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Abstract

Many electronic markets are linked together into largertirmek markets”
where the links reflect constraints on traders. These @insirmean that a choice
to trade in one market limits the trader’s choice of otherkets to use. This kind
of network market is important because so many basic predimtiuding gas,
water, and electricity, are traded in such markets, andtyets been little studied
until now. This paper studies networks of double auctionkeiar populated with
automated traders, concentrating on the effects of diffenetwork topologies.
We find that different topologies confer significant econobenefits to individual
markets, suggesting that these network effects can be aortamp consideration
in market design.

1 Introduction

An auction according to [8], is a market mechanism in which messagen fraders
include some price information — this information may be é&eroto buy at a given
price, in the case of &id, or an offer to sell at a given price, in the case ofaak



— and which gives priority to higher bids and lower asks. Thkes of an auction
determine, on the basis of the offers that have been mada|ltiwation of goods and
money between traders. When well designed [13], auctiohieae desired economic
outcomes like higlallocative efficiencyhilst being easy to implement. Auctions have
been widely used in solving real-world resource allocapiosblems [16], in structur-
ing stock or futures exchanges [8], and, despite the cuorelit crisis, are the basis
of a vast volume of trade in electronic markets.

There are many different kinds of auction. One of the moseWidsed kinds is the
double auction(bA), in which both buyers and sellers are allowed to exchanfpesof
simultaneously. Since double auctions allow dynamic pgan both the supply side
and the demand side of the marketplace, their study is oft gmgaortance, both to
theoretical economists, and those seeking to implemehtedd market places. The
continuous double auctiofcDA) is a DA in which traders make deals continuously
throughout the auction. ThepA is one of the most common exchange institutions, and
is in fact the primary institution for trading of equitiesgramodities and derivatives
in markets such as the New York Stock ExchangeqE) and Chicago Mercantile
Exchange €ME). Another common kind of double auction market is tearing-
house(cH) in which the market clears at a pre-specified time, allovaligraders to
place offers before any matches are found. Thes used, for example, to set stock
prices at the beginning of trading on some exchange markets.

Our focus in this paper is on the behavior of multiple auctitor the same good.
This interest is motivated by the fact that such situatiorscammon in the real world.
Company stock is frequently listed on several stock exceandS companies may be
listed on both theiysE, NASDAQ and, in the case of larger firms, non-US markets like
the London Stock ExchangegE). Indian companies can be listed on both the Na-
tional Stock ExchangensE) and the Bombay Stock Exchangesg). The interactions
between such exchanges can be complex, like that when tHg oeated Singapore
International Monetary ExchangeiMex) claimed much of the trade in index futures
on Nikkei 225 from Japanese markets in the late 1980s [29Yhen unfulfilled orders
on thecME overflowed onto thenyse during the global stock market crash of 1987
[17]. This kind of interaction between markets has not beitely studied, least of all
when the markets are populated by automated traders.

One multiple market scenario that is particularly interegts that ofnetwork mar-
kets markets in which individual markets are linked togethés iarger markets, where
the links between markets reflect constraints on tradetsantarkets. Network mar-
kets are important because so many basic products, inggdis [15], water, and elec-
tricity, are traded in such markets — the products proceaxuifh a series of transac-
tions at different locations from producer to final consuraed the need to convey the
product through a complex transportation network provitiesconstraints. Our spe-
cific focus in this paper is to examine the differences betwsetwork markets with
different topologies.



2 Background

Double auctions have been extensively studied using dupsde methods. Gode and
Sunder [10] were the first to use multi-agent simulationshis tvay, testing the hy-
pothesis, suggested by [30], that the form of the market hae imearing on obtaining
efficient allocation than the intelligence of traders intthrearket. [10] introduced a
“zero-intelligence” trading strategy (denotedc) — which involves making offers at
random under the constraint that they don't lead to lossingatkades — and showed
that agents using this strategy could generate high effigiendeed, such agents come
close enough to the performance of human traders that GatiSamder claimed that
trader intelligence is not necessary.

This position was attacked by Cliff [6], who showed that ipply and demand are
asymmetric, the average transaction pricesgle€ traders can vary significantly from
the theoretical equilibrium. Cliff then introduced thero intelligence pluézip) trader,
which uses a simple machine learning technique to decidé offeas to make based
on previous offers and the trades that have taken place.traders outperfornzi-

c traders, achieving both higher efficiency and approachinglierium more closely
across a wider range of market conditions, prompting Ghifftggest thatip traders
embodied the minimal intelligence required. A range of otheding algorithms have
been proposed — including those that took part in the San@okble auction tour-
nament [28], the reinforcement learniRpth-Erevapproach RE) [27] and theGjer-
stad-Dickhautapproach ¢D) [9] — and the performance of these algorithms evalu-
ated under various market conditions. Despite the highopaidince ofcD traders,
research into automated trading mechanisms has contifeszent examples of new
approaches include those described in [11, 24, 33, 35].

This work on trading strategies is only one facet of the redean auctions. Gode
and Sunder’s results suggest that the structure of thecauntechanisms plays an
important role in determining the outcome of an auction, taislis further borne out
by the work of [37] and [21] both of which show that the sameddetading strategies
can have markedly different behaviors in different auctiechanisms.

As mentioned above, there has been little work within adpasted computational
economics [34] on multiple connected markets, but whdelitas been carried out
has studied a broad range of scenarios. [3] uses agent-bethdds to examine the
effects of linked markets on financial crises, while [38]ke@t the effect of different
trade routes on price convergence. [18, 19] study the bhipweffect [14} in supply
chains. In addition, some initial results on multiple aons that compete for traders
were presented in [22] and the design of such auctions isoihesfof thetac Market
Design competition analyzed in [23]. The work we report Heréher extends the use
of agent-based computational economics to study groupsrofected markets.

3 Experimental Setup

The aim of this work was to investigate the effect on marketggemance of different
topological connections between markets. In the contetitedflouble auction markets

IWhere small fluctuations in supply in one market can have faciethat magnifies through the network.



that we consider, these connections might reflect a numhffefent constraints. For
example, they might reflect the physical layout of market englon a trading floor,
or they might reflect affiliations between electronic masket they might reflect the
relationship between the time-zones in which differentkats operate.

3.1 Software

To experiment with multiple markets, we usetihT [12, 20], the platform that supports
theTAac Market Design Competition [SJiCAT provides the ability to run multiple dou-
ble auction markets populated by traders that use a varfégtading strategies. Auc-
tions inJcAT follow the usual pattern for work on automated trading agentnning
for a number of tradinglays with each day being broken up into a seriesafds A
round is an opportunity for agents to make offers (shout®utpor sell, and we dis-
tinguish different days because at the beginning of a dantadave their inventories
replenished. As a result, every buyer can buy goods everatayevery seller can sell
every day. Days are not identical because agents are awareadfhappened on the
previous day. Thus it is possible for traders to learn, dverccburse of several days, the
optimal way to trade. In additioncAT allows traders to move between markets at the
end of a day, and over the course of many days they learn whicketnthey perform
best in.

In JCAT there are no restrictions on the movement of traders. Toystetivork
effects, we extendedcAT to restrict the movement of traders. In particular, our ex-
tension allows us to specify which markets a given marketisected to. At the end
of every day that a trader spends in that market, the tradealwoice of remaining
in that market or moving to any of the markets to which theee@mnnections. The
decision mechanism employed by the traders to make thiseh®idiscussed below.
In our experiments, market connections have four topogie

¢ Fully connected. Each market is connected to every othekenhar

e Ring. Each market is connected to exactly two other markiéiss is what [38]
calls a “local connected network”.

e Chain structure. All but two of the markets are connecteaviw dther markets
as in the ring. The remaining pair form the ends of the chadhae connected
to exactly one market.

e Star structure. One market is connected to every other rarkere are no other
connections between markets. This is the network topolaglied in [26].

These topologies are illustrated in Figure 1.

3.2 Traders

In JCAT markets, traders have two tasks. One is to decide how to nfékes.oThe
mechanism they use to do this is themding strategy The other task is to choose
the market to make offers in. The mechanism for doing thitésrimarket selection
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Figure 1: The different topologies we consider. Each node iisarket, each arc a
connection between markets. (a) fully connected, (b) ficgchain, (d) star.
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strategy We studied markets in which all the traders used the sandegatrategy,
and considered two such strategies:

e Gode and Sunder’s zero intelligence strategy [10]; and
o Cliff’s zero intelligence plusZIP) strategy [6].

The reason for picking the first of these is that given by [A], &hat sincezi-cC is
not making bids with any intelligence, any effects we seeshiawbe a result of market
structure, rather than a consequence of the trading syreded hence will be robust
across markets inhabited by different kinds of trader. Hason for pickingIp is that
it is typical of the behavior of automated traders, rapidipwerging to equilibrium in
a single market.

The market selection strategy is a standard model taken froxn Traders treat
the choice of market as anrarmed bandit problem that they solve usingeagreedy
exploration policy [32]. Using this approach the behaviothe agents is controlled by
the parameters A trader chooses what it estimates to be the best markesrimstof
daily trading profit, with probability — ¢, and randomly chooses one of the remaining
available markets otherwise. We choede take a constant value 6f1. [22] suggests
that market selection behavior is rather insensitive topli@ameters we choose here,
and we chooseto remain constant so that any convergence of traders toatsdekdue
to traders picking markets that work for them rather thamgpéorced by a reduction
in their tendency to explore.

Each trader is permitted to buy or sell at most five units ofdgoper day, and
each trader has a private value for these goods. Privatevahe set, just as in [6] to
form perfect “staircase” supply and demand curves, withnelayer having a unique
private value from the s€550, $54, $58 . . ., $246, $250}. Sellers are allocated values
in the same way. A given trader has the same private valudifgoads that it trades
throughout the entire experiment. All of our experimentsci$00 traders, divided into
50 buyers and 50 sellers. Initially they are equally disti#lol between the markets, and
subsequently use their market selection strategy to pekiharket to operate in.

3.3 Markets

While JcAT allows us to charge traders in a variety of ways, we usedskinds of
charge in the work reported here:



o Registration fees, charges made by the market for entenmgniarket. We set
this to a low constant value ($0.5) for every market follog/ia3] which suggests
that such a fee is effective in motivating extra-marginadlers to move between
markets thus preventing their inertia from distorting fesu

e Profit fees, charges made by the market on the bid/ask spfeay transactions
they execute. The name arose the bid/ask spread is thedtamssurplus, and
with thek = 0.5 rule that is usually used incAT for allocating the surplus, the
amount charged by this fee is thus directly related to théitmemlized by both
agents.

Unlike previous work that usett AT to investigate multiple market scenarios [22], we
used a simple, non-adaptive scheme for the profit fees. Wktugevariations:

e A 5% profit charge on all markets.

¢ A fixed 5% charge on some markets, a fixed 10%, 15%, 20% or 25%eloa
the other markets.

All of our experiments we run five markets connected as desdrabove, and we used
bothcba andcH markets, both of which are providedJAT.

3.4 Experiments

We ran experiments that tested all the different combimnatitiscussed above. That is
we ran experiments fotH and cDA markets using each of the four different topolo-
gies, both the pricing schemes described above, and cawieglach of these sets of
experiments for traders that all used thec strategy and traders that all the> strat-
egy. Each of these experiments was run for 600 trading datisgach day being split
into 50 0.5-second-long rounds. We repeated each experbfidimes and the results
that we give are averages across those 50 runs.

4 Results

There are several different sets of results that we consider

4.1 Allocative efficiency

The first results to consider are those in Table 1 which meaghe allocative efficiency
of sets of markets of different topologies. In particularavthey measure is what [1]
calls the “global efficiency”, the ratio of the sum of profit deain all of the markets to
the equilibrium profit that would be made in a hypotheticatkeathat contained all

the traders. Given the distribution of traders across diffemarkets, itis clear that it is
harder for trading strategies to achieve 100% efficiencyuittiple markets than in one
single market that contains the same traders, and thisiagple efficiency values that
we see. The global efficiency values in Table 1, which showigmwificant differences,

tell us that the various topologies have no effect on theieffizy of the markets.



Chain  Ring Star F.C
ZIC | CDA | Efficiency | 95.49 9542 9575 95.3
Stdev.| 0.30 0.25 0.2204 0.1¢
CH | Efficiency | 96.61 96.51 96.81 96.5
Stdev.| 0.25 0.19 0.15 0.1
ZIP | CDA | Efficiency | 95.50 95.33 95.68 95.0
Stdev.| 0.24 0.19 0.22  0.17
CH | Efficiency | 96.86 96.77 96.96 96.54
Stdev.| 0.24 0.17 0.19 0.1

Oy Y700
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Table 1: The global efficiencies of sets of market with diéf@rconnection topologies
from left to right, chain, ring, star and fully connectedwetks. The table gives results
for markets using bothi-c andzip traders, and for botbbA andcH markets.
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Figure 2: The total number of traders that move at the end dfengrading dayzip
traders, fully connectedbA market. The x-axis gives the trading day, the y-axis gives
the number of traders.
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MO M1 M2 M3 M4
Star | CDA | ZIC | Number of traderg 43.67 13.65 15.82 14.14 12.72
Stdev.| 11.89 7.88 8.25 8.38 7.23
ZIP | Number of traderg 42.50 13.90 13.57 15.42 14.41
Stdev.| 9.08 5.13 519 557 4.74
CH | ZIC | Number of tradery 44.71 13.16 13.83 14.40 13.89
Stdev.| 5,70 2.68 3.01 3.03 3.90
ZIP | Number of tradery 47.41 12.14 1292 13.60 13.93
Stdev.| 8.44 3.32 3.07 440 458
Chain| CDA | ZIC | Number of tradery 16.24 22.74 20.88 22.21 17.93
Stdev.| 6.63 8.86 9.86 9.67 7.45
ZIP | Number of tradery 16.10 22.22 22.66 23.72 15.31
Stdev.| 491 552 7.08 5.89 4.45
CH | ZIC | Number of traderg 16.45 23.66 20.33 22.28 17.28
Stdev.| 482 6.67 578 6.03 4.67
ZIP | Number of traderg 15.50 23.02 22.10 24.76 14.43
Stdev.| 480 6.32 7.01 6.31 4.66

Table 2: The number of traders in each market for star anchamaifigurations. In the
star market, MO is the hub, the market at the center. In thmcharkets, markets MO
and M4 are the markets at the end of the chain. All markets rtrekeame charges.

4.2 Trader distribution

When we look at the distribution of traders across marketadver, some significant
differences do show up. Figure 3 shows the number of tradeesch market each
trading day for the experiments involving bathp andzi-c traders where each market
makes the same registration charge and the same 5% chargefite. (These results
show that the distribution of traders across markets islig-tonnected markets, Fig-
ures 3(a)-3(d), show no significant differences. Since staréire identical under our
experimental conditions, this is exactly what we would etpMarkets organized as a
ring, again identical, similarly have an equal distribuataf traders (Figures 3(e)-3(h)).

Chain markets don’t have the symmetry of fully-connectetirémg-structured mar-
kets, and this shows up in the distribution of traders. AsiFég 3(i)—3(l) show, markets
at the end of the chain end up with fewer traders than the @dhnected or ring mar-
kets. The effect of the loss of symmetry is even more markestan markets, Here,
as shown in Figures 3(m)-3(n), the hub market in the staectdlimany more traders
than the otherwise identical markets that are connectdd to i

The results are similar focbA and cH markets. The only difference is that the
extent of the variation between the chain ends and middleatwleen the star center
and edges are slightly more marked in ¢ markets. As mentioned above, the fact
that the structural differences hold for markets withc traders suggests that these
results are somewhat independent of the strategy thatrgrade to select offers.

The graphs of Figure 3 don’t make it easy to decide what diffees are significant
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so we show the actual trader numbers after the 600th tradiggtfiat is at the end
of the experiment) in Table 2. In the chain markets, the ntarkethe ends of the
chain are MO and M4. T-tests reveal that the numbers of tsddethese markets are
significantly different from the numbers of traders in maskigll, M2 and M3 at the
95% level for bothcba andcH whether or not the traders are-c or zIP. In the star
markets, the market at the hub of the star is MO. T-tests shatthe number of traders
in this market is significantly different from that in all @hmarkets at the 95% level
for cbA andcH markets whether or not the traders arec or zip.

4.3 Speed of convergence

One thing that does show up in the graphs of Figure 3 is thetfiatttrader numbers
seem to converge exponentially, suggesting that the nsr&ath some form of equi-
librium. This convergence s illustrated by Figure 2 for traders and fully-connected
markets. Results for other experiments are similar. Anr@sng question, then, is
whether the network structure has any effect on the speedrofecgence. Since, as
described above, the market selection mechanism we arg wilirmean that we al-
ways have some number of traders still moving at the end di &ading day, we
can’t determine equilibrium by looking for the point at whiall traders stop moving.
Instead we need to find a way to estimate the speed of convargen

Smith and Williams [31] solve a similar problem, that of déing the speed of
approach of offers to equilibrium, using regression. Hosveliey are dealing with the
results of a human-subject experiment, and so only havegtesiiece of data at each
time point. In contrast we have 50 pieces of data at each twm,mnd as Figure 2
shows, although there is a clear trend in the data, therenisig¢erable variance from
day to day. As a result, instead of using the approach in [8&]did the following.
Starting from the 50th day, we calculated the 10-day moviegage of the number of
moving traders. The first value in this sequence is the aeassbthe number of moving
traders from day 41 through day 50, the next value is thiseaesfor day 42 through
day 51, and so forth, until the final value, which is the averfog day 591 through day
600. The repetitions of each experiment mean that we badgamples of this average
at each day. We now consider each set of samples as a popw@datigperform a t-test
between each population and the population for day 600. Waidan order, starting
with the population that ends with day 50, then the poputetitat ends with day 51
and so on. We can then identify earliest day for which thefaalst to reject the null
hypothesis at the 0.05 level, meaning we can’t say with 958fidence that the two
sets of samples are different, and we take this day as a neeaShow quickly the
markets converge. Table 3 shows the results of this testdarmarkets.

We see that for bothip andzi-c traders, the disparity in the chain markets shows
up early, with convergence happening faster than in theairggar topologies. In other
words, the end markets quickly get starved of traders. Tdrensarket converges more
slowly than the chain. This is perhaps because the dispardyg up being much greater
— it has further to go before it converges. In any case, it eoges faster than the ring
market, and for botlzip andzi-c traders, it converges before 400 days. Looking at
the differences between markets usimg andzi-c traders, we see that in general the
zIP markets converge faster. Given that the randomness of thesahade byzi-C
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zic Fully connected 347

Ring 460
Chain 362
Star 389
ziP  Fully connected 397
Ring 374
Chain 205
Star 317

Table 3: Our measure of convergence for markets witlc andzip traders and dif-

ferent market connection topologies — the earliest day oithvthe distribution of

traders is not significantly different from the distribution the final trading day. We
only give the results focDA markets.

traders will tend to add noise to the learning of the markiction strategy, this is
perhaps not surprising. However we are currently at a logxpéain whyzip traders
in fully-connected markets take so long to converge — witfc traders, the fully-
connected market converges fastest of all, rather as onlelvwgpect since, with every
market accessible from every other market, exploratiohe®et of markets should be
quickest.

4.4 Charges versus structure

The results so far show that connecting identical marketifferent ways can lead

to significantly different behaviors. In particular contieg markets using star and
chain networks mean that certain markets become privilagéerms of the number

of traders they attract. With all markets making similar rgfes, this will lead to the

privileged markets making greater profits. Since the regtdim [22] show that higher

charging markets will, over time, attract less traderslextent that eventually they
make less profit than lower charging markets) a natural gqureit to what extent the

privileged markets in the star and chain networks can ekiieir situation with higher

charges.

To answer this question, we looked at the results for our @x@ats with differ-
ent (fixed) charges on profit. In particular, we looked at ohaarkets where the end
markets in the chain charged 5%, and the middle three mackatged progressively
higher percentages of the profit. We also looked at star nwrkdeere the hub made
progressively higher charges on profit while the other nmtarkbarged a steady 5%.
These results are shown in Figure 4 — we only have room het@éaresults of mar-
kets involvingzip traders. As before, results far-c traders are very similar. These
show that, for both chain and star markets, the advantagesdnt in the structure are
eroded by as charges are increased, by remain strong evertiehprivileged markets
set a 25% profit charge.
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5 Related work

A number of authors have looked at the properties of netwaakkats. [26] studies a
three-node star network with a uniform-price double auctibeach node. The same
authors [25] report experiments using a 9-node gas netvwaitk in addition to buyers
and sellers, also includes pipeline owners, and in [15]ystaubther small gas market.
A further small network model, including just two markesstlie basis of the study in
[4] into the effects of cheating (that is, either not payingdoods, or failing to deliver
goods that have been paid for) and [7] investigates how ad@ nailway network re-
sponds to two different pricing mechanisms. While theseketarare similar to those
in our study, the investigation dealt with markets with hurtraders.

As mentioned above, agent-based methods have been used ibefte context of
network markets. [3] used such methods to examine the sféddinked markets on
financial crises, while [18, 19] consider the behavior ofyghains.?. This work all
studies smaller sets of markets than we have considered.

The agent-based studies in [2] and [38] are larger but censidet of connection
topologies that overlap with, but does not contain, the setwensider. Both [2] and
[38] deal with “local” networks, which are equivalent to ating, as well as small-
world networks, which we don’t consider. However, neithengiders the chain or star
topologies, which are the most interesting of the topolegie looked at, and neither
study considers traders that move between markets.

6 Conclusions

This paper has examined the effect of different connectipnlogies on network mar-
kets in which the constituent markets are double auctionsfa connections denote
the allowed movements of traders between markets. Traded eitherzi-c or zip
strategies, and markets were eitloer or cDA. We looked at the behavior of four dif-
ferent topologies — fully connected, ring, chain and starréd eonsidered the overall
allocative efficiency, the distribution of traders and theed of convergence. We found
that topology had no significant effect on efficiency, but Aasgnificant effect on the
distribution of traders in star and chain markets, and hendée liquidity of the com-
ponents of those markets. Chain markets also seem to besgickonverge than ring
or star markets, while star markets are quicker to convédrge ting markets (results
for the convergence of fully connected markets are ambigludle also found that the
topological effect on trader distribution could be offsgtrbaking suitable changes to
charges imposed by markets.

We believe that these results will help to inform the desifmetwork markets.
With this in mind, we are currently working to analyze thefpemance of network
markets with different topologies — in particular small+eh random and scale-free
topologies — and to handle larger sets of markets than wedenesl here.

2TheTac supply chain competition also studies supply chains, buortesoat it from the perspective of individual traders
rather than from the perspective of overall market perforcea
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