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1. INTRODUCTION

The auction mechanism design problem has attracted much
interest in recent years, and economists have had consider-
able success in applying techniques from game theory to the
design of auction-based markets for deregulated commod-
ity markets (e.g., California’s deregulated electricity market)
and the sale of government assets (e.g., auctions of electro-
magnetic spectrum for mobile phones). Alvin Roth has sug-
gested that this is akin to an engineering process in which
economists design the rules of a market mechanism in order
to meet particular socio-economic requirements (e.g., max-
imising the efficiency of allocating commodities in a market).

The engineering of auction mechanisms is of particular
importance to agent-based electronic commerce and multi-
agent systems in general. E-commerce has enabled con-
sumers to act as price-makers instead of just price-takers
in large auction-based markets and has stimulated the use
of personalised bidding agents to empower those consumers
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even more. In addition, auction mechanisms are seen as
a promising means of solving many distributed resource-
allocation problems in multi-agent systems and grid tech-
nology.

One approach to mechanism design is to use techniques
from machine learning to explore the space of possible ways
in which agents might act in particular markets. For exam-
ple, reinforcement learning has been used to explore bidding
patterns in auctions and to establish the ways in which price-
setting behavior can affect consumer markets. Another ap-
proach is to use techniques from evolutionary computing,
e.g., co-evolutionary machine-learning. Our earlier work has
explored the use of co-evolutionary GP to determine auction
mechanism rules automatically.

In that work, mechanism rules and bidding strategies were
co-evolved in ways that sought to maximise, on the one hand
overall market efficiency, and on the other hand the profits
of individual agents. This approach lends itself to studying
the dynamics of the evolution of negotiation mechanisms in
a setting where mechanisms change incrementally in a real
environment, but it is problematic when we wish to derive
optimal mechanism designs

In our later work we view mechanism design as a multi-
objective optimisation problem. The key issue that we ad-
dress is determining the fitness of individual points in the
mechanism design-space. This is non-trivial in the general
case, since assessing the fitness of an individual mechanism
involves reasoning about how agents might actually behave
under the proposed negotiation rules. In the following sec-
tion we describe our approach to predicting agents behaviour
for arbitrary mechanisms, and in the final section we present
a summary of our results where we apply this method to
mapping the fitness landscape for a k-CDA.

2. EQUILIBRIAFOR n~-PLAYER GAMES

When evaluating a mechanism design, the designer must
take into account the set of trading strategies that are likely
to be played by agents trading in the mechanism under con-
sideration. Deriving the set of the strategies likely to be
played for a particular market game, that is “solving” the
game, is a non-trivial problem in the general case. This
is because there is often no clear dominant strategy which



constitutes best play; rather the best strategy to play de-
pends entirely on the strategies played by other agents. Nash
defined a solution concept in which the strategy adopted
by any given agent is a best-response to the best-response
strategies adopted by all other agents, and proved that all
n-player, non-zero-sum games admitted solutions so defined.

Nash’s solution concept is widely adopted in theoretical
economics. Thus when evaluating an economic mechanism,
the designer computes the Nash equilibria of strategies for
the given mechanism; and this forms the basis of predictions
about how people will actually behave under the rules of this
mechanism. The designer can then analyse market outcomes
in equilibria and quantitively assess, for example, the likely
affect on overall market-efficiency that a given change in the
mechanism rules will yield. Thus the role of the designer is
to ensure that the Nash equilibria correspond to situations
in which high market efficiency is obtained.

We can view mechanism design as a multi-objective op-
timization problem. We consider as a separate dimension
each problem variable we are interested in maximising (for
example, market efficiency, seller revenue and so on), and the
difficulty lies in simultaneously maximising as many dimen-
sions as possible. The designer’s task is to choose mechanism
rules which pareto-optimise different market variables when
traders play Nash-equilibrium strategies. However, there are
a number of problems beginning with computing the Nash
equilibria:

1. Agents with limited computational power (i.e., “bound-
ed rationality” constraints) may be unable to compute
their Nash-equilibrium strategy;

2. Even with vast amounts of computational and analytic
power, many games defy solution; e.g., in the case of
the k-double-auction, analytical techniques have yet to
yield a solution;

3. Empirical evidence shows that human agents often fail
to coordinate on Nash-equilibria for very simple games
whose solution is easily derivable under bounded-ration-
ality assumptions; and

4. Often a given game will yield a multitude of Nash so-
lutions and there is little guidance for practitioners
on choosing plausible subsets thereof as predicted out-
comes.

These difficulties with the standard theory of games have
led to the development of a field known as cognitive game
theory, in which models of learning play a central role in ex-
plaining and predicting strategic behaviour. Erev and Roth
show how simulations of agents equipped with a simple re-
inforcement learning algorithm can explain and predict the
experimental data observed when human agents play a di-
verse range of trading games. Such multi-agent reinforce-
ment learning models form the basis of our solution concept
for optimising mechanism designs. Rather than computing
the theoretical equilibria for a given point in the mechanism
search space, we run a number of multi-agent simulations
using agents equipped with a learning algorithm that de-
termines their bidding strategies. The stationary points in
these simulations — the states where the learning algorithms
of all agents have converged — correspond to the equilibria
of classical game theory, and the market outcomes in these
stable states can be viewed as predictions.
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Note that we are not attempting to find theoretically op-
timal strategies for our agents!. Rather, we are attempting
to predict how boundedly-rational agents, who have no prior
knowledge of an equilibrium solution nor the means to cal-
culate one, might actually play against the mechanism we
are (automatically) designing. For this reason, we chose to
use the Roth-Erev algorithm , since it forms the basis of a
cognitive model of how people actually behave in strategic
environments. In particular it models two important prin-
ciples of learning psychology:

o Thorndike’s law of effect — choices that have led to
good outcomes in the past are more likely to be re-
peated in the future; and

e The power law of practice — learning curves tend to
be steep initially, and then flatter.

3. RESULTS

Figure 1 shows the mean fitness of a set of k-CDA mecha-
nisms for 100 values of k in the interval [0, 1] at intervals of
0.01. Each sample consisted of 100,000 runs of the auction
simulation with different seeds for the random number gen-
erator. In each simulation we pit 6 buyers against 6 sellers
over a period of 1,000 rounds of trading. Fitness is defined
as a linear sum of buyer market-power, seller market-power
and overall market efficiency, normalised to lie in the range
[0, 1] where higher values indicate better mechanisms. The
software used to run this experiment is available for down-
load at:

http://www.csc.liv.ac.uk/~sphelps/jasa.

Also available at the same URL is the full version of this
paper, in which we demonstrate the evolution of a k=0.5
CDA using genetic programming.
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