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Abstract
Many electronic markets are linked together into larger “network markets”

where the links reflect constraints on traders. These constraints mean that a choice
to trade in one market limits the trader’s choice of other markets to use. This kind
of network market is important because so many basic products, including gas,
water, and electricity, are traded in such markets, and yet it has been little studied
until now. This paper studies networks of double auction markets populated with
automated traders, concentrating on the effects of different network topologies.
We find that different topologies confer significant economic benefits to individual
markets, suggesting that these network effects can be an important consideration
in market design.

1 Introduction

An auction, according to [8], is a market mechanism in which messages from traders
include some price information — this information may be an offer to buy at a given
price, in the case of abid, or an offer to sell at a given price, in the case of anask
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— and which gives priority to higher bids and lower asks. The rules of an auction
determine, on the basis of the offers that have been made, theallocation of goods and
money between traders. When well designed [13], auctions achieve desired economic
outcomes like highallocative efficiencywhilst being easy to implement. Auctions have
been widely used in solving real-world resource allocationproblems [16], in structur-
ing stock or futures exchanges [8], and, despite the currentcredit crisis, are the basis
of a vast volume of trade in electronic markets.

There are many different kinds of auction. One of the most widely used kinds is the
double auction(DA), in which both buyers and sellers are allowed to exchange offers
simultaneously. Since double auctions allow dynamic pricing on both the supply side
and the demand side of the marketplace, their study is of great importance, both to
theoretical economists, and those seeking to implement real-world market places. The
continuous double auction(CDA) is a DA in which traders make deals continuously
throughout the auction. TheCDA is one of the most common exchange institutions, and
is in fact the primary institution for trading of equities, commodities and derivatives
in markets such as the New York Stock Exchange (NYSE) and Chicago Mercantile
Exchange (CME). Another common kind of double auction market is theclearing-
house(CH) in which the market clears at a pre-specified time, allowingall traders to
place offers before any matches are found. TheCH is used, for example, to set stock
prices at the beginning of trading on some exchange markets.

Our focus in this paper is on the behavior of multiple auctions for the same good.
This interest is motivated by the fact that such situations are common in the real world.
Company stock is frequently listed on several stock exchanges. US companies may be
listed on both theNYSE, NASDAQ and, in the case of larger firms, non-US markets like
the London Stock Exchange (LSE). Indian companies can be listed on both the Na-
tional Stock Exchange (NSE) and the Bombay Stock Exchange (BSE). The interactions
between such exchanges can be complex, like that when the newly created Singapore
International Monetary Exchange (SIMEX) claimed much of the trade in index futures
on Nikkei 225 from Japanese markets in the late 1980s [29], orwhen unfulfilled orders
on theCME overflowed onto theNYSE during the global stock market crash of 1987
[17]. This kind of interaction between markets has not been widely studied, least of all
when the markets are populated by automated traders.

One multiple market scenario that is particularly interesting is that ofnetwork mar-
kets, markets in which individual markets are linked together into larger markets, where
the links between markets reflect constraints on traders in the markets. Network mar-
kets are important because so many basic products, including gas [15], water, and elec-
tricity, are traded in such markets — the products proceed through a series of transac-
tions at different locations from producer to final consumer, and the need to convey the
product through a complex transportation network providesthe constraints. Our spe-
cific focus in this paper is to examine the differences between network markets with
different topologies.
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2 Background

Double auctions have been extensively studied using agent-based methods. Gode and
Sunder [10] were the first to use multi-agent simulations in this way, testing the hy-
pothesis, suggested by [30], that the form of the market has more bearing on obtaining
efficient allocation than the intelligence of traders in that market. [10] introduced a
“zero-intelligence” trading strategy (denotedZI-C) — which involves making offers at
random under the constraint that they don’t lead to loss-making trades — and showed
that agents using this strategy could generate high efficiency. Indeed, such agents come
close enough to the performance of human traders that Gode and Sunder claimed that
trader intelligence is not necessary.

This position was attacked by Cliff [6], who showed that if supply and demand are
asymmetric, the average transaction prices ofZI-C traders can vary significantly from
the theoretical equilibrium. Cliff then introduced thezero intelligence plus(ZIP) trader,
which uses a simple machine learning technique to decide what offers to make based
on previous offers and the trades that have taken place.ZIP traders outperformZI-
C traders, achieving both higher efficiency and approaching equilibrium more closely
across a wider range of market conditions, prompting Cliff to suggest thatZIP traders
embodied the minimal intelligence required. A range of other trading algorithms have
been proposed — including those that took part in the Santa Fedouble auction tour-
nament [28], the reinforcement learningRoth-Erevapproach (RE) [27] and theGjer-
stad-Dickhautapproach (GD) [9] — and the performance of these algorithms evalu-
ated under various market conditions. Despite the high performance ofGD traders,
research into automated trading mechanisms has continued.Recent examples of new
approaches include those described in [11, 24, 33, 35].

This work on trading strategies is only one facet of the research on auctions. Gode
and Sunder’s results suggest that the structure of the auction mechanisms plays an
important role in determining the outcome of an auction, andthis is further borne out
by the work of [37] and [21] both of which show that the same setof trading strategies
can have markedly different behaviors in different auctionmechanisms.

As mentioned above, there has been little work within agent-based computational
economics [34] on multiple connected markets, but what little has been carried out
has studied a broad range of scenarios. [3] uses agent-basedmethods to examine the
effects of linked markets on financial crises, while [38] looks at the effect of different
trade routes on price convergence. [18, 19] study the bull-whip effect [14]1 in supply
chains. In addition, some initial results on multiple auctions that compete for traders
were presented in [22] and the design of such auctions is the focus of theTAC Market
Design competition analyzed in [23]. The work we report herefurther extends the use
of agent-based computational economics to study groups of connected markets.

3 Experimental Setup

The aim of this work was to investigate the effect on market performance of different
topological connections between markets. In the context ofthe double auction markets

1Where small fluctuations in supply in one market can have an effect that magnifies through the network.
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that we consider, these connections might reflect a number ofdifferent constraints. For
example, they might reflect the physical layout of market makers on a trading floor,
or they might reflect affiliations between electronic markets, or they might reflect the
relationship between the time-zones in which different markets operate.

3.1 Software

To experiment with multiple markets, we usedJCAT [12, 20], the platform that supports
theTAC Market Design Competition [5].JCAT provides the ability to run multiple dou-
ble auction markets populated by traders that use a variety of trading strategies. Auc-
tions in JCAT follow the usual pattern for work on automated trading agents, running
for a number of tradingdays, with each day being broken up into a series ofrounds. A
round is an opportunity for agents to make offers (shouts) tobuy or sell, and we dis-
tinguish different days because at the beginning of a day, agents have their inventories
replenished. As a result, every buyer can buy goods every day, and every seller can sell
every day. Days are not identical because agents are aware ofwhat happened on the
previous day. Thus it is possible for traders to learn, over the course of several days, the
optimal way to trade. In addition,JCAT allows traders to move between markets at the
end of a day, and over the course of many days they learn which market they perform
best in.

In JCAT there are no restrictions on the movement of traders. To study network
effects, we extendedJCAT to restrict the movement of traders. In particular, our ex-
tension allows us to specify which markets a given market is connected to. At the end
of every day that a trader spends in that market, the trader has a choice of remaining
in that market or moving to any of the markets to which there are connections. The
decision mechanism employed by the traders to make this choice is discussed below.
In our experiments, market connections have four topologies:

• Fully connected. Each market is connected to every other market.

• Ring. Each market is connected to exactly two other markets.This is what [38]
calls a “local connected network”.

• Chain structure. All but two of the markets are connected to two other markets
as in the ring. The remaining pair form the ends of the chain and are connected
to exactly one market.

• Star structure. One market is connected to every other market. There are no other
connections between markets. This is the network topology studied in [26].

These topologies are illustrated in Figure 1.

3.2 Traders

In JCAT markets, traders have two tasks. One is to decide how to make offers. The
mechanism they use to do this is theirtrading strategy. The other task is to choose
the market to make offers in. The mechanism for doing this is their market selection
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(a) (b) (c) (d)

Figure 1: The different topologies we consider. Each node isa market, each arc a
connection between markets. (a) fully connected, (b) ring,(c) chain, (d) star.

strategy. We studied markets in which all the traders used the same trading strategy,
and considered two such strategies:

• Gode and Sunder’s zero intelligence strategyZI-C [10]; and

• Cliff’s zero intelligence plus (ZIP) strategy [6].

The reason for picking the first of these is that given by [21, 36], that sinceZI-C is
not making bids with any intelligence, any effects we see have to be a result of market
structure, rather than a consequence of the trading strategy, and hence will be robust
across markets inhabited by different kinds of trader. The reason for pickingZIP is that
it is typical of the behavior of automated traders, rapidly converging to equilibrium in
a single market.

The market selection strategy is a standard model taken fromJCAT. Traders treat
the choice of market as ann-armed bandit problem that they solve using anǫ-greedy
exploration policy [32]. Using this approach the behavior of the agents is controlled by
the parametersǫ. A trader chooses what it estimates to be the best market, in terms of
daily trading profit, with probability1− ǫ, and randomly chooses one of the remaining
available markets otherwise. We chooseǫ to take a constant value of0.1. [22] suggests
that market selection behavior is rather insensitive to theparameters we choose here,
and we chooseǫ to remain constant so that any convergence of traders to markets is due
to traders picking markets that work for them rather than being forced by a reduction
in their tendency to explore.

Each trader is permitted to buy or sell at most five units of goods per day, and
each trader has a private value for these goods. Private values are set, just as in [6] to
form perfect “staircase” supply and demand curves, with every buyer having a unique
private value from the set{$50, $54, $58 . . . , $246, $250}. Sellers are allocated values
in the same way. A given trader has the same private value for all goods that it trades
throughout the entire experiment. All of our experiments used 100 traders, divided into
50 buyers and 50 sellers. Initially they are equally distributed between the markets, and
subsequently use their market selection strategy to pick the market to operate in.

3.3 Markets

While JCAT allows us to charge traders in a variety of ways, we used just two kinds of
charge in the work reported here:
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• Registration fees, charges made by the market for entering the market. We set
this to a low constant value ($0.5) for every market following [23] which suggests
that such a fee is effective in motivating extra-marginal traders to move between
markets thus preventing their inertia from distorting results.

• Profit fees, charges made by the market on the bid/ask spread of any transactions
they execute. The name arose the bid/ask spread is the transaction surplus, and
with thek = 0.5 rule that is usually used inJCAT for allocating the surplus, the
amount charged by this fee is thus directly related to the profit realized by both
agents.

Unlike previous work that usedJCAT to investigate multiple market scenarios [22], we
used a simple, non-adaptive scheme for the profit fees. We used two variations:

• A 5% profit charge on all markets.

• A fixed 5% charge on some markets, a fixed 10%, 15%, 20% or 25% charge on
the other markets.

All of our experiments we run five markets connected as described above, and we used
bothCDA andCH markets, both of which are provided inJCAT.

3.4 Experiments

We ran experiments that tested all the different combinations discussed above. That is
we ran experiments forCH andCDA markets using each of the four different topolo-
gies, both the pricing schemes described above, and carriedout each of these sets of
experiments for traders that all used theZI-C strategy and traders that all theZIP strat-
egy. Each of these experiments was run for 600 trading days, with each day being split
into 50 0.5-second-long rounds. We repeated each experiment 50 times and the results
that we give are averages across those 50 runs.

4 Results

There are several different sets of results that we consider.

4.1 Allocative efficiency

The first results to consider are those in Table 1 which measures the allocative efficiency
of sets of markets of different topologies. In particular what they measure is what [1]
calls the “global efficiency”, the ratio of the sum of profit made in all of the markets to
the equilibrium profit that would be made in a hypothetical market that contained all
the traders. Given the distribution of traders across different markets, it is clear that it is
harder for trading strategies to achieve 100% efficiency in multiple markets than in one
single market that contains the same traders, and this explains the efficiency values that
we see. The global efficiency values in Table 1, which show no significant differences,
tell us that the various topologies have no effect on the efficiency of the markets.
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Chain Ring Star F.C.
ZIC CDA Efficiency 95.49 95.42 95.75 95.38

Stdev. 0.30 0.25 0.2204 0.16
CH Efficiency 96.61 96.51 96.81 96.56

Stdev. 0.25 0.19 0.15 0.13
ZIP CDA Efficiency 95.50 95.33 95.68 95.05

Stdev. 0.24 0.19 0.22 0.17
CH Efficiency 96.86 96.77 96.96 96.54

Stdev. 0.24 0.17 0.19 0.15

Table 1: The global efficiencies of sets of market with differenr connection topologies
from left to right, chain, ring, star and fully connected networks. The table gives results
for markets using bothZI-C andZIP traders, and for bothCDA andCH markets.
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30

35
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45

Figure 2: The total number of traders that move at the end of a given trading day,ZIP

traders, fully connectedCDA market. The x-axis gives the trading day, the y-axis gives
the number of traders.
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(a) Fully connected,ZIP CDA
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(b) Fully connected,ZIP, CH
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(c) Fully connected,ZI -C, CDA
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(d) Fully connected,ZI -C, CH

0 100 200 300 400 500 600
10

20

30

40

50

60

(e) Ring,ZIP, CDA

0 100 200 300 400 500 600
10

20

30

40

50

60

(f) Ring, ZIP, CH

0 100 200 300 400 500 600
10

20

30

40

50

60

(g) Ring,ZI -C, CDA
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0 100 200 300 400 500 600
10

20

30

40

50

60

(j) Chain,ZIP, CH
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(k) Chain,ZI -C, CDA
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(l) Chain,ZI -C, CH
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(m) Star,ZIP, CDA
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(n) Star,ZIP, CH
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(o) Star,ZI -C, CDA
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(p) Star,ZI -C, CH

Figure 3: The number of traders in multiple connectedCDA andCH markets with different connection topologies on each trading day. The
x axis gives the trading days, the y axis the number of tradersin each of the five markets. The left-hand graphs are results for CDA markets
and and right-hand graphs are results forCH markets. All markets make the same charges. In the chain markets, the lines marked with
blue open circles and red dots give the numbers for the markets at the end of the chain, and for the star markets, the line marked with blue
open circles gives the numbers for the market at the center.
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M0 M1 M2 M3 M4
Star CDA ZIC Number of traders 43.67 13.65 15.82 14.14 12.72

Stdev. 11.89 7.88 8.25 8.38 7.23
ZIP Number of traders 42.50 13.90 13.57 15.42 14.61

Stdev. 9.08 5.13 5.19 5.57 4.76
CH ZIC Number of traders 44.71 13.16 13.83 14.40 13.89

Stdev. 5.70 2.68 3.01 3.03 3.90
ZIP Number of traders 47.41 12.14 12.92 13.60 13.93

Stdev. 8.44 3.32 3.07 4.40 4.58
Chain CDA ZIC Number of traders 16.24 22.74 20.88 22.21 17.93

Stdev. 6.63 8.86 9.86 9.67 7.45
ZIP Number of traders 16.10 22.22 22.66 23.72 15.31

Stdev. 4.91 5.52 7.08 5.89 4.45
CH ZIC Number of traders 16.45 23.66 20.33 22.28 17.28

Stdev. 4.82 6.67 5.78 6.03 4.67
ZIP Number of traders 15.50 23.02 22.10 24.76 14.63

Stdev. 4.80 6.32 7.01 6.31 4.66

Table 2: The number of traders in each market for star and chain configurations. In the
star market, M0 is the hub, the market at the center. In the chain markets, markets M0
and M4 are the markets at the end of the chain. All markets makethe same charges.

4.2 Trader distribution

When we look at the distribution of traders across markets, however, some significant
differences do show up. Figure 3 shows the number of traders in each market each
trading day for the experiments involving bothZIP andZI-C traders where each market
makes the same registration charge and the same 5% charge on profits. These results
show that the distribution of traders across markets is in fully-connected markets, Fig-
ures 3(a)–3(d), show no significant differences. Since markets are identical under our
experimental conditions, this is exactly what we would expect. Markets organized as a
ring, again identical, similarly have an equal distribution of traders (Figures 3(e)–3(h)).

Chain markets don’t have the symmetry of fully-connected and ring-structured mar-
kets, and this shows up in the distribution of traders. As Figures 3(i)–3(l) show, markets
at the end of the chain end up with fewer traders than the fullyconnected or ring mar-
kets. The effect of the loss of symmetry is even more marked instar markets, Here,
as shown in Figures 3(m)–3(n), the hub market in the star collects many more traders
than the otherwise identical markets that are connected to it.

The results are similar forCDA and CH markets. The only difference is that the
extent of the variation between the chain ends and middle andbetween the star center
and edges are slightly more marked in theCH markets. As mentioned above, the fact
that the structural differences hold for markets withZI-C traders suggests that these
results are somewhat independent of the strategy that traders use to select offers.

The graphs of Figure 3 don’t make it easy to decide what differences are significant
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(d) CDA, chain, 25%
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(k) CDA, star, 20%
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(l) CDA, star, 25%
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(p) CH, star, 25%

Figure 4: The number of traders in multipleCDA andCH markets with chain and star topologies where different levels of charging are
applied to different markets. Results forCDA markets are given in (a)–(h), results forCH are given in (i)–(p). The results for chain markets
are given in (a)–d) and (i)–(l). Results for star markets aregiven in (e)–(h) and (m)–(p). In the chain markets, the line marked by blue
open circles and the line marked by red dots give the numbers for the markets at the end of the chain. where charges are held fixed to 5%
and the charges for the remaining markets are as given on the figures. In the star markets, the line marketed by blue open circles gives
the numbers for the market at the center, the charge on the center market is as given on the figures while the charges made by the other
markets are 5%.
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so we show the actual trader numbers after the 600th trading day (that is at the end
of the experiment) in Table 2. In the chain markets, the markets at the ends of the
chain are M0 and M4. T-tests reveal that the numbers of traders in these markets are
significantly different from the numbers of traders in markets M1, M2 and M3 at the
95% level for bothCDA andCH whether or not the traders areZI-C or ZIP. In the star
markets, the market at the hub of the star is M0. T-tests show that the number of traders
in this market is significantly different from that in all other markets at the 95% level
for CDA andCH markets whether or not the traders areZI-C or ZIP.

4.3 Speed of convergence

One thing that does show up in the graphs of Figure 3 is the factthat trader numbers
seem to converge exponentially, suggesting that the markets reach some form of equi-
librium. This convergence is illustrated by Figure 2 forZIP traders and fully-connected
markets. Results for other experiments are similar. An interesting question, then, is
whether the network structure has any effect on the speed of convergence. Since, as
described above, the market selection mechanism we are using will mean that we al-
ways have some number of traders still moving at the end of each trading day, we
can’t determine equilibrium by looking for the point at which all traders stop moving.
Instead we need to find a way to estimate the speed of convergence.

Smith and Williams [31] solve a similar problem, that of deciding the speed of
approach of offers to equilibrium, using regression. However they are dealing with the
results of a human-subject experiment, and so only have a single piece of data at each
time point. In contrast we have 50 pieces of data at each time point, and as Figure 2
shows, although there is a clear trend in the data, there is considerable variance from
day to day. As a result, instead of using the approach in [31],we did the following.
Starting from the 50th day, we calculated the 10-day moving average of the number of
moving traders. The first value in this sequence is the average of the number of moving
traders from day 41 through day 50, the next value is this average for day 42 through
day 51, and so forth, until the final value, which is the average for day 591 through day
600. The repetitions of each experiment mean that we have50 samples of this average
at each day. We now consider each set of samples as a population and perform a t-test
between each population and the population for day 600. We dothis in order, starting
with the population that ends with day 50, then the population that ends with day 51
and so on. We can then identify earliest day for which the testfails to reject the null
hypothesis at the 0.05 level, meaning we can’t say with 95% confidence that the two
sets of samples are different, and we take this day as a measure of how quickly the
markets converge. Table 3 shows the results of this test forCDA markets.

We see that for bothZIP andZI-C traders, the disparity in the chain markets shows
up early, with convergence happening faster than in the ringor star topologies. In other
words, the end markets quickly get starved of traders. The star market converges more
slowly than the chain. This is perhaps because the disparityends up being much greater
— it has further to go before it converges. In any case, it converges faster than the ring
market, and for bothZIP andZI-C traders, it converges before 400 days. Looking at
the differences between markets usingZIP andZI-C traders, we see that in general the
ZIP markets converge faster. Given that the randomness of the offers made byZI-C
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ZIC Fully connected 347
Ring 460
Chain 362
Star 389

ZIP Fully connected 397
Ring 374
Chain 205
Star 317

Table 3: Our measure of convergence for markets withZI-C andZIP traders and dif-
ferent market connection topologies — the earliest day on which the distribution of
traders is not significantly different from the distribution on the final trading day. We
only give the results forCDA markets.

traders will tend to add noise to the learning of the market selection strategy, this is
perhaps not surprising. However we are currently at a loss toexplain whyZIP traders
in fully-connected markets take so long to converge — withZI-C traders, the fully-
connected market converges fastest of all, rather as one would expect since, with every
market accessible from every other market, exploration of the set of markets should be
quickest.

4.4 Charges versus structure

The results so far show that connecting identical markets indifferent ways can lead
to significantly different behaviors. In particular connecting markets using star and
chain networks mean that certain markets become privilegedin terms of the number
of traders they attract. With all markets making similar charges, this will lead to the
privileged markets making greater profits. Since the results from [22] show that higher
charging markets will, over time, attract less traders (to the extent that eventually they
make less profit than lower charging markets) a natural question is to what extent the
privileged markets in the star and chain networks can exploit their situation with higher
charges.

To answer this question, we looked at the results for our experiments with differ-
ent (fixed) charges on profit. In particular, we looked at chain markets where the end
markets in the chain charged 5%, and the middle three marketscharged progressively
higher percentages of the profit. We also looked at star markets where the hub made
progressively higher charges on profit while the other markets charged a steady 5%.
These results are shown in Figure 4 — we only have room here forthe results of mar-
kets involvingZIP traders. As before, results forZI-C traders are very similar. These
show that, for both chain and star markets, the advantages inherent in the structure are
eroded by as charges are increased, by remain strong even when the privileged markets
set a 25% profit charge.
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5 Related work

A number of authors have looked at the properties of network markets. [26] studies a
three-node star network with a uniform-price double auction at each node. The same
authors [25] report experiments using a 9-node gas network that, in addition to buyers
and sellers, also includes pipeline owners, and in [15] study another small gas market.
A further small network model, including just two markets, is the basis of the study in
[4] into the effects of cheating (that is, either not paying for goods, or failing to deliver
goods that have been paid for) and [7] investigates how a 6-node railway network re-
sponds to two different pricing mechanisms. While these markets are similar to those
in our study, the investigation dealt with markets with human traders.

As mentioned above, agent-based methods have been used before in the context of
network markets. [3] used such methods to examine the effects of linked markets on
financial crises, while [18, 19] consider the behavior of supply chains.2. This work all
studies smaller sets of markets than we have considered.

The agent-based studies in [2] and [38] are larger but consider a set of connection
topologies that overlap with, but does not contain, the set we consider. Both [2] and
[38] deal with “local” networks, which are equivalent to ourring, as well as small-
world networks, which we don’t consider. However, neither considers the chain or star
topologies, which are the most interesting of the topologies we looked at, and neither
study considers traders that move between markets.

6 Conclusions

This paper has examined the effect of different connection topologies on network mar-
kets in which the constituent markets are double auctions and the connections denote
the allowed movements of traders between markets. Traders used eitherZI-C or ZIP

strategies, and markets were eitherCH or CDA. We looked at the behavior of four dif-
ferent topologies — fully connected, ring, chain and star — and considered the overall
allocative efficiency, the distribution of traders and the speed of convergence. We found
that topology had no significant effect on efficiency, but hasa significant effect on the
distribution of traders in star and chain markets, and henceon the liquidity of the com-
ponents of those markets. Chain markets also seem to be quicker to converge than ring
or star markets, while star markets are quicker to converge than ring markets (results
for the convergence of fully connected markets are ambiguous). We also found that the
topological effect on trader distribution could be offset by making suitable changes to
charges imposed by markets.

We believe that these results will help to inform the design of network markets.
With this in mind, we are currently working to analyze the performance of network
markets with different topologies — in particular small-world, random and scale-free
topologies — and to handle larger sets of markets than we considered here.

2TheTAC supply chain competition also studies supply chains, but comes at it from the perspective of individual traders
rather than from the perspective of overall market performance.
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