Model Checking Multi-Agent Systems with MABLE °

Michael Wooldridge Michael Fisher Marc-Philippe Huget Simon Parsons

Department of Computer Science, University of Liverpool
Liverpool L69 7ZF, United Kingdom

{mjw,mdf,mph,sp@csc.liv.ac.uk

ABSTRACT imperative programming language. In addition, each agent in
MABLE has amental stateonsisting of beliefs, desires and inten-
tions; mental states may be nested, so that (for example), one agent
is able to have beliefs about another agent’s intentidi&BLE
agents are able to communicate with one-another usétgiest

andi nf or mperformatives, in the style of theipA agent com-
munication language [8]. In additioMABLE systems may be
augmented by the addition of formelaims made about the sys-
tem. Claims are expressed using a (simplified) version of the belief-
desire-intention logicC OR A [22], known asM OR A.

The MABLE language has been fully implemented. The imple-
mentation makes use of tis®INsystem [11, 12], a freely available
model-checking systefor finite state systems. Developedai& T
Bell Labs,spiNhas been used to formally verify the correctness of
a wide range of finite state distributed and concurrent systems, from
protocols for train signalling to autonomous spacecraft control sys-
tems [12]. spiN allows claims about a system to be expressed in
propositional Linear Temporal LogiectL): SPINis capable of au-

MABLE is a language for the design and automatic verification
of multi-agent systemsMABLE is essentially a conventional im-
perative programming language, enriched by constructs from the
agent-oriented programming paradigm. MABLE system con-
tains a number of agents, programmed usingN#eLE imper-
ative programming language. Agents MABLE have a mental
state consisting of beliefs, desires and intentions. Agents commu-
nicate using equest andi nf or mperformatives, in the style of
the FIPA agent communication languagdABLE systems may be
augmented by the addition of formal claims about the system, ex-
pressed using a quantified, linear temporal belief-desire-intention
logic. MABLE has been fully implemented, and makes use of the
sPIN model checker to automatically verify the truth or falsity of
claims.

Categories and Subject Descriptors

H.4.m [Information Systemsg: Miscellaneous; D.2 $oftware]: tomatically checking whether or not such claims are true or false.
Software Engineering; 1.2.1Aftificial Intelligence]: Distributed The MABLE compiler takes as input IABLE system and as-
Al—intelligent agents, languages, multiagent systems sociated claims (inMIOR.A) about this systemMABLE gener-

ates as output a description of tNeABLE system inPROMELA,
General Terms the system description language for finite-state systems used by the

sPIN model checker, and a translation of the claims into ithe
form used byspiN for model checking. sPiN can then be used
to automatically verify the truth (or otherwise) of the claims, and

Languages, Theory, Verification

Keywords simulate the execution of tHdABLE system, using theROMELA
Agents, Model Checking, Verification, Programming interpreter provided as part ePIN. _

The remainder of this paper is structured as follows. We begin
1. INTRODUCTION by introducing the theory oMABLE: its abstract syntax and for-

)) mal semantics; the semantics are unusual in that we show how a
In this paper, we preseMABLE, a language intended for the de- semantics for the language can be given in terms of a belief-desire-
sign and automatic verification of multi-agent systeMABLE is intention logic. We then describe th@ABLE language in detail
essentially a conventional imperative programming language, en-__ jis syntax and informal semantics. We then describe how claims
riched by some additional constructs from the agent-oriented pro- can pe made aboMIABLE programs using\lOR.A, and how
gramming paradigm [13, 16, 19]. MABLE system contains a tnese claims can be automatically verified usingBLE. We then

number of agents, each of which is programmed using/tABLE briefly describe the implementation MABLE.
*This work was supported by the EC under project IST-1999-10948
(SLIE) and by the EPSRC under project GR/R27518. 2. THEORETICAL FOUNDATIONS

MABLE is a language intended for the design and formal verifica-
tion of multi-agent systems. UsifdABLE, a designer can develop
Permission to make digital or hard copies of all or part of this work for @ Multi-agent system using a language that combines constructs
personal or classroom use is granted without fee provided that copies ardfom conventional programming languages likend JAVA with
not made or distributed for profit or commercial advantage and that copiesagent-specific features. In addition, a user can explicitly augment
bear this notice and the full citation on the first page. To copy otherwise, to these programs with formal claims about the system behaviour,
republish, to post on servers or to redistribute to lists, requires prior specificwhere these claims are expressed in a logic calé@R.A, which

permission and/or a fee. . h S g .
AAMAS'02 July 15-19, 2002, Bologna, Italy combines elements of belief-desire-intention logics [17], temporal

Copyright 2002 ACM 1-58113-480-0/02/0007%5.00. logics [14, 15], and dynamic logic [9]; by leveraging the model-

checking capabilities of therINnsystem [11, 12], these claims can that, for simplicity, we assume that each agent has complete knowl-
be automatically proved or disproved. edge and that actions always succeed and are never delayed.

In this section, we focus on the theoretical foundations of The logic is quantified and many-sorted; for simplicity, we do not
MABLE. One of the key problems th&lABLE is intended to allow functional terms in the language other than constants. Terms
address is that ofomputational grounding Over the past two come in four sorts. First, we have terms that dermafents and we
decades, many researchers have attempted to develop logical theassei, j, . .. and so on as variables ranging over agents. In addition,
ries of rational agency. The theory of intention developed by Cohen we have terms that denote (finigtsof agents, i.e., groups — we
and Levesque is perhaps best-known in this respect [4], and Raouseg, ¢, . . . as variables ranging over groups of agents. Next, we
and Georgeff'sspl logics have also received much attention [17, have terms that denosequences of actiors we usen, o/, . .. as
22]; see [23] for a survey. These logics typically attempt to de- terms denoting sequences of actions. Finally, we have terms that
velop an axiomatic theory of the “mental state” of a rational agent. denote other objects in the environment. The logical apparatus of
Traditionally, the tool of choice for such theories has been a multi- quantification is standard for quantified many-sorted logics.
modal formalism, often combined with temporal and/or dynamic The logic makes a distinction between formulae that express
logic components. The semantics for such logics is usually given in properties of states, and formulae that express properties of paths,
terms of Kripke, or possible worlds, semantics [2]; the mathemat- or histories, through the temporal tree structure. The former are
ics of correspondence theory for possible worlds semantics makesknown asstate formulagthe latter agpath formulae We begin
such an approach extremely attractive. our introduction by discussing the variostsite formula@perators

Unfortunately, most such logics tend to suffer from the problem (see Table 1 for an overview of the operators in the logic). First,
of computational grounding?1]. Intuitively, this problem can be we have a nullary operatarue: a logical constant for truth. This
understood as follows. Suppose we have some axiomatic theoryformula will be satisfied wherever it is evaluated. Next, we have
of agency, expressed in some lodgicand we have some program operatorgBel i ¢), (Desi ¢), and(Inti ¢) which mean that agent
m, implemented in some conventional programming language. Cani has a belief, desire, and intention of respectively. An agent’s
we tell whether or notr implements the theory of agency? In gen- beliefs intuitively correspond to theformationthat the agent has
eral, we cannot. Technically, the problem is that conventional pos- about its environment. For example, an agent might believe that the
sible worlds semantics are not related in any way to the programstemperature of the room is 20 degrees Celsius, or that Bill Clinton
that we implement; they are instead a convenient but ultimately is a liar. Agents can haveestedbeliefs; thus an agent might be-
rather abstract mathematical representation. (Note that this is notlieve that Bill Clinton did not believe of himself that he was a liar.
the case foepistemic logi¢7], which has a semantics, called inter- In this senseMABLE represents a second-order intentional sys-
preted systems, in which possible worlds are given a precise meantem. For technical reasons, we require that an agent only believes
ing in terms of the states of computer programs.) state formulae. Turning to desires, the idea is that an agent’s desires

A number of multi-agent programming languages have recently represent those states of affairs that, ideally, it would like to bring
appeared, which attempt to bring logics of rational agency some- about. For example, an agent might have a desire that the temper-
what closer to programming languages (e&GENTO [19] and ature in the room be 20 degrees Celsius, or might have a desire
3APL [10]). However, even for these languages, the link between that Bill Clinton be impeached. As with beliefs, an agent’s desires
programming language and logic is often not well-defined, and ex- must be state formulae. An agent’s intentions represent desires that
ception beingsoLOG [13]. the agent has committed to bring about; typically, intentions must

One of our aims with theVlABLE language is to rectify this be mutually consistent (whereas desires need not), and will persist
omission. MABLE is essentially a straightforward imperative over time [4]. In addition to these modal connectives, we have first-
programming language, enriched with some features from agent-order equality: a formulgr = 7') will be true if 7 and+’ denote

oriented programming languages suchma&NTO [19]. However, the same individual. We allow state formulae to be combined using
the semantics oMABLE are given in terms of a belief-desire- the usual connectives of classical logic=™(“not”), “ V" (“or’),
intention @DI) logic called LOR.A [22]. That is, the effects of “A” (“and”), “ =" (“implies”), universal quantification, and so on.

MABLE program constructs are defined with respect to the mental We now consider path formulae. As we noted above, the idea
states of the agents that perform these actions. For example, wheris that path formulae express properties of a single path through

an agent executes an assignment operation such as a branching time structure. The main operator for expressing the
properties of paths isHappens”. This operator takes a single
X =5 argument: araction expressignand expresses the fact that this

then we can characterise the semantics of this operation by sayin
that it causes the agent executing the instruction to subsequentl
believe that the value of is 5. TheMABLE compiler (section 3.2)
implements these semantics when it generates executable code; u
ing the model checking componentABLE, we can then auto-
matically checksDI properties oMABLE systems.

ion expressions closely resemble the programs of dynamic logic,
so the path formulgHappens «) will be satisfied on some path
éf_ the action expressiom is the first thing to occur on the path.
Action expressions are formed using constructions that are well-
known from dynamic logic: {" (for sequential composition),|*

(for non-deterministic choice) ™ (for iteration), and " (for test

2.1 LORA: ABDI Logic actions). Thus the path formu(&lappens «; o’) means actionx

The semantics dIABLE are defined using OR.A, a quantified, fhoarrr)npljgs }TSI on the p?thr;qgggs‘ls;irxgzdéarltely gg'ovéifmthfm
many-sorted multi-modal logic, which was defined in [22], and (Happens aja) o happ

both draws upon and extends the work described nf4,A7jRA ¢ " P The T BHapRens o) e At T SHOREE
can be viewed as the well-known branching time logia_* [6], parh. 4

N . e h
enriched by the addition of some further modal connectives for re- é??ﬁgen;?f ’)Hn;reeansr,ntS;t glee;o;?;?elaf(l)sr;aut;:fle_golr;)t(hfglsrst;t;tfzct
ferring to thebeliefs desires andintentionsof agents [17], together that soF;ne étate ogfoaffairs is a necessar cohse ueF;lce of some ac-
with a simple apparatus for representing the actions performed by . - y q .

. ; . . tion, we use theNec” operator. ThugNec « ¢) means thap is a
agents, which makes use of ideas from dynamic logic [9]. Note

3action expression is the first thing that happens on the path. Ac-
i

Formula Meaning ment), and assignment operations. Although readers will no doubt

true logical constant for truth be well acquainted with such constructs, they take a novel form in
(Beli) agenti believesy MABLE, and some words of explanation are therefore necessary.
(Desi ¢) agenti desiresp The most obvious difference betwek\BLE and conventional
(Inti) agenti has an intention op imperative languages is thslABLE has ado instruction, by which
(r=1") 7 is the same as’ an agent is allowed to execute any of a sat = {a,...} of
(i €9) agenti is a member of groug external actionsThe simplest way to think of external actions is as
(Happens o) action expression happens next native methodi a programming language like Java. They provide
(Nec a) is a necessary consequencexof a way for agents to execute actions that do not simply affect the
Ap on all paths holds (inevitablyy) agent's internal state, but its external environment. The basic form
U o until 1 of thedo instruction is
Op sometimep
Ce alwaysyp do a
. . wherea € Acis the external action to be performed. When we
Table 1: The main operators inLORA incorporate communication intABLE, we do so by modelling

message sending as an external action to be performed.
MABLE programs have assignment operations of the fors

e, wherex is a program variableande is an (arithmeticexpres-
necessary consequence of actigreaders familiar with dynamic ~ Sion As the syntax and semantics of such expressions are straight-
logic will recognise this as &OR.A equivalent ofa]¢ [9]. forward, we will not be concerned with defining them here; we

As with state formulae, compound path formulae can be made by Will assume that the seéExp contains all syntactically acceptable

combining path formulae using the connectives of classical logic. expressions, which may be formed from the integers, a stosf
Path formulae inCOR.A can also be combined using the connec- gram variablesand the usual arithmetic operatioris {, * , and/

tives of linear temporal logic (cf. [14, 15]) 1/ 1> meansy is satis- etc). We letPVar be the set of all program variables, and assume
fied until > becomes satisfied;> meansp is eventuallysatisfied; ~ that agents do not share program variables.
]y meansp is alwayssatisfied. MABLE contains a version of the reguliaf , t hen, el se state-

State and path formulae are related to one another thrpatsh ~ Ment, allowing for the possibility of an agent being “uncertain”
quantifiers a concept borrowed from branching temporal logic [6]. about something. The general format of tHfestatement is
The logic contains two such path quantifiers\”; which means
“on all paths”, and E”, which means “on some path”. These path
quantifiers are unary modal connectives that are applied to pathThe idea is that if the agent executing this instruction believes that
formulae to make state formulae. Thig is a state formula, which the conditiony is true, then it will execut®; (whereP; is a pro-
will be satisfied in some state if the path formylés satisfied on all gram). If it believesy is false, then it will execut®,. However, if
the paths through the temporal tree structure that originate from thatit is unsureabout whethep is true or false, i.e., it neither believes
state. The formul& is a state formula, which will be satisfied in ¢ nor -y, then it will executePs. Note that we define the standard
some state i is satisfied on at least one path through the temporal i f ¢ t hen P1 el se P2 asi f ot henP; el se P2 unsur e Ps.

if pthenP; el seP;unsurePs

tree structure that originates from that state. In a conventional programming language, conditionsfinand
whi | e statements are only allowed to be dependent on program
2.2 Abstract Syntax variables. UnusuallyMABLE allows conditions in both f and

In this section, we present the abstract syntax oMABLE agent whi | e statements to bearbitrary formulae of the BDI logic
programming language and define its semantics with respect to theCOR.A — any acceptable formula @ORA is allowed as a con-
BDI logic LOR.A. By “abstract syntax”, we mean that thetual dition. To make this more concrete, consider the following:
(concrete) syntax dIABLE is somewhat different — |t.|ncludgs a it (Beljx > 5)thenx:—x—1
number of features that are not relevant from the point of view of L .

. . el sex:=x+1lunsurex:=0
programming language theory. For example, in the abstract syntax,
we describe only one form of loop construct — thiei | e loop. The idea is that if the agent executing this instruction believes that
In the concrete syntax, however, there are several different kinds ofagent believes thak > 5, then the agent executing the instruction
loop (f or loops,do loops, and so on). All these different types decrements the value &fby 1. If the agent executing the instruc-
of loop can trivially be reduced tehi | e loops, so it suffices to tion believes it isnot the case that agentbelievesx > 5, then it
define the semantics othi | e loops only. In the same way, we increments the value ofby 1. Finally, if the agent executing the

have omitted other “syntactic sugar” features of the adi/aBLE instruction has no opinion either way, it assigns the valuex0 to

programming language as defined in section 3. Notice the form of words used her¢he agent executing this
A MABLE system contains a finite number RKABLE agents loop instruction must believe that j believes x is greater thar-5

The basic form of MABLE agent is the condition does not depend on whaictually believes, but on

what the agent executing the statement believeg thalieves. As

this example illustrates, conditions can thus refer to the mental state
wherei is the name of the agent aiftiis the program body. Each of other agents, in a similar way to tA&ENTO language [19].

agent in a multi-agent system is assumed to have a unique name, The general form of &hi | e construct, as in conventional pro-
drawn from a sefgld = {1, ..., n} of agent identifiersThe main gramming languages, is

part of an agent, which determines its behaviour, is the program whi | e o do P

bodyP. The basis of program bodiesMABLE is a simple imper-

ative language, containing iterationt{i | e loops), sequence (the whereyp is a condition andP is a program. As with f statements,

“” constructor), selection (a form of thef , t hen, el se state- conditions are not simply predicates over program variables, but are

agent iisP

Prog := doa
| x:=e
| if othenP;el sePsyunsurePs
| whilepdoP
| P1;P2
Agent ::= agent iisP
MAS = Al - ||An

I* o € Ac*/

[* x € PVar, e € Exp*/

I* ¢ € wif(LOR.A), P; € Prog*/
I* ¢ € wif(LORA),P € Prog*/
/* P; € Prog*/

[*i € Agld, P € Prog*/

I* A € Agent*/

Figure 1: The abstract syntax of MABLE multi-agent systems.

arbitrary formulae ofZLOR.A. Thus, for example, the following is
an acceptablehi | e loop inMABLE:

whil e (Beljx >5)dox:=x—1

The idea is that, while the agent performing thiei | e loop be-
lieves that agerjtbelievesxis greater than 5, the agent will contin-
ually execute the statemext= x — 1.

Given a collectiond, . .., A, of MABLE agents, they are com-

in turn defined in terms of the agent program semantic function
[- -Jrrog- The agent program semantic function is simply defined
in terms of a functior. . .Jexp : Exp — N, which gives the se-
mantics of arithmetic expressions. This function will satisfy such
properties ag2 + 3]exp = 5 and so on. As the definition of this
function is both standard and simple, we will not give it here; the
interested reader is urged to consult, e.g., [20, pp55-61].

The three remaining semantic functions are defined in Figure 2.

posed into a multi-agent system by the parallel composition opera- The idea is that the semantics are defined inductively by a set of

tor “||”: A|| - - - ||An. Note that, in this version dfIABLE there is
no mechanism for generating new agents.

Formally, the syntax of MABLE multi-agent system is defined
by the grammar in Figure 1.

2.3 Formal Semantics
We now give a formal semantics MABLE. Our approach is in-

definitions, one for each construct in the language.

The first rule defines the semantics of theeconstruct. The idea
is that an agent which executes an instructiony will intend that
« happens next. The idea is closely related to thataditional
commitmentwhich states that an agent which intends to perform
actiona immediately does [18, p442]. Our semantics states that
all actions that are performed by an agent are actually intended by

spired by the temporal semantics of concurrent programs [14, 15].the agent; the nameelf used here refers to the agent that is exe-
The idea behind temporal semantics is that the meaning of any pro-cuting the program. As we will see below, this name is used as a
gramP is a set[P] of computations or runs, where each run repre- place-holder for the name of the agent that is executing the program
sents one possible legal execution of the progRanNow models body in all the semantic rules used to define program bodies.
for temporal logic can be understood as sequences of states, which The second rule gives the semantics of assignment statements.
are in fact isomorphic to program runs. The semantics of a temporal The idea is that an agent which executes a statemest e will
logic formula is thus a set of such sequences — the sequences thagubsequently believe thathas the value of the expressienand,
satisfy the formula. The intuition in temporal semantics is that we moreoverx really will have the value oé.
can characterise the semantics of a progRaas a temporal logic The third rule gives the semantics of theé construct. The idea
formula gp: the models of this formula correspond to the possi- is that given a statement »t hen P.el se P2 unsur e Ps, then
ble runs of the prograr®. A temporal semantics for programs is if the agent believes, thenP; will be executed; if it believesp,
thus a functior{. . .Jr. : Prog — wff(TL) which for every program thenP, will be executed. Now, usingOR.A allows us to capture
P € Prog defines a temporal logic formulgP]r., the models of a third possibility, where the agent neither belieyesor —y; this
which are exactly the possible runs of the progam case is captured by thensur e part of the statement, in which

In order to give a semantics MdABLE, we do not simply use casePs is executed.
temporal logic; instead, we use tBel logic LOR.A. The idea is The fourth rule gives the semantics of thei | e construct, and
that the semantics of MABLE system will be defined as a formula is rather conventional. The idea is to capture the semantics of
of LOR.A, which characterises the acceptable computations of the whi | e through its (leastjixed pointcharacteristics: executing the
system, and the “mental state” of the agents in the system. NoteStatementhi | e » do P is the same as executing the statement
that the formal semantics of our language is not complete: the maini f ¢ t hen (P; whi | e ¢ do P).
point is to show how @D1 semantics can be given to an imperative ~ Turning to the semantics of the semi-colon constructor, the idea
language. These semantics are then used in the compiler. is thatPy; P2 will be executed if on all paths that originate from

As we noted abovefLOR.A extends branching time temporal the current stateP; happens next and the®: happens. In the
logic with a rich collection of operators for describing both the be- semantics, the meaning B is required to be satisfied, followed
liefs, desires, and intentions of agents, and the actions of agentsby the meaning oP.
Formally, the semantics d¥lABLE multi-agent systems are de- As for the semantics of agent declarations, the idea is that a dec-
fined by three semantic functions, one each for multi-agent sys- larationagent iis P binds a name with the semantics of the
tems, agents, and agent program bodies: program bodyP. We capture the semantics of this by taking the
semantic§P]rrog Of the progranP and systematically substituting
i for the place-holder nanelf in [Plprog.

%' ' '%MAS Xii;%fg;é}l) Finally, we have a rule for the semantics of multi-agent systems:
[[’ : 'H’:gem P?og Wi (LORA) the semantics of a systef || - - - || An is simply the conjunction of
.. Jprog

the semantics of the component agehtsogether with some back-
ground assumptionguas. The idea of the background assumptions
is that these capture general properties of a multi-agent systems that

In fact, the multi-agent system semantic functipn.]uas is de-
fined in terms of the agent semantic functipn.]agens Which is

(Int self A(Happens «))

AO ((Bel self (x = [€exp)) A (x = [elex)
(Bel self ¢) = [P1]prog

A ((Bel self =) A —=(Bel self ©)) = [P2]prog
A (—(Bel self =) A —(Bel self ¢)) = [Ps]prog
[i f othen (P;whil e ¢do P)]prog
A(Happens [P1 [erog?; [Paleros?)

[Plewgli/self]

[[Al]]Agent/\ 000 A [[An]]Agent/\ ’(/JMAS

[[dO oz]]pmg
[[X = e]]Prog
[if othenP; el seP;unsure Ps]prog

[EE

[whi | e ¢ do P]prog
[[Pl; P2]]Prog

[agent iis P]agent
[Al - - - [[A]mas

> 1> 1> 1

Figure 2: The semantics of multi-agent systems: the function$. . .Jerog, [. - .Jag, [- - -Jmas are inductively defined in terms of the
semantic function[. . .Jexp and some background assumptions represented by theOR.A formula Ywmas.

are not captured directly by the semantics of the language. The following rules define the semantics of communication ac-
. tions:
Background Assumptions
First, we assume that_ if an agt_a'n'ntends to immediately perform [doi nformjof glpng = (Intself A(Happens inform(self, j, ©))
some action, then this action is performed. [dorequest jtoa]png = (Intself A(Happens requestself,j, a))
. 1 In these definitiondnform(self, j, ¢) isaLOR.A term that denotes
(Inti A(Happens a)) = A(Happens a) (Ymas) the action of the agent denoted sif sending the agent denoted
Next, we assume that if an agenintends some action, and a by j a messageifiform(self, j, »)". (To make this concrete, imag-
necessary consequencenois ¢, theni intendsep. ine that a string thform(self, j, ¢)” is sent from the agent denoted
by self to j.) Similarly, requestself,j, o) is a LOR.A term that
. . 9 denotes the action of the agent denotedcdy sending the agent
(Inti A(Happens a)) A (Nec o) = (Inti) (¢ins) denoted by a messageréquestself, j, «)".
This is the “side effect” property [4, 17, 22]. It states that an agent [N order to give a semantics to communication, we must give
intends the side effects of its intentions. some background assumptiogifias relating to communication.
] o To do this, we must first make some choices, the most important
2.4 Introducing Communication of which is whether or not communication is assumed tgiar-

We now introduce communication actions: we allow an agent anteedor not. Another choice relates to whether or not messages
to perform two communicative acts, which we will refer to as are guaranteed to be delivered immediately, or simply delivered at
i nf or mandr equest respectively. The idea is that these are SOme pointin the future. This leads to the following possible back-
actions that an agent performs through teeinstruction; a com- ground axioms for communication:

municative action causes the corresponding message to be sent to

the named recipient of the message. The abstract syntax of these (Nec inform(self, j, v) © ®@(Belj (Int self (Bel j ¢))))

communicative acts is defined by the following grammar: (Nec requestself, j, o) @ ®@(Belj (Int self (Int j A{)(Happens «)))))
) .) where:
Ac == informjof ¢ *j € Agld, ¢ € wif(LORA) */
| requestjtoa] € Agld o € Act/ @ is “A” (the universal path quantifier) if message delivery is
Intuitively, when an ageritperforms an action nf or mj of ¢, guaranteed, andE” (the existential path quantifier) other-
the agent is attempting to get agefjtto believe the content of wise; and

. When performing an actionequest jt o «, the agent is at-
tempting to get agerjto perform actionx. However, as our agents
are assumed to be autonomous, we do not assume that an agent

will come to believe some statement simply because it has been(RecaII that theCOR.A formula (Nec o) means thap is a nec-

i nf or med of it, nor that an agent will carry out an action simply . .
because it has beerequest ed to (see, e.g., [22, pp125-145] for E)S(Zilr}{e%c:;?;%ﬁ:([zzezo;ég?)actl,on on all the paths where: is

a discussion). Instead, following the work of many researchers in
the theory of speech acts (e.g., [5]), we assume that the effect of an
i nf or mmessage is to make the recipi¢ielieve that the sender . THE MABLE IMPLEMENTATION

i intends that the recipiefjtbelievesy; it is then up toj whether In this section, we describe the implementABLE language it-

or not it actually comes to believg itself. Similarly, the effect of self. Whereas in the preceding section, we described the abstract
i requesting j to performa is to make the recipient believe that syntax and formal semantics of the language, in this section we de-
the sender intends that the recipient intends to performin obvi- scribe the concrete syntax of the language — the syntax a program-
ous question is how the effects of a speech act are operationaliseaner will actually use to writdlABLE programs. The language has
within an agent: how the receipt of a message by an agent cause®een implemented as a compiler, which transIMé8LE systems

this agent to change state. One possibility is that the virtual ma- into a form that can be processed by g®N model checker [11,
chine executing the agent programs is capable of performing this12]. The way in which thaABLE compiler fits in with thespIN
update; the details are not important for our purposes. system is illustrated in Figure 3.

® is “O” (“next”) if message delivery is immediate, and>*
(“at some time in the future”) otherwise.

When an agent performs such an action, its beliefs about the value
program of the variable it observes are synchronised with the true value of
< this variable. However, if the value of the variable is subsequently
\f changed, then the agent will not necessarily be aware of this — its
beliefs about the value of the variable may thus become out of date.
preprocessor If an agent modifies the value of a global variable, then its beliefs
about the value of this variable are similarly synchronised. Once
l again, however, its beliefs may become out of date if the value of
this variable is changed by some other agent. The syntax of vari-
able declarations is broadly the samecésava. Expressions and
assignment statements MABLE also follow the conventions of
c/iava; all the arithmetic operators that one would expect to find
in an imperative language are present.

In order to update beliefs, desires, and intentidd8BLE pro-
videsassert andr et ract statements. These statements take a
single argument — a condition — and behave rather likerthe-
sPIN LOoG assert andretract statements [3].

MABLE

/_4 compiler

M~

SPINLTL claim

Y

Output: Thepri nt command is thenly output command avail-
able inMABLE. It causes its arguments to be sent to standard out-
system simulation put (st dout): in most cases, this simply means the terminal from

“PAN.C which the command was executed.

program

Conditions: Conditions inMABLE may be constructed from ex-
\f pressions with the usual relational operatersX, ==, ...). How-
ever,MABLE also permits conditions to contamodalities in par-
ticular, belief, desire, and intentianodalities— see Table 1. A
l BDI modality contains three components: the type of the modal-
ity (belief, desire, intention); the name of an agent; and a further
executable condition. The intended meaning of the modality ag 9 is that
veriter agentag has attitudem towards the condition (predicate) The
\ nameag must be the name of an agent in the system, @antust

C compiler

be a syntactically acceptali#ABLE condition. As modalities are
“yes the claims are valid" “no, claims are not valid themselves conditions, modalities may be nested. For example, the
here is a counter examp) following is a legal conditional expression MABLE:

(intend agent2 (believe agentl a == 10))
Figure 3: Operation of the MABLE system.

Selection: MABLE contains the selection statements that one
would expect from an imperative programming language —
if...el se and multi-way selection vieswi t ch statements.

Variables, expressions, and assignmentsMABLE supportsc- Howeyer, as noteq earlier,' the gonditions.i.n these constructs may
style structure and array declarations, which may be composed incontain belief, desire, and intention modalities.

terms of integer and boolean data types. Variabl@dABLE may

be local, shared or global. A local variable is private to an indi-
vidual agent. A shared variable is declared outside an agent, an
is visible to all agents in the system: all agents implicitly have ac-
cess to shared variables, and moreover all agents can write to share
variables. Shared variables are so called because they are impIicitIyStrUCt implements an '(.jl.e (non-busy) wait construgt. I tqke; asin-
part of a data structure shared by all agents. Shared variables are ingle parameter, a condition, and the agent executingaties t is

tended to allow a user to model shared resources in environments,SUSpendeCI until it believes the condition is satisfied.

for_this reasonMABL_E does ngt provide any b_uilt-_in sync_:hroni- Communication: As described abovEBIABLE provides two built-
sation for shared variables — if mutual exclusion is required over ;.00 ication primitivesi nf or mandr equest , inspired by

shared variables, then it is assumed that the agents will organisethe FIPA agent communication language [8]. The syntax of these is
this themselves. Like shared variables, global variables are also de-,

Loops: MABLE provides all the loop constructs founddava/c,
dand the syntax is closely based on these languafjes: loops,
whi | e, anddo loops. There is an additional loop-like construct,
Which is not found in languages likewA/c: awai t . This con-

.) ; as follows:
clared outside the scope of an agent. However, there is an important
difference between global and shared variables. All agents implic- i nf or magof c;
itly know the value of shared variables; we say that all agent’s have request agtoc;

complete, correct, up-to-daleliefsabout the value of shared vari-

ables. With global variables, however, the situation is slightly dif- The effect of communication is to change the mental state of the
ferent. While all agents may still access global varialtfesy must recipient of the message, as described in section 2. By default,
explicitly do so in order to discover their valu&hey do this by ex- message delivery is guaranteed but asynchronous: thus when one
ecuting aMABLE obser ve statement — this is a “sensor” action. agent sends another agent iamf or m message, the effect is to

fmla ::=

forall IDEN":" domainfmla /* universal quantification */
| existsIDEN":" domainfmla /*existential quantification *
| any acceptabl®/ABLE condition /* primitive conditions */
["(" fmla")" /* parentheses */
["[]" fmla /* always in the future */
["<>" fmla /* sometime in the future */
| fmla"U" fmla [* until */
| "1" fmla /* negation */
| fmla"&&" fmla [* conjunction */
| fmla"||" fmla [* disjunction */
|

fmla- > formula /* implication */
domain ::=

"agent"
| NUMERIC". ." NUMERIC
| "{" IDEN,...,IDEN" }"

/* set of all agents */
/* number range */
/* a set of names */

Figure 4: The syntax of MOR.A claims.

eventually make the recipient believe that the sender intends the

recipient believe the message content.

Locks: In order to allow agents to synchronise their activities,
MABLE provides a facility forlocking critical sections of code.
Essentially, aMABLE system can contain an arbitrary number of
locks each of which is identified by a unique name. Sections of
code can be wrapped inlaock statement, associated with a par-

truth, otherwise, it indicates thaigent 2 is a liar (because
agent 1 told agent 2 thata was 10 when it was not).

Notice that asa is a shared variabl@gent 2 correctly knows its
value without having to perform annf or minstruction. Also,
whether or noagent 2 will claim thatagent 1 is a liar or not will
actually depend on how the two agents are scheduled for execu-
tion: if, after sending thé nf or mmessage tagent 2, agent 1
starts incrementing again beforeagent 2 gets to execute thief
statement, theagent 2 will claim thatagent 1 lies. In the cur-
rent MABLE implementation, scheduling agents for execution is
done randomly. Running the example with the compiler thus gen-
erates exactly this behaviour: on some ruagent 2 claims that
agent 1 lies, while on others, it claims that it tells the truth.

There is just one claim in this example, which when re-written
LORA notation is:

Ji - &(Beli (Int agent (Belia = 10)))

In other words, some agemteventually comes to believe that
agent intends that believesa has the value 10. This claim is
clearly valid, sinceagent 2 believes this. Th&ABLE compiler

is capable of automatically translating this claim into tire form
required by thespiNmodel checker, and runnirgpinto determine
the truth or falsity of the claim. In this particular case, the claim can
easily be verified on a standard desktop

ticular named lock. Only one agent can possess a lock at any givenS-2 How the MABLE Comp“er Works

time. When an agent comes across a locked section of code, it susin this section, we give a brief overview of the way in which the
pends until the associated lock is free, at which point it obtains the MABLE compiler works. There are three main components to the
lock in an atomic operation, and enters the code section; when itMABLE compiler: the way in which individual agents and their
exits the code, the lock is released. control constructs (e.g., loops) are implemente@ ROMELA, the

. . way in which belief-desire-intention states are implemented; and
3.1 Claims and How to Verify Them the way in which MORA claims are dealt with. The simplest
The most novel aspect ofABLE is that agent definitions may be

of these is the implementation of basic control constructs. Al-
interspersed witltlaimsabout the behaviour of agents, expressed thoughPROMELA is a relatively low-level language, it is straight-
in MORA, a subset of th€ OR.A language introduced in [22]. forward to mapMABLE's control constructs into those provided
These claims can then latomaticallychecked; in this way, we by PROMELA. Each agent irMABLE is implemented as a pro-
can automatically verify the behaviour BfABLE systems. If the

cesspr oct ype) in PROMELA,; additionalPROMELA initialisation
claim is disproved, then a counter example is provided, illustrating code is generated to automatically start agents simultaneously.
why the claim is false.

More interesting is the way that belief-desire-intention states are
A claim is introduced outside the scope of an agent, with the

dealt with. The idea is to model these as finitely nested data struc-

keywordcl ai mfollowed by aMOR.A formula, and terminated tures (in the style of [1]). Predicates are representegroposi-
by a semi-colon. The formal syntax 8t OR.A claims is given in tional abstraction where a predicate appears in the context of a
Figure 4. The language of claims is thus that of quantified linear modality, it is automatically rewritten as a new proposition symbol.
temporalsDI logic. Quantification is only allowed over finite do- To implement thesDI semantics as described in section 2, we use
mains, and in particular, over: agents (e.g., “every agent believesmodel annotationThus when we generate thReoOMELA code, we
©"); finite sets of objects (e.g., enumeration types); and integer automatically annotate it with statements corresponding to the se-
number ranges. Below, we describe the way in which claims are mantics. For example, when a message is received, the change in
dealt with during model checking mental state on the part of the message recipient is automatically

To illustrate the role of claims, consider the example in Figure 5. implemented byPROMELA code generated by tHdABLE com-
In this example, we have a shared varialdg,and two agents, piler.
agent 1 andagent 2, whose behaviour is as follows. Claims are dealt with using the following procedure:

e agent 1 counts up to 10 using variable, and then in-
formsagent 2 thata 10 (i.e., variablea has value 10).
It then immediately starts counting to 15 using variable
again, and terminates.

e Quantifiers are removed lexpansionQuantification is over
finite domains, and so any quantified formula can be rewrit-
ten into a quantifier-free formula by expanding universal
quantification into a conjunction, and existential quantifica-
tion into a disjunction.

e agent 2 waits until it believes thaagent 1 intends that
it believes thata 10 — this will be the case when
agent 1 executes theé nf or mstatement. It then checks
to see whether it believes that == 10; if it does believe
thata 10, then it indicates thaagent 1 is telling the

e BDI modalities are removed by replacing them with predi-
cates about the corresponding data structures in the imple-
mented system.

shared int a;
cl ai mexists ag :

agent agentl {

for (a=0; a!=10; a =a + 1)

print("agentl: a = 9% \n", a);
inform agent2 of (a == 10);
for (a =10; a!=15; a = a + 1)
print("agentl: a = %l \n", a);

}

agent agent2 {
await (intend agentl (believe agent2 a
print ("agent 2 recvd nmesg\n");
if ((intend agentl (believe agent2 a
print("agent2: agentl is a LIAR\n");
el se
print ("agent 2:

agent <>(believe ag (intend agentl (believe ag a

10)) && (a != 10))

agentl tells the TRUTH \n");

10)));

10));

Figure 5: A final example.

e Predicates are removed by propositional abstraction: each [6]
predicate is replaced by proposition, the truth of which is
bound to the predicate it replaces.]

(8]

[9]

[10]

The end result is a propositionatL formula, suitable for input to

the spIN model checker, together with a list of predicates and the
names of the propositions with which they were replaced. Together
with the generate@ROMELA code, these can be fed directly into
spPINfor checking.

4. CONCLUSIONS & FUTURE WORK

We have presented an imperative multi-agent programming lan-
guage calledMABLE, and a formal semantics for this language
in terms of aBDI logic calledCOR.A. We have also described an
implementation of this language, and described how claims about [13]
MABLE systems, expressed in a quantified linear tempsral

logic called MORA (a cut-down version o£EOR.A), can be au-
tomatically checked by translating them into the form used by the
spIN model checking system. We are currently using and enhanc- [14]
ing MABLE; we are using it in an EC project for verifying prop-

erties of electronic institutions, and in addition are enhancing its (15]
capabilities both at the programming language level (by provid- [16]
ing more features for the programmer), and also by enhancing its
model-checking features. We are also writin/ABLE to JAvA
feature, which will automatically generateva code fromMABLE
systems. Finally, our future work in this area also concerns explor-
ing efficiency and completeness issues.

5. REFERENCES

[1] M. Benerecetti, F. Giunchiglia, and L. Serafini. Model checking
multi-agent systemslournal of Logic and Computation
8(3):401-424, 1998.

B. Chellas.Modal Logic: An IntroductionCambridge University
Press: Cambridge, England, 1980.

[3] W.F. Clocksin and C. S. MellistProgramming in Prolog
Springer-Verlag: Berlin, Germany, 1981.

P. R. Cohen and H. J. Levesque. Intention is choice with
commitmentArtificial Intelligence 42:213-261, 1990.

P. R. Cohen and H. J. Levesque. Rational interaction as the basis for
communication. In P. R. Cohen, J. Morgan, and M. E. Pollack,
editors,Intentions in Communicatigmpages 221-256. The MIT
Press: Cambridge, MA, 1990.

(11]

[12]

[17]

(18]

[19]
(2] [20]
[21]
(4]

(5]
[23]

E. A. Emerson and J. Y. Halpern. ‘Sometimes’ and ‘not never’
revisited: on branching time versus linear time temporal logic.
Journal of the ACM33(1):151-178, 1986.

R. Fagin, J. Y. Halpern, Y. Moses, and M. Y. VarBeasoning About
Knowledge The MIT Press: Cambridge, MA, 1995.

The Foundation for Intelligent Physical Agents. See
http://ww. fipa.org/.

David Harel, Dexter Kozen, and Jerzy TiunfBynamic Logic The
MIT Press: Cambridge, MA, 2000.

K. V. Hindriks, F. S. de Boer, W. van der Hoek, and J.-J. Ch. Meyer.
Agent programming in 3APLAutonomous Agents and Multi-Agent
Systems2(4):357-402, 1999.

G. HolzmannDesign and Validation of Computer Protocols
Prentice Hall International: Hemel Hempstead, England, 1991.
G. Holzmann. The Spin model checkdEE Transaction on
Software Engineering23(5):279-295, May 1997.

Y. Lésperance, H. J. Levesque, F. Lin, D. Marcu, R. Reiter, and R. B.
Scherl. Foundations of a logical approach to agent programming. In
M. Wooldridge, J. P. Miller, and M. Tambe, editohstelligent
Agents Il (LNAI Vol. 1037)pages 331-346. Springer-Verlag: 1996.
Z.Manna and A. PnueliThe Temporal Logic of Reactive and
Concurrent SystemSpringer-Verlag: Berlin, Germany, 1992.
Z.Manna and A. Pnuelifemporal Verification of Reactive Systems
— SafetySpringer-Verlag: Berlin, Germany, 1995.

A. S. Rao. AgentSpeak(L): BDI agents speak out in a logical
computable language. In W. Van de Velde and J. W. Perram, editors,
Agents Breaking Away: Proc. Seventh European Workshop on
Modelling Autonomous Agents in a Multi-Agent World, (LNAI

Vol. 1038) pages 42-55. Springer-Verlag: 1996.

A. S. Rao and M. Georgeff. Decision procedures for BDI logics.
Journal of Logic and Computatio$(3):293-344, 1998.

A. S. Rao and M. P. Georgeff. An abstract architecture for rational
agents. In C. Rich, W. Swartout, and B. Nebel, editBrsc.
Knowledge Representation and Reasonpapges 439-449, 1992.

Y. Shoham. Agent-oriented programmirgtificial Intelligence
60(1):51-92, 1993.

G. Winskel.The Formal Semantics of Programming Languadése
MIT Press: Cambridge, MA, 1993.

M. Wooldridge. Computationally grounded theories of agency. In
Proc. Fourth International Conference on Multi-Agent Systems
(ICMAS-2000)pages 13-20, Boston, MA, 2000.

22] M. Wooldridge.Reasoning about Rational Agentthe MIT Press:

Cambridge, MA, 2000.

M. Wooldridge and N. R. Jennings. Intelligent agents: Theory and
practice.The Knowledge Engineering Reviel®(2):115-152, 1995.

