivity analysis ®whether our new equilibria
are stable under payoff perturbation. If they were, then vightrconclude that our
equilibria are comparatively stable for the time being.hEy are not stable, however,
we could then perform another systematic search for variatin the current strate-
gies which are good candidates for potential invaders oftatis quo; that is, new
strategies which form equilibria with estimated large hasze in interaction with the
incumbents. By performing this process repeatedly we wilngually end up with a
refined set equilibrium strategies. The pseudo-code ferghacess is shown in Algo-
rithm 2, called thd=i SH+ Algorithm.

8.2 Applications

Many algorithms for strategy-acquisition focus on searglior strategies that are gen-
erally robustwhen played against existing strategies. However, as skstlin Sec-
tion 2 it is extremely difficult to formulate objective metsifor ranking the robustness
of strategies in the non-zero-sum n-player games whictiytypieractions in market-
places and multi-agent systems. In contrast, our methodtfategy acquisition fo-
cusses on searching for strategies tratlikely to be adoptetly the participants. This
has several applications in both economics and computensej which we discuss
below.

Tfor at least one set of initial strategi€s= {TT, GD, RE}
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Firstly, the level of adoption of a particular strategy magy dreal-world design
consideration in and of itself. For example, the inventoladfading strategy such
as zIp [3] may have intellectual property rights that generatesnexe in proportion
to its level of adoption. In a wider context, many other saitevartifacts exist in a
competitive ecology, and as Papadimitriou notes:

“If an artifact (a new congestion control protocol, a new ¢téeg scheme,
a new routing algorithm, etc.) is demonstrated to have sigpgrerfor-
mance, this does not necessarily mean that it will be suidedor the
artifact to be 'fit’, there must exist jpathleading from the present situation
to its prevalence. This path must be paved with incentivatsviiil moti-
vate all kinds of diverse agents to adopt it, implement i, iisinterface
with it or just tolerate it. In the absence of such a path, thestclever,
fast and reliable piece of software may stay just thiit9]

Secondly, the primary economic application of our methotbishe mechanism
designproblem [13, 28, 23]. In a mechanism design problem one gttt define
market “mechanisms”, that is, the rules of the market (8acil), in such a way that
design objectives such as maximising the market efficieficyare achieved when
agents follow their utility-maximising strategies. Theetation principle [13, p. 82]
states that we can restrict this search problem to mecharirsmhich agents directly
reveal their valuations to the auctioneer; it then suffioetemonstrate that ther strat-
egy (Section 4.1) is a dominant strategy under our candidathanism (this property
is calledincentive-compatibility, and that efficiency, or other design objectives, are
maximised when all agents adopt. However, real-world considerations mean that it
is rarely possible to design incentive-compatible mecsragiin which a simple strat-
egy such asT is unequivocally dominant (and hence likely to be adoptespecially
in the case of double-sided mechanisms, or when we haveylegastraints on design
[20]. In such scenarios it may more practical to demonstitzé design-objectives
such as high efficiency are satisfied when agents use annexigtin-truthful strategy
such agIp [3] or GD, provided that this strategy li&ely to to be adoptedHowever, in
many cases it will be difficult to demonstrate that a singlistexg strategy has a high
probability of adoption. Th&i SHalgorithm can be used in precisely such a situation
in order to search for highly-adoptable strategies [21].

Finally, there is a sense in which our algorithm may be udefutearching for ro-
bust strategies in non-zero-sum n-player games. In 2-piagre-sum games the Nash
solution is guaranteed to yield the security level of the gaamd is thus demonstrably
robust. As discussed in Section 2 this result does not gksesta n-player non-zero-
sum games. In such games, the best we can do is play a beshsedp the strategies
adopted by other agents; however, in the general casewita. multiple equilibria)
there is no unequivocal method that will tell us which styés will be selected by
our opponents. ThEi SHalgorithm escapes from this logic by searching for hitherto
unconsidered strategies that are likely to be adopted bytageénolearn. Thus if we
modify Equation 51 to incorporate payoff maximisation irdaidn to basin size:

F'(,8,[H) = > ulei, @) - B (& M) - (52)

fee[H]g
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we can then use the algorithm to find strategies that are &imesusly payoff-maximising
and are also likely to be adopted by one’s opponents (pravidgat they choose from
the available strategies using a learning-process sittailtrat modelled by the repli-
cator dynamics). In future work we will explore this apptica of our algorithm to
more general games.

Algorithm 2: FiSH+

input : A set of heuristic strategie$ = {s1, s2, . .. s, } for some
mechanismu
output: A refined set of heuristic-strategies

[H] < GetHeuristicPayoffMatrix(S, u);
repeat
F —max;—_, F(i, S, [H]);
for i «— 1ton do
[H]" < perturb payoffs ifH] in favour of s;;
if F(i,S,[H]') > F then
F« F(i,S,[H]);
i* —1;
0S « Sis
end
end
if < F(i*, 5, [H]) then return S;
I1 — create a search space based on generalisation®$if

0OS «—

arg max«crp F'(1,5%U S, GetHeuristicPayoffMatrix(s* U S, it));
S—0SuUS;

[H] < GetHeuristicPayoffMatrix(S, u);

S « eliminate dominated strategies frafhbased o H];
until forever ;

9 Conclusion

In this paper, we have introduced a novel method for acaurisif strategies in non-
zero-sum n-player games, and have empirically validatsdsiproach by applying it
to a well-known benchmark problem, the double-auction markany existing ap-
proaches to strategy acquisition focus on attempting todfirategies that are robust in
the sense that they are good all-round performers agaigsither strategy. We have
argued that in many economic and multi-agent scenarioothgstness criterion is in-
appropriate and impossible to assess, due to the large marfifessible strategies and
the non-transitive relationships between these straetistead, our method focusses
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on searching for strategies that dikely to be adoptedby agents participating in the
interaction, and then developing effective responsesdsetistrategies.

The key strength of our proposed method for strategy adpriss its ability to be
applied in realistically complex games, such as the doahkdion. However, just as
the domain to which we have applied it suffers from a lack clgtic tractability, one
potential weakness of the method is the lack of an analypicaif demonstrating its ef-
ficacy in the general case. However, this is mitigated byabethat the single-iteration
algorithm called=i SHcombines two fields in a very simple way, each with a growing
analytical literature, namely, empirical game-theory aptimisation. Additionally,
we have demonstrated that this algorithm works effectiirelst least one highly com-
plex setting, thereby presenting an existence proof treatforithm can be effective
in a realistically-complex domain. For the empirical stillyhis paper we have used a
general purpose optimisation method, i.e., a genetic lgor In future work we will
attempt to find a specialised optimisation algorithm for pgposes of maximising
attractor size by interleaving the optimisation and heigristrategy analysis steps in a
similar manner to that proposed by Walstal. [30].

We have not attempted to validate the proposed iterativeameof the algorithm,
theFi SH+ Algorithm, in this paper. Again, this algorithm is a fairlyrgple elaboration
on the non-iterative version, so the lack of analyticaldation should not detract from
its potential. However, the fact that the approach is higidgnputationally intensive
for a single iteration warrants an analysis of how the atharimight converge prior to
investing in a full empirical case study.
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