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Abstract

We present a novel method for automatically ac-
quiring strategies for the double-auction by com-
bining evolutionary optimization together with
a principled game-theoretic analysis. Previous
studies in this domain have used standard co-
evolutionary algorithms, often with the goal of
searching for the “best” trading strategy. However,
we argue that such algorithms are often ineffective
for this type of game because they fail to embody an
appropriate game-theoretic solution-concept, and it
is unclear, what, if anything, they are optimizing.
In this paper, we adopt a more appropriate criteria
for success from evolutionary game-theory based
on the likely adoption-rate of a given strategy in a
large population of traders, and accordingly we are
able to demonstrate that our evolved strategy per-
forms well.

1 Introduction
The automatic discovery of game-playing strategies has long
been considered a central problem in Artificial Intelligence.
In Evolutionary Computing, the standard technique for dis-
covering new strategies is co-evolution, in which the fitness
of each individual in an evolving population of strategies is
assessed relative to other individuals in that population by
computing the payoffs obtained when the selected individuals
interact. Co-evolution can sometimes result in arms-races, in
which the complexity and robustness of strategies in the pop-
ulation increases as they counter-adapt to adaptations in their
opponents.

Often, however, co-evolutionary learning can fail to con-
verge on robust strategies. The reasons for this are many and
varied; for example, the population may enter a limit cycle if
strategies learnt in earlier generations are able to exploit cur-
rent opponents and current opponents have “forgotten” how
to beat the revived living fossil. Whilst many effective tech-
niques have been to developed to overcome these problems,
there remains, however, a deeper problem which is only be-
ginning to be addressed successfully. In some games, such as
chess, we can safely bet that if player A consistently beats
player B, and player B consistently beats player C, then

player A is likely to beat player C. Since the dominance rela-
tionship is transitive, we can build meaningful rating systems
for objectively ranking players in terms of ability, and the use
of such ranking systems can be used to assess the “external”
fitness of strategies evolved using a co-evolutionary process
and ensure that the population is evolving toward better and
better strategies. In many other games, however, the dom-
inance graph is highly intransitive, making it impossible to
rank strategies on a single scale. In such games, it makes
little sense to talk about “best”, or even “good”, strategies
since even if a given strategy beats a large number of oppo-
nent strategies there will always be many opponents that are
able to beat it. The best strategy to play in such a game is al-
ways dependent on the strategies adopted by one’s opponents.

Game theory provides us with a powerful concept for rea-
soning about the best strategy to adopt in such circumstances:
the notion of a Nash equilibrium. A set of strategies for a
given game is a Nash equilibrium if, and only if, no player
can improve their payoff by unilaterally switching to an alter-
native strategy.

If there is no dominant strategy1 for the game, then we
should play the strategy that gives us the best payoff based on
what we believe our opponents will play. If we assume our
opponents are payoff maximisers, then we know that they will
play a Nash strategy set by reductio ad absurdum; if they did
not play Nash then by definition at least one of them could do
better by changing their strategy, and hence they would not be
maximising their payoff. This is very powerful concept, since
although not every game has a dominant strategy, every finite
game posseses at least one equilibrium solution [Nash, 1950].
Additionally, if we know the entire set of strategies and pay-
offs, we can deterministically compute the Nash strategies. If
only a single equilibrium exists for a given game, this means
that, in theory at least, we can always compute the “appropri-
ate” strategy for a given game.

Note, however, that the Nash strategy is not always the best
strategy to play in all circumstances. For 2-player zero-sum
games, one can show that the Nash strategy is not exploitable.
However, if our opponents do not play their Nash strategy,
then there may be other non-Nash strategies that are better at
exploiting off-equilibrium players. Additionally, many equi-

1A strategy which is always the best one to adopt no matter what
any opponent does.



libria may exist and in n-player non-constant-sum games it
may be necessary for agents to coordinate on the same equi-
librium if their strategy is to remain secure against exploita-
tion; if we were to play a Nash strategy from one equilibrium
whilst our opponents play a strategy from an alternative equi-
librium we may well find that our payoff is significantly lower
than if we had coordinated on the same equilibrium as our op-
ponents.

2 Beyond Nash equilibrium
Standard games theory does not tell us which of the many
possible Nash strategies our opponents are likely to play.
Evolutionary game theory [Smith, 1982] and its variants at-
tack this problem by positing that, rather than computing the
Nash strategies for a game using brute-force and then select-
ing one of these to play, our opponents are more likely to
gradually adjust their strategy over time in response to to re-
peated observations of their own and others’ payoffs. One
approach to evolutionary game-theory uses the replicator dy-
namics equation to specify the frequency with which different
pure strategies should be played depending on our opponent’s
strategy:

ṁj = [u(ej , ~m) − u(~m, ~m)] mj (1)

where ~m is a mixed-strategy vector, u(~m, ~m) is the mean
payoff when all players play ~m, and u(ej , ~m) is the average
payoff to pure strategy j when all players play ~m, and ṁj is
the first derivative of mj with respect to time. Strategies that
gain above-average payoff become more likely to be played,
and this equation models a simple co-evolutionary process of
mimicry learning, in which agents switch to strategies that
appear to be more successful.

For any initial mixed-strategy we can find the eventual out-
come from this co-evolutionary process by solving ṁj = 0
for all j to find the final mixed-strategy of the converged pop-
ulation. This model has the attractive properties that: (i) all
Nash equilibria of the game are stationary points under the
replicator dynamics; and (ii) all focal points of the replicator
dynamics are Nash equilibria of the evolutionary game.

Thus the Nash equilibrium solutions are embedded in the
stationary points of the direction field of the dynamics spec-
ified by equation 1. Although not all stationary points are
Nash equilibria, by overlaying a dynamic model of learning
on the equilibria we can see which solutions are more likely
to be discovered by boundedly-rational agents. Those Nash
equilibria that are stationary points at which a larger range of
initial states will end up, are equilibria that are more likely to
be reached (assuming an initial distribution that is uniform).

This is all well and good in theory, but the model is of lim-
ited practical use since many interesting real-world games are
multi-state2. Such games can be transformed into normal-
form games, but only by introducing an intractably large
number of pure strategies, making the payoff matrix impos-
sible to compute. But what if we were to approximate the
replicator dynamics by using an evolutionary search over the
strategy space?

2The payoff for a given move at any stage of the game depends
on the history of play.

Rather than considering an infinite population consisting of
a mixture of all possible pure strategies, we use a small finite
population of randomly sampled strategies to approximate the
game. By introducing mutation and cross-over, we can search
hitherto unexplored regions of the strategy space. Might such
a process converge to some kind of approximation of a true
Nash equilibrium? Indeed, this is one way of interpreting
existing co-evolutionary algorithms; fitness-proportionate se-
lection plays a similar role to the replicator dynamics equa-
tion in ensuring that successful strategies propagate, and ge-
netic operators allow them to search over novel sets of strate-
gies. There are a number of problems with such approaches
from a game-theoretic perspective, however, which we shall
discuss in turn.

Firstly, the proportion of the population playing different
strategies serves a dual role in a co-evolutionary algorithm
[Ficici and Pollack, 2003]. On the one hand, the propor-
tion of the population playing a given strategy represents the
probability of playing that pure strategy in a mixed-strategy
Nash equilibrium. On the other hand, evolutionary search
requires diversity in the population in order to be effective.
This suggests that if we are searching for Nash equilibria
involving mixed-strategies where one of the pure strategy
components has a high frequency, corresponding to a co-
evolutionary search where a high percentage of the popula-
tion is adopting the same strategy, then we may be in danger
of over-constraining our search as we approach a solution.

Secondly and relatedly, although the final set of strategies
in the converged population may be best responses to each
other, there is no guarantee that the final mix of strategies
is not invadable by other yet-to-be-countered strategies in
the search space, or strategies that became extinct in earlier
generations because they performed poorly against an earlier
strategy mix that differed from the final converged strategy
mix. Genetic operators such as mutation or cross-over will
be poor at searching for novel strategies that could poten-
tially invade the newly established equilibrium because of the
above problem. If these conditions hold, then the final mix of
strategies is implausible as a true Nash equilibrium or ESS,
since there will be unsearched strategies that could potentially
break the equilibrium by obtaining better payoffs for certain
players. We might, nevertheless, be satisfied with the final
mix of strategies as an approximation to a true Nash equilib-
rium on the grounds that if our co-evolutionary algorithm is
unable to find equilibrium-breaking strategies, then no other
algorithm will be able to do so. However, as discussed above,
we expect a priori that co-evolutionary algorithms will be
particularly poor at searching for novel strategies once they
have discovered a (partial) equilibrium.

Thirdly, in the case where there are multiple equilibria,
the particular one to which our population converges will be
highly sensitive to the initial configuration of the population,
that is the particular mix of random strategies that we start
with, and certain equilibrium solutions may only be obtain-
able if we start with a given mix of initial strategies. In
evolutionary game theory, we can simply take many sam-
ples of initial mixed-strategy vectors and for each of them
solve the replicator dynamics equation in order to find sta-
tionary points. However, such brute-force approaches require



the sampling of many thousands of initial mixed strategies in
order to accurately assess the population dynamics of a three-
strategy game. If we translate this into a co-evolutionary al-
gorithm with a large strategy space, it necessitates running
the co-evolutionary process hundreds of thousands of times
with different randomly initialised populations in order to dis-
cover robust equilibria, which is computationally impractical
in most cases.

Finally, co-evolutionary algorithms employ a number of
different selection methods, not all of which yield population
dynamics that converge on game-theoretic equilibria [Ficici
and Pollack, 2000].

These problems have led researchers in co-evolutionary
computing to design new algorithms employing game-
theoretic solution concepts [Ficici, 2004]. In particular, [Fi-
cici and Pollack, 2003] describe a game-theoretic search
technique for acquiring approximations of Nash strategies
in large symmetric 2-player constant-sum games with type-
independent payoffs. In this paper, we address n-player non-
constant-sum multi-state games with type-dependent payoffs.
In such games, playing our Nash strategy (or an approxima-
tion thereof) does not guarantee us security against exploita-
tion, thus if there are multiple equilibria, it may be more ap-
propriate to play a best-response to the strategies that we infer
are in play.

3 Heuristic-strategy approximation
[Walsh et al., 2002] obviate many of the problems of standard
co-evolutionary algorithms by restricting attention to small
representative sample of “heuristic” strategies that are known
to be commonly played in a given multi-state game. For many
games, unsurprisingly none of the strategies commonly in use
is dominant over the others. Given the lack of a dominant
strategy, it is then natural to ask if there are mixtures of these
“pure” strategies that constitute game-theoretic equilibria.

For small numbers of players and heuristic strategies, we
can construct a relatively small normal-form payoff matrix
which is amenable to game-theoretic analysis. This heuristic
payoff matrix is calibrated by running many iterations of the
game; variations in payoffs due to different player-types (eg
black or white, buyer or seller) or stochastic environmental
factors (eg PRNG seed) are averaged over many samples of
type information resulting in a single mean payoff to each
player for each entry in the payoff matrix. Players’ types
are assumed to be drawn independently from the same dis-
tribution, and an agent’s choice of strategy is assumed to be
independent of its type, which allows the payoff matrix to be
further compressed, since we simply need to specify the num-
ber of agents playing each strategy to determine the expected
payoff to each agent. Thus for a game with k strategies, we
represent entries in the heuristic payoff matrix as vectors of
the form

~p = (p1, . . . pk)

where pi specifies the number of agents who are playing the
ith strategy. Each entry p ∈ P is mapped onto an outcome
vector q ∈ Q of the form

~q = (q1, . . . qk)

where qi specifies the expected payoff to the ith strategy. For
a game with n agents, the number of entries in the payoff
matrix is given by

s =
nk

− 1

(k − 1)!
(2)

For small n and small k this results in payoff matrices of
manageable size; for k = 3 and n = 6, 8, and 10 we have
s = 28, 45, and 66 respectively. Once the payoff matrix has
been computed we can subject it to a rigorous game-theoretic
analysis and search for Nash equilibria solutions and apply
different models of learning and evolution, such as the repli-
cator dynamics model, in order to analyse the dynamics of
adjustment to equilibrium.

The equilibria solutions that are thus obtained are not rig-
orous Nash equilibria; there is always the possibility that an
unconsidered strategy could invade the equilibrium. Never-
theless, heuristic-strategy equilibria are often more plausible
as models of real-world game playing than those obtained us-
ing a standard co-evolutionary search precisely because they
restrict attention to strategies that are commonly known and
are in common use. We can therefore be confident that no
commonly known strategy for the game at hand will break
our equilibrium, and thus the equilibrium stands at least some
chance of persisting in the short term future.

Of course, once an equilibrium is established, the designers
of a particular strategy may not be satisfied with their strat-
egy’s adoption-rate in the game-playing population at large.
As [Walsh et al., 2002] suggest, the designers of, for example,
a particular trading strategy in a market game may have finan-
cial incentives such as patent rights to increase their “market-
share” – that is, the proportion of players using their strat-
egy, or, in game-theoretic terms, the probability of their pure
strategy being played in a mixed-strategy equilibrium with
a large basin of attraction. They go on to propose a simple
methodology for performing such optimization using man-
ual design methods. A promising-looking candidate strategy
is chosen for perturbation analysis; a new, perturbed, ver-
sion of the original heuristic payoff matrix is computed in
which the payoffs of the candidate strategy are increased by a
small fixed percentage, thus modelling a hypothetical tweak
to the strategy that yields in a small increase in payoffs. The
replicator-dynamics direction field is then replotted to estab-
lish whether the hypothetically-optimized strategy is able to
to achieve a high adoption rate in the population. Strategy de-
signers can then concentrate their efforts on improving those
strategies that become strong attractors with a small increase
in payoffs.

In this paper, we extend this technique by using a genetic-
algorithm (GA) to automatically optimize candidate strate-
gies by searching for a hitherto-unknown best-response – or,
to use more appropriate nomenclature, a better-response – to
an existing mix of heuristic strategies. Rather than using a
standard co-evolutionary algorithm to perform the optimiza-
tion, we use a single-population GA where the fitness of an
individual strategy is computed from the heuristic-strategy
payoff matrix according to its expected payoff when it is
played against the existing mixed strategy.



4 An HSA analysis of a double-auction
We apply our method to the acquisition of strategies for the
double-auction [Friedman and Rust, 1991], a generalisation
of more widely-known single-sided auctions such as the En-
glish ascending auction. Single-sided auctions involve a sin-
gle seller trading with multiple buyers. In double auctions,
we have multiple traders on both sides of the market. As
well as soliciting offers from buyers, that is bids, we also
solicit offers to sell, so called asks. Variants of the double-
auction are used in many real-world markets, such as stock
exchanges, in scenarios where supply and demand are highly
dynamic. Whilst single-sided auctions are well-understood
from a game theoretic perspective, double-sided auctions re-
main intractable to a full game-theoretic analysis when there
are relatively few traders on each side of the market. Thus
much analysis of this game has focused on using agent-based
computational economics (ACE) [Tesfatsion, 2002] to ex-
plore viable bidding strategies.

[Phelps et al., 2004] used a heuristic-strategy analysis to
analyse two variants of the double-auction market mechanism
populated with a mix of heuristic strategies, and were able
to find approximated game-theoretic equilibrium solutions
thereof. In this paper, we use the same basic framework, but
we focus on the clearing-house double-auction (CH) [Fried-
man and Rust, 1991] with uniform pricing, in which all agents
are polled for their offers before transactions take place, and
all transactions are then executed at the same market-clearing
price. We consider the following heuristic-strategies:

• The truth-telling strategy (TT), whereby agents submit
offers equal to their valuation for the resource being
traded (in a strategy-proof market, TT will be a domi-
nant strategy);

• The Roth-Erev strategy (RE) – a strategy based on
reinforcement-learning, described in [Erev and Roth,
1998] and calibrated with the parameters specified in
[Nicolaisen et al., 2001]; and

• The Gjerstad-Dickhaut strategy (GD) [Gjerstad and
Dickhaut, 1998], whereby agents estimate the probabil-
ity of any bid being accepted based on historical market
data and then bid to maximize expected profit.

Since all mixed-strategy vectors lie in the unit-simplex,
for k = 3 strategies we can project the unit-simplex onto a
two dimensional space and plot the switching between strate-
gies predicted by 2. Figure 1 shows the direction-field of the
replicator-dynamics equation for these three heuristic strate-
gies, showing that we have two equilibrium solutions—these
are the points from which no arrows lead away. Firstly, since
there are no arrows leading away from the bottom-right cor-
ner, we see that GD is a best-response to itself, and hence is
a pure-strategy equilibrium. We also see it has a very large
basin of attraction; most randomly selected initial configu-
rations will end up in the GD corner. Additionally, there is
a second mixed-strategy equilibria at the coordinates (0.88,
0.12, 0) in the simplex corresponding to an 88% mix of TT
and a 12% mix of RE, however the attractor for this equilib-
rium is much smaller than the pure-strategy GD equilibrium;
only 6% of random starts terminate here vs 94% for pure GD.

TT 

RE 

GD 

Figure 1: The original replicator dynamics direction field for
a 12-agent clearing-house auction with the original unopti-
mized Roth-Erev strategy (labeled RE).

Hence, according to this analysis, we expect most of the pop-
ulation of traders to adopt the GD strategy.

How much confidence can we give to this analysis given
that the payoffs used to construct the direction-field plot were
estimated based on only 2000 samples of each game? One
approach to answering this question is to conduct a sensitiv-
ity analysis; we perturb the mean payoffs for each strategy in
the matrix by a small percentage to see if our equilibria anal-
ysis is robust to errors in the payoff estimates. Figure 2 shows
the direction-field plot after we perform a perturbation where
we remove 5% of the payoffs from the TT and GD strategies
and assign +5% payoffs to the RE strategy. This results in
a qualitatively different set of equilibria; the RE strategy be-
comes a best-response to itself with a large basin of attraction
(61%), and we see a mixed-strategy equilibrium at (0, 0.45,
0.55) corresponding to a 45% mix of RE and a 55% mix of
GD. Thus we conclude that our equilibrium analysis is sensi-
tive to small errors in payoff estimates, and that our original
prediction of widespread adoption of GD may not occur if we
have underestimated the payoffs to RE.

If we observe a mixture of all three strategies in actual play,
however, the sensitivity analysis suggests we could bring
about widespread defection to RE if were able to tweak the
strategy by improving its payoff slightly — it points to RE as
a candidate for potential optimization.

5 Optimizing RE
The key question we need to answer in order to perform this
optimization is “What are we trying to optimize?”. The ob-
vious answer is that we should attempt optimize the payoff
to our new version of the strategy. However, since we are
unlikely to find a dominant strategy, we know that we are un-
likely to be able to optimize our candidate strategy so that it
obtains the maximal payoff no matter what our opponents do.
We should therefore, attempt to optimize our strategy so that
it gives us the best payoff against the strategy that we believe
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Figure 2: Replicator dynamics direction field for a 12-agent
clearing-house auction perturbed with +5% payoffs to the
Roth-Erev strategy (labeled RE’)

will be actually played. The solution to this maximisation
problem is likely to vary accordingly; one solution may do
extremely well when faced with truth-tellers (TT), but not so
well when faced with agents playing GD. The best-response
strategy will depend on the precise mix of strategies we ex-
pect to encounter, and thus the solution space consists of an
infinite pareto-frontier of possible best-responses parameter-
ized by the mixed-strategy in play.

There are many possible techniques for inferring the likely
mixed-strategy in use in an actual game. We might, for ex-
ample, infer a particular mix based on an observation of play
to date, in a manner akin to fictitious play. Alternatively, if
we have no empirical data on play to date, or we wish to op-
timize a strategy for a market mechanism which has not yet
been deployed, we might assume that players are likely to
eventually adopt a heuristic-equilibrium strategy with a large
basin of attraction under the replicator dynamics, and opti-
mize accordingly. Such an analysis is beyond the scope of
this paper. Instead, we pick an arbitrary mixed-strategy and
use a genetic algorithm to optimize for this particular mix-
ture. In the rest of the paper, the mixed-strategy that we op-
timize for is (0.25, 0.25, 0.25, 0.25) where the corresponding
pure strategies are (GD, TT, RE, OS), and OS refers to the
strategy currently being evaluated.

5.1 Searching for a better-response
The RE strategy uses reinforcement learning (RL) to choose
from n possible markups over the agent’s limit price based
on a reward signal computed as a function of profits earned
in the previous round of bidding. Agents bid or ask at price p

p = l ± mo (3)

where l is the agent’s limit price, o is the output from the
learning algorithm and m is a scaling parameter. Addition-
ally, the Roth-Erev learning algorithm itself has several free
parameters: the recency parameter r, the experimentation pa-
rameter x, and an initialisation parameter s1. In addition to

the original Roth-Erev (RE) algorithm, there are several other
learning-algorithms that that have successfully been used for
RL strategies in ACE. We search over three additional possi-
bilities: stateless Q-learning (SQ), modifications to RE used
by [Nicolaisen et al., 2001] (NPT) and a control algorithm
which selects a uniformly random action regardless of reward
signal (DR). SQ has free parameters: the discount-rate g, ep-
silon e, and a learning-rate p.

Individuals in the search space were represented as a 50-bit
genome, where:

• bits 1–8 coded for parameter m in the range (1, 10);

• bits 9–16 coded for the parameters e or x in the range
(0, 1);

• bits 17–24 coded for parameter n in the range (2, 258);

• bits 25–32 coded for parameters g or r in the range
(0, 1);

• bits 33–40 coded for parameter s1 in the range
(1, 15000);

• bits 41–42 coded for the choice of learning algorithm
amongst RE, NPT, SQ or DR; and

• bits 43–50 coded for parameter p in the range (0, 1).

This space was searched using a GA with a population size
of 100, with single-point cross-over, a cross-over rate of 1,
a mutation-rate of 10−4 and fitness-proportionate selection.
The expected payoff to our candidate strategy was computed
from the heuristic-strategy payoff matrix according to our
benchmark mixed-strategy (0.25, 0.25, 0.25, 0.25). This ne-
cessitated recomputing the payoff matrix for each individual
that was evaluated. We used only 10 samples of the game in
order to populate each entry in the payoff matrix in the ex-
pectation that the GA would be robust to the additional noise
that this would introduce into the payoffs.

6 Results
Figure 3 shows the mean fitness of the evolving popula-
tion per generation. By generation 50, the mean fitness had
plateaued to 0.94 with a standard deviation of 0.03, and the
fitness of the best individual was 0.99. The best individual
coded for a strategy using the stateless Q-learning algorithm
with parameters n = 5, m = 5.39453125, e = 0.0234375,
g = 0.1484375 and p = 0.1484375.

The goal of this exercise was to see if we could find a re-
placement strategy for RE that would likely be adopted under
replicator-dynamics learning given a population starting near
the centre of the simplex. Figure 4 shows the direction-field
of the replicator dynamics when we replace RE with our op-
timized strategy OS using 2000 samples of the game for each
entry in the payoff matrix. Although our optimized strategy
does not capture the greatest number of starting points, it is
taken up in an equilibrium with a large basin of attraction
where it is played with a high probability; equilibrium 1 is
arrived at in 32% of cases, in this equilibrium OS is played
with 98% probability. This gives us a total expected “market
share” of approximately 31%, meaning that nearly a third of
traders who start by randomly selecting a mixed strategy will
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Figure 3: Mean fitness of the GA population with one stan-
dard deviation when optimizing for payoffs against the mixed
strategy (0.25, 0.25, 0.25, 0.25)

ned up playing OS in a given game. Although our optimized
strategy is not predominant, it performs significantly better
than the original RE strategy. Additionally, it succeeds in
capturing defectors to our strategy when the population starts
near the middle of the simplex – that is, when all strategies are
being played with equal probability, which corresponds to our
original design objective of maximising for payoffs against
the mixed strategy (0.25, 0.25, 0.25, 0.25).

7 Conclusion
In this paper we have applied a novel method combining evo-
lutionary search together with a principled game-theoretic
analysis in order to automatically acquire a trading strategy
for the double-auction market. We defined an appropriate
measure of success in this game based on evolutionary game-
theory, and we were able to demonstrate that our evolved
strategy performed robustly according to this criterion. This
is a first step towards a principled approach to automatically
creating new bidding strategies and auction mechanisms—no
small matter given the current volume of auction-based trade.
Now that we are able to create new bidding mechanisms,
we can extending Cliff’s work on automatically generating
new auction mechanisms [Cliff, 2001], knowing that we can
evolve bidding strategies that can work within such mech-
anisms, and so provide a meaningful comparison of those
mechanisms using the technique of [Phelps et al., 2004].
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