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1. INTRODUCTIONThe au
tion me
hanism design problem has attra
ted mu
hinterest in re
ent years, and e
onomists have had 
onsider-able su

ess in applying te
hniques from game theory to thedesign of au
tion-based markets for deregulated 
ommod-ity markets (e.g., California's deregulated ele
tri
ity market)and the sale of government assets (e.g., au
tions of ele
tro-magneti
 spe
trum for mobile phones). Alvin Roth has sug-gested that this is akin to an engineering pro
ess in whi
he
onomists design the rules of a market me
hanism in orderto meet parti
ular so
io-e
onomi
 requirements (e.g., max-imising the eÆ
ien
y of allo
ating 
ommodities in a market).The engineering of au
tion me
hanisms is of parti
ularimportan
e to agent-based ele
troni
 
ommer
e and multi-agent systems in general. E-
ommer
e has enabled 
on-sumers to a
t as pri
e-makers instead of just pri
e-takersin large au
tion-based markets and has stimulated the useof personalised bidding agents to empower those 
onsumers
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even more. In addition, au
tion me
hanisms are seen asa promising means of solving many distributed resour
e-allo
ation problems in multi-agent systems and grid te
h-nology.One approa
h to me
hanism design is to use te
hniquesfrom ma
hine learning to explore the spa
e of possible waysin whi
h agents might a
t in parti
ular markets. For exam-ple, reinfor
ement learning has been used to explore biddingpatterns in au
tions and to establish the ways in whi
h pri
e-setting behavior 
an a�e
t 
onsumer markets. Another ap-proa
h is to use te
hniques from evolutionary 
omputing,e.g., 
o-evolutionary ma
hine-learning. Our earlier work hasexplored the use of 
o-evolutionary GP to determine au
tionme
hanism rules automati
ally.In that work, me
hanism rules and bidding strategies were
o-evolved in ways that sought to maximise, on the one handoverall market eÆ
ien
y, and on the other hand the pro�tsof individual agents. This approa
h lends itself to studyingthe dynami
s of the evolution of negotiation me
hanisms ina setting where me
hanisms 
hange in
rementally in a realenvironment, but it is problemati
 when we wish to deriveoptimal me
hanism designsIn our later work we view me
hanism design as a multi-obje
tive optimisation problem. The key issue that we ad-dress is determining the �tness of individual points in theme
hanism design-spa
e. This is non-trivial in the general
ase, sin
e assessing the �tness of an individual me
hanisminvolves reasoning about how agents might a
tually behaveunder the proposed negotiation rules. In the following se
-tion we des
ribe our approa
h to predi
ting agents behaviourfor arbitrary me
hanisms, and in the �nal se
tion we presenta summary of our results where we apply this method tomapping the �tness lands
ape for a k-CDA.
2. EQUILIBRIA FOR N-PLAYER GAMESWhen evaluating a me
hanism design, the designer musttake into a

ount the set of trading strategies that are likelyto be played by agents trading in the me
hanism under 
on-sideration. Deriving the set of the strategies likely to beplayed for a parti
ular market game, that is \solving" thegame, is a non-trivial problem in the general 
ase. Thisis be
ause there is often no 
lear dominant strategy whi
h




onstitutes best play; rather the best strategy to play de-pends entirely on the strategies played by other agents. Nashde�ned a solution 
on
ept in whi
h the strategy adoptedby any given agent is a best-response to the best-responsestrategies adopted by all other agents, and proved that alln-player, non-zero-sum games admitted solutions so de�ned.Nash's solution 
on
ept is widely adopted in theoreti
ale
onomi
s. Thus when evaluating an e
onomi
 me
hanism,the designer 
omputes the Nash equilibria of strategies forthe given me
hanism; and this forms the basis of predi
tionsabout how people will a
tually behave under the rules of thisme
hanism. The designer 
an then analyse market out
omesin equilibria and quantitively assess, for example, the likelya�e
t on overall market-eÆ
ien
y that a given 
hange in theme
hanism rules will yield. Thus the role of the designer isto ensure that the Nash equilibria 
orrespond to situationsin whi
h high market eÆ
ien
y is obtained.We 
an view me
hanism design as a multi-obje
tive op-timization problem. We 
onsider as a separate dimensionea
h problem variable we are interested in maximising (forexample, market eÆ
ien
y, seller revenue and so on), and thediÆ
ulty lies in simultaneously maximising as many dimen-sions as possible. The designer's task is to 
hoose me
hanismrules whi
h pareto-optimise di�erent market variables whentraders play Nash-equilibrium strategies. However, there area number of problems beginning with 
omputing the Nashequilibria:1. Agents with limited 
omputational power (i.e., \bound-ed rationality" 
onstraints) may be unable to 
omputetheir Nash-equilibrium strategy;2. Even with vast amounts of 
omputational and analyti
power, many games defy solution; e.g., in the 
ase ofthe k-double-au
tion, analyti
al te
hniques have yet toyield a solution;3. Empiri
al eviden
e shows that human agents often failto 
oordinate on Nash-equilibria for very simple gameswhose solution is easily derivable under bounded-ration-ality assumptions; and4. Often a given game will yield a multitude of Nash so-lutions and there is little guidan
e for pra
titionerson 
hoosing plausible subsets thereof as predi
ted out-
omes.These diÆ
ulties with the standard theory of games haveled to the development of a �eld known as 
ognitive gametheory, in whi
h models of learning play a 
entral role in ex-plaining and predi
ting strategi
 behaviour. Erev and Rothshow how simulations of agents equipped with a simple re-infor
ement learning algorithm 
an explain and predi
t theexperimental data observed when human agents play a di-verse range of trading games. Su
h multi-agent reinfor
e-ment learning models form the basis of our solution 
on
eptfor optimising me
hanism designs. Rather than 
omputingthe theoreti
al equilibria for a given point in the me
hanismsear
h spa
e, we run a number of multi-agent simulationsusing agents equipped with a learning algorithm that de-termines their bidding strategies. The stationary points inthese simulations { the states where the learning algorithmsof all agents have 
onverged { 
orrespond to the equilibriaof 
lassi
al game theory, and the market out
omes in thesestable states 
an be viewed as predi
tions.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.65

0.7

0.75

0.8

0.85

0.9

0.95

1
Mean fitness with standard deviation vs k for DP NS=6 NB=6

k

fit
ne

ss

Figure 1: Fitness plotted against k for adis
riminatory-pri
e k-CDA with 6 buyers and 6sellersNote that we are not attempting to �nd theoreti
ally op-timal strategies for our agents1. Rather, we are attemptingto predi
t how boundedly-rational agents, who have no priorknowledge of an equilibrium solution nor the means to 
al-
ulate one, might a
tually play against the me
hanism weare (automati
ally) designing. For this reason, we 
hose touse the Roth-Erev algorithm , sin
e it forms the basis of a
ognitive model of how people a
tually behave in strategi
environments. In parti
ular it models two important prin-
iples of learning psy
hology:� Thorndike's law of e�e
t | 
hoi
es that have led togood out
omes in the past are more likely to be re-peated in the future; and� The power law of pra
ti
e | learning 
urves tend tobe steep initially, and then 
atter.
3. RESULTSFigure 1 shows the mean �tness of a set of k-CDA me
ha-nisms for 100 values of k in the interval [0, 1℄ at intervals of0.01. Ea
h sample 
onsisted of 100,000 runs of the au
tionsimulation with di�erent seeds for the random number gen-erator. In ea
h simulation we pit 6 buyers against 6 sellersover a period of 1,000 rounds of trading. Fitness is de�nedas a linear sum of buyer market-power, seller market-powerand overall market eÆ
ien
y, normalised to lie in the range[0, 1℄ where higher values indi
ate better me
hanisms. Thesoftware used to run this experiment is available for down-load at:http://www.
s
.liv.a
.uk/�sphelps/jasa.Also available at the same URL is the full version of thispaper, in whi
h we demonstrate the evolution of a k=0.5CDA using geneti
 programming.1In other words Nash equilibrium strategies


