
Model Checking Multi-Agent Systems with MABLE ∗

Michael Wooldridge Michael Fisher Marc-Philippe Huget Simon Parsons
Department of Computer Science, University of Liverpool

Liverpool L69 7ZF, United Kingdom

{mjw,mdf,mph,sp}@csc.liv.ac.uk

ABSTRACT
MABLE is a language for the design and automatic verification
of multi-agent systems.MABLE is essentially a conventional im-
perative programming language, enriched by constructs from the
agent-oriented programming paradigm. AMABLE system con-
tains a number of agents, programmed using theMABLE imper-
ative programming language. Agents inMABLE have a mental
state consisting of beliefs, desires and intentions. Agents commu-
nicate usingrequest andinform performatives, in the style of
the FIPA agent communication language.MABLE systems may be
augmented by the addition of formal claims about the system, ex-
pressed using a quantified, linear temporal belief-desire-intention
logic. MABLE has been fully implemented, and makes use of the
SPIN model checker to automatically verify the truth or falsity of
claims.

Categories and Subject Descriptors
H.4.m [Information Systems]: Miscellaneous; D.2 [Software]:
Software Engineering; I.2.11 [Artificial Intelligence]: Distributed
AI— intelligent agents, languages, multiagent systems

General Terms
Languages, Theory, Verification

Keywords
Agents, Model Checking, Verification, Programming

1. INTRODUCTION
In this paper, we presentMABLE, a language intended for the de-
sign and automatic verification of multi-agent systems.MABLE is
essentially a conventional imperative programming language, en-
riched by some additional constructs from the agent-oriented pro-
gramming paradigm [13, 16, 19]. AMABLE system contains a
number of agents, each of which is programmed using theMABLE

∗This work was supported by the EC under project IST-1999-10948
(SLIE) and by the EPSRC under project GR/R27518.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
AAMAS’02,July 15-19, 2002, Bologna, Italy
Copyright 2002 ACM 1-58113-480-0/02/0007 ...$5.00.

imperative programming language. In addition, each agent in
MABLE has amental stateconsisting of beliefs, desires and inten-
tions; mental states may be nested, so that (for example), one agent
is able to have beliefs about another agent’s intentions.MABLE
agents are able to communicate with one-another usingrequest
andinform performatives, in the style of theFIPA agent com-
munication language [8]. In addition,MABLE systems may be
augmented by the addition of formalclaimsmade about the sys-
tem. Claims are expressed using a (simplified) version of the belief-
desire-intention logicLORA [22], known asMORA.

TheMABLE language has been fully implemented. The imple-
mentation makes use of theSPINsystem [11, 12], a freely available
model-checking systemfor finite state systems. Developed atAT& T

Bell Labs,SPINhas been used to formally verify the correctness of
a wide range of finite state distributed and concurrent systems, from
protocols for train signalling to autonomous spacecraft control sys-
tems [12]. SPIN allows claims about a system to be expressed in
propositional Linear Temporal Logic (LTL): SPIN is capable of au-
tomatically checking whether or not such claims are true or false.

The MABLE compiler takes as input aMABLE system and as-
sociated claims (inMORA) about this system.MABLE gener-
ates as output a description of theMABLE system inPROMELA,
the system description language for finite-state systems used by the
SPIN model checker, and a translation of the claims into theLTL

form used bySPIN for model checking. SPIN can then be used
to automatically verify the truth (or otherwise) of the claims, and
simulate the execution of theMABLE system, using thePROMELA

interpreter provided as part ofSPIN.
The remainder of this paper is structured as follows. We begin

by introducing the theory ofMABLE: its abstract syntax and for-
mal semantics; the semantics are unusual in that we show how a
semantics for the language can be given in terms of a belief-desire-
intention logic. We then describe theMABLE language in detail
— its syntax and informal semantics. We then describe how claims
can be made aboutMABLE programs usingMORA, and how
these claims can be automatically verified usingMABLE. We then
briefly describe the implementation ofMABLE.

2. THEORETICAL FOUNDATIONS
MABLE is a language intended for the design and formal verifica-
tion of multi-agent systems. UsingMABLE, a designer can develop
a multi-agent system using a language that combines constructs
from conventional programming languages likeC and JAVA with
agent-specific features. In addition, a user can explicitly augment
these programs with formal claims about the system behaviour,
where these claims are expressed in a logic calledMORA, which
combines elements of belief-desire-intention logics [17], temporal
logics [14, 15], and dynamic logic [9]; by leveraging the model-

checking capabilities of theSPIN system [11, 12], these claims can
be automatically proved or disproved.

In this section, we focus on the theoretical foundations of
MABLE. One of the key problems thatMABLE is intended to
address is that ofcomputational grounding. Over the past two
decades, many researchers have attempted to develop logical theo-
ries of rational agency. The theory of intention developed by Cohen
and Levesque is perhaps best-known in this respect [4], and Rao
and Georgeff’sBDI logics have also received much attention [17,
22]; see [23] for a survey. These logics typically attempt to de-
velop an axiomatic theory of the “mental state” of a rational agent.
Traditionally, the tool of choice for such theories has been a multi-
modal formalism, often combined with temporal and/or dynamic
logic components. The semantics for such logics is usually given in
terms of Kripke, or possible worlds, semantics [2]; the mathemat-
ics of correspondence theory for possible worlds semantics makes
such an approach extremely attractive.

Unfortunately, most such logics tend to suffer from the problem
of computational grounding[21]. Intuitively, this problem can be
understood as follows. Suppose we have some axiomatic theory
of agency, expressed in some logicL, and we have some program
π, implemented in some conventional programming language. Can
we tell whether or notπ implements the theory of agency? In gen-
eral, we cannot. Technically, the problem is that conventional pos-
sible worlds semantics are not related in any way to the programs
that we implement; they are instead a convenient but ultimately
rather abstract mathematical representation. (Note that this is not
the case forepistemic logic[7], which has a semantics, called inter-
preted systems, in which possible worlds are given a precise mean-
ing in terms of the states of computer programs.)

A number of multi-agent programming languages have recently
appeared, which attempt to bring logics of rational agency some-
what closer to programming languages (e.g.,AGENT0 [19] and
3APL [10]). However, even for these languages, the link between
programming language and logic is often not well-defined, and ex-
ception beingGOLOG [13].

One of our aims with theMABLE language is to rectify this
omission. MABLE is essentially a straightforward imperative
programming language, enriched with some features from agent-
oriented programming languages such asAGENT0 [19]. However,
the semantics ofMABLE are given in terms of a belief-desire-
intention (BDI) logic calledLORA [22]. That is, the effects of
MABLE program constructs are defined with respect to the mental
states of the agents that perform these actions. For example, when
an agent executes an assignment operation such as

x = 5

then we can characterise the semantics of this operation by saying
that it causes the agent executing the instruction to subsequently
believe that the value ofx is 5. TheMABLE compiler (section 3.2)
implements these semantics when it generates executable code; us-
ing the model checking component ofMABLE, we can then auto-
matically checkBDI properties ofMABLE systems.

2.1 LORA: A BDI Logic
The semantics ofMABLE are defined usingLORA, a quantified,
many-sorted multi-modal logic, which was defined in [22], and
both draws upon and extends the work described in [4, 17].LORA
can be viewed as the well-known branching time logicCTL* [6],
enriched by the addition of some further modal connectives for re-
ferring to thebeliefs, desires, andintentionsof agents [17], together
with a simple apparatus for representing the actions performed by
agents, which makes use of ideas from dynamic logic [9]. Note

that, for simplicity, we assume that each agent has complete knowl-
edge and that actions always succeed and are never delayed.

The logic is quantified and many-sorted; for simplicity, we do not
allow functional terms in the language other than constants. Terms
come in four sorts. First, we have terms that denoteagents, and we
usei, j, . . . and so on as variables ranging over agents. In addition,
we have terms that denote (finite)setsof agents, i.e., groups — we
useg, g′, . . . as variables ranging over groups of agents. Next, we
have terms that denotesequences of actions— we useα, α′, . . . as
terms denoting sequences of actions. Finally, we have terms that
denote other objects in the environment. The logical apparatus of
quantification is standard for quantified many-sorted logics.

The logic makes a distinction between formulae that express
properties of states, and formulae that express properties of paths,
or histories, through the temporal tree structure. The former are
known asstate formulae, the latter aspath formulae. We begin
our introduction by discussing the variousstate formulaeoperators
(see Table 1 for an overview of the operators in the logic). First,
we have a nullary operatortrue: a logical constant for truth. This
formula will be satisfied wherever it is evaluated. Next, we have
operators(Bel i ϕ), (Des i ϕ), and(Int i ϕ) which mean that agent
i has a belief, desire, and intention ofϕ, respectively. An agent’s
beliefs intuitively correspond to theinformationthat the agent has
about its environment. For example, an agent might believe that the
temperature of the room is 20 degrees Celsius, or that Bill Clinton
is a liar. Agents can havenestedbeliefs; thus an agent might be-
lieve that Bill Clinton did not believe of himself that he was a liar.
In this sense,MABLE represents a second-order intentional sys-
tem. For technical reasons, we require that an agent only believes
state formulae. Turning to desires, the idea is that an agent’s desires
represent those states of affairs that, ideally, it would like to bring
about. For example, an agent might have a desire that the temper-
ature in the room be 20 degrees Celsius, or might have a desire
that Bill Clinton be impeached. As with beliefs, an agent’s desires
must be state formulae. An agent’s intentions represent desires that
the agent has committed to bring about; typically, intentions must
be mutually consistent (whereas desires need not), and will persist
over time [4]. In addition to these modal connectives, we have first-
order equality: a formula(τ = τ ′) will be true if τ andτ ′ denote
the same individual. We allow state formulae to be combined using
the usual connectives of classical logic: “¬” (“not”), “ ∨” (“or’),
“∧” (“and”), “⇒” (“implies”), universal quantification, and so on.

We now consider path formulae. As we noted above, the idea
is that path formulae express properties of a single path through
a branching time structure. The main operator for expressing the
properties of paths is “Happens”. This operator takes a single
argument: anaction expression, and expresses the fact that this
action expression is the first thing that happens on the path. Ac-
tion expressions closely resemble the programs of dynamic logic,
so the path formula(Happens α) will be satisfied on some path
if the action expressionα is the first thing to occur on the path.
Action expressions are formed using constructions that are well-
known from dynamic logic: “;” (for sequential composition), “|”
(for non-deterministic choice), “∗” (for iteration), and “?” (for test
actions). Thus the path formula(Happens α;α′) means actionα
happens first on the path, and is immediately followed byα′. The
formula (Happens α|α′) means eitherα or α′ happens first on
the path. The formula(Happens α∗) means that the actionα oc-
curs one or more times at the start of the path. Finally, the formula
(Happens ϕ?) means that the formulaϕ is satisfied in the first state
of the path. Here,ϕ must be a state formula. To express the fact
that some state of affairs is a necessary consequence of some ac-
tion, we use the “Nec” operator. Thus(Nec α ϕ) means thatϕ is a

Formula Meaning
true logical constant for truth
(Bel i ϕ) agenti believesϕ
(Des i ϕ) agenti desiresϕ
(Int i ϕ) agenti has an intention ofϕ
(τ = τ ′) τ is the same asτ ′

(i ∈ g) agenti is a member of groupg
(Happens α) action expressionα happens next
(Nec α ϕ) ϕ is a necessary consequence ofα
Aϕ on all paths,ϕ holds (inevitablyϕ)
ϕU ψ ϕ until ψ
♦ϕ sometimeϕ
ϕ alwaysϕ

Table 1: The main operators inLORA

necessary consequence of actionα; readers familiar with dynamic
logic will recognise this as aLORA equivalent of[α]ϕ [9].

As with state formulae, compound path formulae can be made by
combining path formulae using the connectives of classical logic.
Path formulae inLORA can also be combined using the connec-
tives of linear temporal logic (cf. [14, 15]):ϕU ψ meansϕ is satis-
fied until ψ becomes satisfied;♦ϕ meansϕ is eventuallysatisfied;
ϕ meansϕ is alwayssatisfied.
State and path formulae are related to one another throughpath

quantifiers, a concept borrowed from branching temporal logic [6].
The logic contains two such path quantifiers: “A”, which means
“on all paths”, and “E”, which means “on some path”. These path
quantifiers are unary modal connectives that are applied to path
formulae to make state formulae. ThusAϕ is a state formula, which
will be satisfied in some state if the path formulaϕ is satisfied on all
the paths through the temporal tree structure that originate from that
state. The formulaEϕ is a state formula, which will be satisfied in
some state ifϕ is satisfied on at least one path through the temporal
tree structure that originates from that state.

2.2 Abstract Syntax
In this section, we present the abstract syntax of theMABLE agent
programming language and define its semantics with respect to the
BDI logic LORA. By “abstract syntax”, we mean that theactual,
(concrete) syntax ofMABLE is somewhat different — it includes a
number of features that are not relevant from the point of view of
programming language theory. For example, in the abstract syntax,
we describe only one form of loop construct — thewhile loop.
In the concrete syntax, however, there are several different kinds of
loop (for loops,do loops, and so on). All these different types
of loop can trivially be reduced towhile loops, so it suffices to
define the semantics ofwhile loops only. In the same way, we
have omitted other “syntactic sugar” features of the actualMABLE
programming language as defined in section 3.

A MABLE system contains a finite number ofMABLE agents.
The basic form of aMABLE agent is

agent i is P

wherei is the name of the agent andP is the program body. Each
agent in a multi-agent system is assumed to have a unique name,
drawn from a setAgId = {1, . . . , n} of agent identifiers. The main
part of an agent, which determines its behaviour, is the program
bodyP. The basis of program bodies inMABLE is a simple imper-
ative language, containing iteration (while loops), sequence (the
“;” constructor), selection (a form of theif, then, else state-

ment), and assignment operations. Although readers will no doubt
be well acquainted with such constructs, they take a novel form in
MABLE, and some words of explanation are therefore necessary.

The most obvious difference betweenMABLE and conventional
imperative languages is thatMABLE has ado instruction, by which
an agenti is allowed to execute any of a setAc = {α, . . .} of
external actions. The simplest way to think of external actions is as
native methodsin a programming language like Java. They provide
a way for agents to execute actions that do not simply affect the
agent’s internal state, but its external environment. The basic form
of thedo instruction is

do α

whereα ∈ Ac is the external action to be performed. When we
incorporate communication intoMABLE, we do so by modelling
message sending as an external action to be performed.

MABLE programs have assignment operations of the formx :=
e, wherex is a program variableande is an (arithmetic)expres-
sion. As the syntax and semantics of such expressions are straight-
forward, we will not be concerned with defining them here; we
will assume that the setExp contains all syntactically acceptable
expressions, which may be formed from the integers, a set ofpro-
gram variables, and the usual arithmetic operations (+, -, *, and/
etc). We letPVar be the set of all program variables, and assume
that agents do not share program variables.

MABLE contains a version of the regularif,then,else state-
ment, allowing for the possibility of an agent being “uncertain”
about something. The general format of theif statement is

if ϕ then P1 else P2 unsure P3

The idea is that if the agent executing this instruction believes that
the conditionϕ is true, then it will executeP1 (whereP1 is a pro-
gram). If it believesϕ is false, then it will executeP2. However, if
it is unsureabout whetherϕ is true or false, i.e., it neither believes
ϕ nor¬ϕ, then it will executeP3. Note that we define the standard
if ϕ then P1 else P2 asif ϕ then P1 else P2 unsure P2.

In a conventional programming language, conditions inif and
while statements are only allowed to be dependent on program
variables. Unusually,MABLE allows conditions in bothif and
while statements to bearbitrary formulae of the BDI logic
LORA — any acceptable formula ofLORA is allowed as a con-
dition. To make this more concrete, consider the following:

if (Bel j x > 5) then x := x− 1
else x := x + 1 unsure x := 0

The idea is that if the agent executing this instruction believes that
agentj believes thatx > 5, then the agent executing the instruction
decrements the value ofx by 1. If the agent executing the instruc-
tion believes it isnot the case that agentj believesx > 5, then it
increments the value ofx by 1. Finally, if the agent executing the
instruction has no opinion either way, it assigns the value 0 tox.

Notice the form of words used here:the agent executing this
loop instruction must believe that j believes x is greater than 5—
the condition does not depend on whatj actually believes, but on
what the agent executing the statement believes thatj believes. As
this example illustrates, conditions can thus refer to the mental state
of other agents, in a similar way to theAGENT0 language [19].

The general form of awhile construct, as in conventional pro-
gramming languages, is

while ϕ do P

whereϕ is a condition andP is a program. As withif statements,
conditions are not simply predicates over program variables, but are

Prog ::= do α /* α ∈ Ac */
| x := e /* x ∈ PVar,e∈ Exp*/
| if ϕ then P1 else P2 unsure P3 /* ϕ ∈ wff(LORA),Pi ∈ Prog */
| while ϕ do P /* ϕ ∈ wff(LORA),P ∈ Prog */
| P1; P2 /* Pi ∈ Prog */

Agent ::= agent i is P /* i ∈ AgId,P ∈ Prog */
MAS ::= A1‖ · · · ‖An /* Ai ∈ Agent*/

Figure 1: The abstract syntax ofMABLE multi-agent systems.

arbitrary formulae ofLORA. Thus, for example, the following is
an acceptablewhile loop in MABLE:

while (Bel j x > 5) do x := x− 1

The idea is that, while the agent performing thewhile loop be-
lieves that agentj believesx is greater than 5, the agent will contin-
ually execute the statementx := x− 1.

Given a collectionA1, . . . ,An of MABLE agents, they are com-
posed into a multi-agent system by the parallel composition opera-
tor “‖”: A1‖ · · · ‖An. Note that, in this version ofMABLE there is
no mechanism for generating new agents.

Formally, the syntax of aMABLE multi-agent system is defined
by the grammar in Figure 1.

2.3 Formal Semantics
We now give a formal semantics toMABLE. Our approach is in-
spired by the temporal semantics of concurrent programs [14, 15].
The idea behind temporal semantics is that the meaning of any pro-
gramP is a set[[P]] of computations or runs, where each run repre-
sents one possible legal execution of the programP. Now models
for temporal logic can be understood as sequences of states, which
are in fact isomorphic to program runs. The semantics of a temporal
logic formula is thus a set of such sequences — the sequences that
satisfy the formula. The intuition in temporal semantics is that we
can characterise the semantics of a programP as a temporal logic
formulaϕP: the models of this formula correspond to the possi-
ble runs of the programP. A temporal semantics for programs is
thus a function[[. . .]]TL : Prog→ wff(TL) which for every program
P ∈ Prog defines a temporal logic formula[[P]]TL, the models of
which are exactly the possible runs of the programP.

In order to give a semantics toMABLE, we do not simply use
temporal logic; instead, we use theBDI logic LORA. The idea is
that the semantics of aMABLE system will be defined as a formula
of LORA, which characterises the acceptable computations of the
system, and the “mental state” of the agents in the system. Note
that the formal semantics of our language is not complete: the main
point is to show how aBDI semantics can be given to an imperative
language. These semantics are then used in the compiler.

As we noted above,LORA extends branching time temporal
logic with a rich collection of operators for describing both the be-
liefs, desires, and intentions of agents, and the actions of agents.
Formally, the semantics ofMABLE multi-agent systems are de-
fined by three semantic functions, one each for multi-agent sys-
tems, agents, and agent program bodies:

[[. . .]]MAS : MAS→ wff(LORA)
[[. . .]]Agent : Agent→ wff(LORA)
[[. . .]]Prog : Prog→ wff(LORA)

In fact, the multi-agent system semantic function[[. . .]]MAS is de-
fined in terms of the agent semantic function[[. . .]]Agent, which is

in turn defined in terms of the agent program semantic function
[[. . .]]Prog. The agent program semantic function is simply defined
in terms of a function[[. . .]]Exp : Exp → N, which gives the se-
mantics of arithmetic expressions. This function will satisfy such
properties as[[2 + 3]]Exp = 5 and so on. As the definition of this
function is both standard and simple, we will not give it here; the
interested reader is urged to consult, e.g., [20, pp55–61].

The three remaining semantic functions are defined in Figure 2.
The idea is that the semantics are defined inductively by a set of
definitions, one for each construct in the language.

The first rule defines the semantics of thedo construct. The idea
is that an agent which executes an instructiondo α will intend that
α happens next. The idea is closely related to that ofvolitional
commitment, which states that an agent which intends to perform
actionα immediately doesα [18, p442]. Our semantics states that
all actions that are performed by an agent are actually intended by
the agent; the nameself used here refers to the agent that is exe-
cuting the program. As we will see below, this name is used as a
place-holder for the name of the agent that is executing the program
body in all the semantic rules used to define program bodies.

The second rule gives the semantics of assignment statements.
The idea is that an agent which executes a statementx := e will
subsequently believe thatx has the value of the expressione, and,
moreover,x really will have the value ofe.

The third rule gives the semantics of theif construct. The idea
is that given a statementifϕ then P1else P2 unsure P3, then
if the agent believesϕ, thenP1 will be executed; if it believes¬ϕ,
thenP2 will be executed. Now, usingLORA allows us to capture
a third possibility, where the agent neither believesϕ nor¬ϕ; this
case is captured by theunsure part of the statement, in which
caseP3 is executed.

The fourth rule gives the semantics of thewhile construct, and
is rather conventional. The idea is to capture the semantics of
while through its (least)fixed pointcharacteristics: executing the
statementwhile ϕ do P is the same as executing the statement
if ϕ then (P; while ϕ do P).

Turning to the semantics of the semi-colon constructor, the idea
is thatP1; P2 will be executed if on all paths that originate from
the current state,P1 happens next and thenP2 happens. In the
semantics, the meaning ofP1 is required to be satisfied, followed
by the meaning ofP2.

As for the semantics of agent declarations, the idea is that a dec-
larationagent i is P binds a namei with the semantics of the
program bodyP. We capture the semantics of this by taking the
semantics[[P]]Prog of the programP and systematically substituting
i for the place-holder nameself in [[P]]Prog.

Finally, we have a rule for the semantics of multi-agent systems:
the semantics of a systemA1‖ · · · ‖An is simply the conjunction of
the semantics of the component agentsAi , together with some back-
ground assumptionsψMAS. The idea of the background assumptions
is that these capture general properties of a multi-agent systems that

[[do α]]Prog =̂ (Int self A(Happens α))

[[x := e]]Prog =̂ A f((Bel self (x = [[e]]Exp)) ∧ (x = [[e]]Exp))

[[if ϕ then P1 else P2 unsure P3]]Prog =̂ (Bel self ϕ) ⇒ [[P1]]Prog

∧ ((Bel self ¬ϕ) ∧ ¬(Bel self ϕ)) ⇒ [[P2]]Prog

∧ (¬(Bel self ¬ϕ) ∧ ¬(Bel self ϕ)) ⇒ [[P3]]Prog

[[while ϕ do P]]Prog =̂ [[if ϕ then (P;while ϕ do P)]]Prog

[[P1; P2]]Prog =̂ A(Happens [[P1]]Prog?; [[P2]]Prog?)

[[agent i is P]]Agent =̂ [[P]]Prog[i/self]
[[A1‖ · · · ‖An]]MAS =̂ [[A1]]Agent∧ · · · ∧ [[An]]Agent∧ ψMAS

Figure 2: The semantics of multi-agent systems: the functions[[. . .]]Prog, [[. . .]]Ag, [[. . .]]MAS are inductively defined in terms of the
semantic function[[. . .]]Exp and some background assumptions represented by theLORA formula ψMAS.

are not captured directly by the semantics of the language.

Background Assumptions
First, we assume that if an agenti intends to immediately perform
some actionα, then this action is performed.

(Int i A(Happens α)) ⇒ A(Happens α) (ψ1

MAS)

Next, we assume that if an agenti intends some actionα, and a
necessary consequence ofα isϕ, theni intendsϕ.

(Int i A(Happens α)) ∧ (Nec α ϕ) ⇒ (Int i ϕ) (ψ2

MAS)

This is the “side effect” property [4, 17, 22]. It states that an agent
intends the side effects of its intentions.

2.4 Introducing Communication
We now introduce communication actions: we allow an agent
to perform two communicative acts, which we will refer to as
inform andrequest respectively. The idea is that these are
actions that an agent performs through thedo instruction; a com-
municative action causes the corresponding message to be sent to
the named recipient of the message. The abstract syntax of these
communicative acts is defined by the following grammar:

Ac ::= inform j of ϕ /* j ∈ AgId, ϕ ∈ wff(LORA) */
| request j to α /* j ∈ AgId, α ∈ Ac */

Intuitively, when an agenti performs an actioninform j of ϕ,
the agenti is attempting to get agentj to believe the content of
ϕ. When performing an actionrequest j to α, the agent is at-
tempting to get agentj to perform actionα. However, as our agents
are assumed to be autonomous, we do not assume that an agent
will come to believe some statement simply because it has been
informed of it, nor that an agent will carry out an action simply
because it has beenrequested to (see, e.g., [22, pp125–145] for
a discussion). Instead, following the work of many researchers in
the theory of speech acts (e.g., [5]), we assume that the effect of an
inform message is to make the recipientj believe that the sender
i intends that the recipientj believesϕ; it is then up toj whether
or not it actually comes to believeϕ itself. Similarly, the effect of
i requesting j to performα is to make the recipient believe that
the sender intends that the recipient intends to performα. An obvi-
ous question is how the effects of a speech act are operationalised
within an agent: how the receipt of a message by an agent causes
this agent to change state. One possibility is that the virtual ma-
chine executing the agent programs is capable of performing this
update; the details are not important for our purposes.

The following rules define the semantics of communication ac-
tions:

[[do inform j of ϕ]]Prog =̂ (Int self A(Happens inform(self , j, ϕ))

[[do request j to α]]Prog =̂ (Int self A(Happens request(self , j, α))

In these definitions,inform(self , j, ϕ) is aLORA term that denotes
the action of the agent denoted byself sending the agent denoted
by j a message “inform(self , j, ϕ)”. (To make this concrete, imag-
ine that a string “inform(self , j, ϕ)” is sent from the agent denoted
by self to j.) Similarly, request(self , j, α) is aLORA term that
denotes the action of the agent denoted byself sending the agent
denoted byj a message “request(self , j, α)”.

In order to give a semantics to communication, we must give
some background assumptionsψMAS relating to communication.
To do this, we must first make some choices, the most important
of which is whether or not communication is assumed to beguar-
anteedor not. Another choice relates to whether or not messages
are guaranteed to be delivered immediately, or simply delivered at
some point in the future. This leads to the following possible back-
ground axioms for communication:

(Nec inform(self , j, ϕ) ⊕⊗(Bel j (Int self (Bel j ϕ))))
(Nec request(self , j, α) ⊕⊗(Bel j (Int self (Int j A♦(Happens α)))))

where:

⊕ is “A” (the universal path quantifier) if message delivery is
guaranteed, and “E” (the existential path quantifier) other-
wise; and

⊗ is “ f” (“next”) if message delivery is immediate, and “♦”
(“at some time in the future”) otherwise.

(Recall that theLORA formula(Nec α ϕ) means thatϕ is a nec-
essary consequence of the actionϕ: on all the paths whereα is
executed,ϕ follows [22, p82].)

3. THE MABLE IMPLEMENTATION
In this section, we describe the implementedMABLE language it-
self. Whereas in the preceding section, we described the abstract
syntax and formal semantics of the language, in this section we de-
scribe the concrete syntax of the language — the syntax a program-
mer will actually use to writeMABLE programs. The language has
been implemented as a compiler, which translatesMABLE systems
into a form that can be processed by theSPIN model checker [11,
12]. The way in which theMABLE compiler fits in with theSPIN

system is illustrated in Figure 3.

C compiler

preprocessor

SPIN

LTL claimSPIN

program
"PAN.C"

system simulation

compiler

MABLE

MABLE
program

executable

verifier

"yes the claims are valid" "no, claims are not valid

here is a counter example"

PROMELA
code

Figure 3: Operation of the MABLE system.

Variables, expressions, and assignments:MABLE supportsC-
style structure and array declarations, which may be composed in
terms of integer and boolean data types. Variables inMABLE may
be local, shared, or global. A local variable is private to an indi-
vidual agent. A shared variable is declared outside an agent, and
is visible to all agents in the system: all agents implicitly have ac-
cess to shared variables, and moreover all agents can write to shared
variables. Shared variables are so called because they are implicitly
part of a data structure shared by all agents. Shared variables are in-
tended to allow a user to model shared resources in environments;
for this reason,MABLE does not provide any built-in synchroni-
sation for shared variables — if mutual exclusion is required over
shared variables, then it is assumed that the agents will organise
this themselves. Like shared variables, global variables are also de-
clared outside the scope of an agent. However, there is an important
difference between global and shared variables. All agents implic-
itly know the value of shared variables; we say that all agent’s have
complete, correct, up-to-datebeliefsabout the value of shared vari-
ables. With global variables, however, the situation is slightly dif-
ferent. While all agents may still access global variables,they must
explicitly do so in order to discover their value. They do this by ex-
ecuting aMABLE observe statement — this is a “sensor” action.

When an agent performs such an action, its beliefs about the value
of the variable it observes are synchronised with the true value of
this variable. However, if the value of the variable is subsequently
changed, then the agent will not necessarily be aware of this — its
beliefs about the value of the variable may thus become out of date.
If an agent modifies the value of a global variable, then its beliefs
about the value of this variable are similarly synchronised. Once
again, however, its beliefs may become out of date if the value of
this variable is changed by some other agent. The syntax of vari-
able declarations is broadly the same asC/JAVA. Expressions and
assignment statements inMABLE also follow the conventions of
C/JAVA; all the arithmetic operators that one would expect to find
in an imperative language are present.

In order to update beliefs, desires, and intentions,MABLE pro-
videsassert andretract statements. These statements take a
single argument — a condition — and behave rather like thePRO-
LOG assert andretract statements [3].

Output: Theprint command is theonly output command avail-
able inMABLE. It causes its arguments to be sent to standard out-
put (stdout): in most cases, this simply means the terminal from
which the command was executed.

Conditions: Conditions inMABLE may be constructed from ex-
pressions with the usual relational operators (<, >, ==, . . .). How-
ever,MABLE also permits conditions to containmodalities: in par-
ticular, belief, desire, and intentionmodalities— see Table 1. A
BDI modality contains three components: the type of the modal-
ity (belief, desire, intention); the name of an agent; and a further
condition. The intended meaning of the modality(m ag c) is that
agentag has attitudem towards the condition (predicate)c. The
nameag must be the name of an agent in the system, andc must
be a syntactically acceptableMABLE condition. As modalities are
themselves conditions, modalities may be nested. For example, the
following is a legal conditional expression inMABLE:

(intend agent2 (believe agent1 a == 10))

Selection: MABLE contains the selection statements that one
would expect from an imperative programming language —
if. . .else and multi-way selection viaswitch statements.
However, as noted earlier, the conditions in these constructs may
contain belief, desire, and intention modalities.

Loops: MABLE provides all the loop constructs found inJAVA /C,
and the syntax is closely based on these languages:for loops,
while, anddo loops. There is an additional loop-like construct,
which is not found in languages likeJAVA /C: await. This con-
struct implements an idle (non-busy) wait construct: it takes a sin-
gle parameter, a condition, and the agent executing theawait is
suspended until it believes the condition is satisfied.

Communication: As described aboveMABLE provides two built-
in communication primitives:inform andrequest, inspired by
theFIPA agent communication language [8]. The syntax of these is
as follows:

inform agof c;
request agto c;

The effect of communication is to change the mental state of the
recipient of the message, as described in section 2. By default,
message delivery is guaranteed but asynchronous: thus when one
agent sends another agent aninform message, the effect is to

fmla ::=
forall IDEN ":" domain fmla /* universal quantification */

| exists IDEN ":" domain fmla /* existential quantification */
| any acceptableMABLE condition /* primitive conditions */
| "(" fmla")" /* parentheses */
| "[]" fmla /* always in the future */
| "<>" fmla /* sometime in the future */
| fmla"U" fmla /* until */
| "!" fmla /* negation */
| fmla"&&" fmla /* conjunction */
| fmla"||" fmla /* disjunction */
| fmla-> formula /* implication */

domain ::=
"agent" /* set of all agents */

| NUMERIC".." NUMERIC /* number range */
| "{" IDEN, . . . , IDEN"}" /* a set of names */

Figure 4: The syntax ofMORA claims.

eventually make the recipient believe that the sender intends the
recipient believe the message content.

Locks: In order to allow agents to synchronise their activities,
MABLE provides a facility forlocking critical sections of code.
Essentially, aMABLE system can contain an arbitrary number of
locks, each of which is identified by a unique name. Sections of
code can be wrapped in alock statement, associated with a par-
ticular named lock. Only one agent can possess a lock at any given
time. When an agent comes across a locked section of code, it sus-
pends until the associated lock is free, at which point it obtains the
lock in an atomic operation, and enters the code section; when it
exits the code, the lock is released.

3.1 Claims and How to Verify Them
The most novel aspect ofMABLE is that agent definitions may be
interspersed withclaimsabout the behaviour of agents, expressed
in MORA, a subset of theLORA language introduced in [22].
These claims can then beautomaticallychecked; in this way, we
can automatically verify the behaviour ofMABLE systems. If the
claim is disproved, then a counter example is provided, illustrating
why the claim is false.

A claim is introduced outside the scope of an agent, with the
keywordclaim followed by aMORA formula, and terminated
by a semi-colon. The formal syntax ofMORA claims is given in
Figure 4. The language of claims is thus that of quantified linear
temporalBDI logic. Quantification is only allowed over finite do-
mains, and in particular, over: agents (e.g., “every agent believes
ϕ”); finite sets of objects (e.g., enumeration types); and integer
number ranges. Below, we describe the way in which claims are
dealt with during model checking

To illustrate the role of claims, consider the example in Figure 5.
In this example, we have a shared variable,a, and two agents,
agent1 andagent2, whose behaviour is as follows.

• agent1 counts up to 10 using variablea, and then in-
formsagent2 thata == 10 (i.e., variablea has value 10).
It then immediately starts counting to 15 using variablea
again, and terminates.

• agent2 waits until it believes thatagent1 intends that
it believes thata == 10 — this will be the case when
agent1 executes theinform statement. It then checks
to see whether it believes thata == 10; if it does believe
thata == 10, then it indicates thatagent1 is telling the

truth, otherwise, it indicates thatagent2 is a liar (because
agent1 told agent2 thata was 10 when it was not).

Notice that asa is a shared variable,agent2 correctly knows its
value without having to perform aninform instruction. Also,
whether or notagent2will claim thatagent1 is a liar or not will
actually depend on how the two agents are scheduled for execu-
tion: if, after sending theinform message toagent2, agent1
starts incrementinga again beforeagent2 gets to execute theif
statement, thenagent2 will claim that agent1 lies. In the cur-
rent MABLE implementation, scheduling agents for execution is
done randomly. Running the example with the compiler thus gen-
erates exactly this behaviour: on some runs,agent2 claims that
agent1 lies, while on others, it claims that it tells the truth.

There is just one claim in this example, which when re-written
LORA notation is:

∃i · ♦(Bel i (Int agent1 (Bel i a = 10)))

In other words, some agenti eventually comes to believe that
agent1 intends thati believesa has the value 10. This claim is
clearly valid, sinceagent2 believes this. TheMABLE compiler
is capable of automatically translating this claim into theLTL form
required by theSPINmodel checker, and runningSPIN to determine
the truth or falsity of the claim. In this particular case, the claim can
easily be verified on a standard desktopPC.

3.2 How the MABLE Compiler Works
In this section, we give a brief overview of the way in which the
MABLE compiler works. There are three main components to the
MABLE compiler: the way in which individual agents and their
control constructs (e.g., loops) are implemented inPROMELA; the
way in which belief-desire-intention states are implemented; and
the way in whichMORA claims are dealt with. The simplest
of these is the implementation of basic control constructs. Al-
thoughPROMELA is a relatively low-level language, it is straight-
forward to mapMABLE’s control constructs into those provided
by PROMELA. Each agent inMABLE is implemented as a pro-
cess (proctype) in PROMELA; additionalPROMELA initialisation
code is generated to automatically start agents simultaneously.

More interesting is the way that belief-desire-intention states are
dealt with. The idea is to model these as finitely nested data struc-
tures (in the style of [1]). Predicates are represented byproposi-
tional abstraction: where a predicate appears in the context of a
modality, it is automatically rewritten as a new proposition symbol.
To implement theBDI semantics as described in section 2, we use
model annotation. Thus when we generate thePROMELA code, we
automatically annotate it with statements corresponding to the se-
mantics. For example, when a message is received, the change in
mental state on the part of the message recipient is automatically
implemented byPROMELA code generated by theMABLE com-
piler.

Claims are dealt with using the following procedure:

• Quantifiers are removed byexpansion. Quantification is over
finite domains, and so any quantified formula can be rewrit-
ten into a quantifier-free formula by expanding universal
quantification into a conjunction, and existential quantifica-
tion into a disjunction.

• BDI modalities are removed by replacing them with predi-
cates about the corresponding data structures in the imple-
mented system.

shared int a;

claim exists ag : agent <>(believe ag (intend agent1 (believe ag a == 10)));

agent agent1 {
for (a = 0; a != 10; a = a + 1)

print("agent1: a = %d \n", a);
inform agent2 of (a == 10);
for (a = 10; a != 15; a = a + 1)
print("agent1: a = %d \n", a);

}

agent agent2 {
await (intend agent1 (believe agent2 a == 10));
print ("agent 2 recvd mesg\n");
if ((intend agent1 (believe agent2 a == 10)) && (a != 10))

print("agent2: agent1 is a LIAR!\n");
else

print("agent2: agent1 tells the TRUTH!\n");
}

Figure 5: A final example.

• Predicates are removed by propositional abstraction: each
predicate is replaced by proposition, the truth of which is
bound to the predicate it replaces.

The end result is a propositionalLTL formula, suitable for input to
the SPIN model checker, together with a list of predicates and the
names of the propositions with which they were replaced. Together
with the generatedPROMELA code, these can be fed directly into
SPIN for checking.

4. CONCLUSIONS & FUTURE WORK
We have presented an imperative multi-agent programming lan-
guage calledMABLE, and a formal semantics for this language
in terms of aBDI logic calledLORA. We have also described an
implementation of this language, and described how claims about
MABLE systems, expressed in a quantified linear temporalBDI

logic calledMORA (a cut-down version ofLORA), can be au-
tomatically checked by translating them into the form used by the
SPIN model checking system. We are currently using and enhanc-
ing MABLE; we are using it in an EC project for verifying prop-
erties of electronic institutions, and in addition are enhancing its
capabilities both at the programming language level (by provid-
ing more features for the programmer), and also by enhancing its
model-checking features. We are also writing aMABLE to JAVA

feature, which will automatically generateJAVA code fromMABLE
systems. Finally, our future work in this area also concerns explor-
ing efficiency and completeness issues.

5. REFERENCES
[1] M. Benerecetti, F. Giunchiglia, and L. Serafini. Model checking

multi-agent systems.Journal of Logic and Computation,
8(3):401–424, 1998.

[2] B. Chellas.Modal Logic: An Introduction. Cambridge University
Press: Cambridge, England, 1980.

[3] W. F. Clocksin and C. S. Mellish.Programming in Prolog.
Springer-Verlag: Berlin, Germany, 1981.

[4] P. R. Cohen and H. J. Levesque. Intention is choice with
commitment.Artificial Intelligence, 42:213–261, 1990.

[5] P. R. Cohen and H. J. Levesque. Rational interaction as the basis for
communication. In P. R. Cohen, J. Morgan, and M. E. Pollack,
editors,Intentions in Communication, pages 221–256. The MIT
Press: Cambridge, MA, 1990.

[6] E. A. Emerson and J. Y. Halpern. ‘Sometimes’ and ‘not never’
revisited: on branching time versus linear time temporal logic.
Journal of the ACM, 33(1):151–178, 1986.

[7] R. Fagin, J. Y. Halpern, Y. Moses, and M. Y. Vardi.Reasoning About
Knowledge. The MIT Press: Cambridge, MA, 1995.

[8] The Foundation for Intelligent Physical Agents. See
http://www.fipa.org/.

[9] David Harel, Dexter Kozen, and Jerzy Tiuryn.Dynamic Logic. The
MIT Press: Cambridge, MA, 2000.

[10] K. V. Hindriks, F. S. de Boer, W. van der Hoek, and J.-J. Ch. Meyer.
Agent programming in 3APL.Autonomous Agents and Multi-Agent
Systems, 2(4):357–402, 1999.

[11] G. Holzmann.Design and Validation of Computer Protocols.
Prentice Hall International: Hemel Hempstead, England, 1991.

[12] G. Holzmann. The Spin model checker.IEEE Transaction on
Software Engineering, 23(5):279–295, May 1997.

[13] Y. Lésperance, H. J. Levesque, F. Lin, D. Marcu, R. Reiter, and R. B.
Scherl. Foundations of a logical approach to agent programming. In
M. Wooldridge, J. P. Müller, and M. Tambe, editors,Intelligent
Agents II (LNAI Vol. 1037), pages 331–346. Springer-Verlag: 1996.

[14] Z. Manna and A. Pnueli.The Temporal Logic of Reactive and
Concurrent Systems. Springer-Verlag: Berlin, Germany, 1992.

[15] Z. Manna and A. Pnueli.Temporal Verification of Reactive Systems
— Safety. Springer-Verlag: Berlin, Germany, 1995.

[16] A. S. Rao. AgentSpeak(L): BDI agents speak out in a logical
computable language. In W. Van de Velde and J. W. Perram, editors,
Agents Breaking Away: Proc. Seventh European Workshop on
Modelling Autonomous Agents in a Multi-Agent World, (LNAI
Vol. 1038), pages 42–55. Springer-Verlag: 1996.

[17] A. S. Rao and M. Georgeff. Decision procedures for BDI logics.
Journal of Logic and Computation, 8(3):293–344, 1998.

[18] A. S. Rao and M. P. Georgeff. An abstract architecture for rational
agents. In C. Rich, W. Swartout, and B. Nebel, editors,Proc.
Knowledge Representation and Reasoning, pages 439–449, 1992.

[19] Y. Shoham. Agent-oriented programming.Artificial Intelligence,
60(1):51–92, 1993.

[20] G. Winskel.The Formal Semantics of Programming Languages. The
MIT Press: Cambridge, MA, 1993.

[21] M. Wooldridge. Computationally grounded theories of agency. In
Proc. Fourth International Conference on Multi-Agent Systems
(ICMAS-2000), pages 13–20, Boston, MA, 2000.

[22] M. Wooldridge.Reasoning about Rational Agents. The MIT Press:
Cambridge, MA, 2000.

[23] M. Wooldridge and N. R. Jennings. Intelligent agents: Theory and
practice.The Knowledge Engineering Review, 10(2):115–152, 1995.

