
Towards robust multi-agent systems: Handling communication exceptions in
double auctions

Simon Parsons
Dept of Comp and Info Science

Brooklyn College,
Brooklyn, NY 11210, USA.

parsons@sci.brooklyn.cuny.edu

Mark Klein
Center for Coordination

Massachusetts Institute of Technology
Cambridge, MA 02142, USA

m klein@mit.edu

Abstract

This paper addresses an important question in the de-
velopment of multi-agent systems—how can we create ro-
bust systems out of the often unreliable agents and infras-
tructures we can expect to find in an open systems’ context?
Here we examine an approach based on distinct exception
handling services, and apply it to systems performing re-
source allocation by means of a double auction. The excep-
tion handling system provides protocol-specific but domain
independent strategies for monitoring the auction, and for
ameliorating problems when they occur. We describe a num-
ber of experiments that suggest the exception handling ap-
proach works well for various kinds of message loss in dou-
ble auctions.

1. Introduction

This paper studies the following question. “How can we
develop robust multi-agent systems from the kind of unreli-
able agents and infrastructures—whether buggy, malicious,
or just dumb—we can expect to have to deal with in the
context of open systems?”. This is an increasingly impor-
tant question because of the emerging changes in the way
that human organizations work.

One result of globalization, coupled with the increasing
power and ubiquity of cheap telecommunications, is that
organizations are under increasing pressure to re-configure
within short time-frames. This can have the effect of bring-
ing together partners who have never worked together be-
fore, and force these partners to make their infrastructure
inter-operate in ways that it was never designed to. Exam-
ples of this requirement can be found in military coalitions,
disaster recovery operations, open electronic marketplaces
and virtual supply chains [7, 35, 37]. One way to deal with
the challenge of enabling this interoperation is to build the

infrastructure as a multi-agent system, and benefit from the
ability of such systems to dynamically self-organize as their
tasks and constituents change [17]. However, a critical prob-
lem remains.

Much of the work in multi-agent systems has considered
closedsystems in which well-behaved agents have run on
reliable infrastructures in relatively simple domains [13].
Both agents and infrastructure have been developed for a
specific multi-agent system, and have been engineered to
work together. These assumptions do not hold for theopen
systems described above, where agents may have been de-
veloped by many different organizations and must be able
to operate on whatever infrastructure is provided.

For open contexts, we can expect to have to deal with the
following problems:

• Unreliable infrastructureIn large distributed systems
like the Internet, unpredictable host and communica-
tion problems can cause agents to slow down or die
unexpectedly, and messages to be delayed, garbled or
lost. These problems become worse as the applica-
tions increase in size, because of the growth in pos-
sible points of failure.

• Non-compliant agentsIn open systems, agents are de-
veloped independently, come and go freely, and cannot
always be trusted to follow the rules properly due to
bugs or even outright malice. This can be expected to
be especially prevalent and important in e-commerce
or military scenarios where the incentives for fraud or
malice can be considerable1.

• Emergent dysfunctionIn large, multi-agent systems in-
teractions between agents are complex and using the
kinds of coordination mechanisms that have proved

1 Note that “fraud” here is meant in terms of collusive behavior rather
than deviation from bidding at one’s private value for a good—in other
words in the sense that is usually not considered in market design.



popular can lead to chaotic behavior and other emer-
gent dysfunctions [39, 4].

These problems all give rise toexceptions, situations which
fall outside the normal operating conditions of the multi-
agent system.

This paper, building on previous work by the second au-
thor [24], considers the first of these problems in the con-
text of agents engaged in resource allocation using a dou-
ble auction. This is a scenario that one can imagine easily
arising in an open electronic market or supply chain. We fo-
cus on the specific matters of message loss and corruption,
complementing earlier work by the second author on agent
death [24].

2. Exception handling

Now, one way to deal with exceptions is to elaborate the
individual agents so that they are able to cope with all the
exceptions that they might face. Most previous research on
dealing with exceptions has taken this approach. For exam-
ple the contract net [33] includes an “immediate response
bid”, which allows an agent to determine whether receiv-
ing no response to its request for bids is due to all eligible
sub-contractors being busy (in which case a retry is appro-
priate) or due to the outright lack of subcontractors with the
necessary skills (in which case some other action needs to
be taken). Thissurvivalistapproach to exception handling
faces a number of serious shortcomings.

First, developing survivalist agents greatly increases the
burden on agent developers. For this to be an effective ap-
proach, all the agents have to include carefully coordinated
and provided with potentially complex mechanisms for ex-
ception handling. Agent developers have to anticipate and
correctly prepare for all exceptions an agent may face in
any environment it may have to operate in. Changing exist-
ing exception handling techniques is equally hard, since it
requires coordinated changes across many agents built by
many developers, and in general agents become harder to
maintain, understand, and reuse.

Second, the survivalist approach can lead to poor excep-
tion handling. In open systems it is always possible that
some agents won’t have the necessary exception handling
code, or may violate some of the assumptions built into the
exception handling operated by others. Agents might not,
for example, meet the assumption that they are fully rational
[31]—they may be buggy, or too computationally limited.
In addition, the best interventions—like killing an agent that
is broken—might not be easily implemented because agents
do not have the necessary authority, while detecting emer-
gent dysfunctions can be problem without a global view of
the system—something that it is hard for individual agents
to acquire without heavy bandwidth requirements.

In order to overcome these limitations Kleinet al.
[24] suggested attaining robustness by off-loading ex-
ception handling to distinct domain-independent ser-
vices. We refer to this as thecitizen approach, by anal-
ogy with the way that exceptions are handled in human
society. Citizens of such societies typically adopt rela-
tively simple and optimistic rules of behavior, and rely on a
range of social institutions (law enforcement, the legal sys-
tem, disaster relief agencies, the UN, and so on) to handle
most of the exceptions that arise. This results in gener-
ally better handling of exceptions than individual citizens
can manage—because the exception handling institu-
tions are specialised, widely accepted as legitimate, and
benefit from economies of scale—while placing few de-
mands upon them—like paying taxes and reporting crimes.

The key insight in the citizen approach is that highly
reusable anddomain independentexception handling ex-
pertise can be separated from the knowledge that agents
use to achieve their main tasks. There is considerable sup-
port for the validity of this idea. In the expert systems
field there is evidence that it is useful to separate domain-
specific knowledge from generic control information [12,
2], and that the same is true in collaborative design con-
flict management [21] and managing exceptions in work-
flow applications [22]. Previous work on the citizen ap-
proach has found that every coordination protocol has its
own set of domain-independent exceptions, and that these
can be turned into domain-independent strategies for han-
dling exceptions [24]. This paper extends this earlier work
to a new set of coordination protocols—auction protocols—
identifying a new set of exceptions and exception handling
mechanisms. Due to the popularity of auctions in the agents
community, we believe that these results will be interest-
ing to a large number of agent developers.

3. Exception handling in double auctions

3.1. Exceptions and double auctions

Double auctions are markets that include both buyers and
sellers. A classic example of a double auction was the trad-
ing pit at the old Chicago Board of Trade. Here buyers and
sellers, or rather human agents operating on their behalf,
would call out offers,bids—offers to buy a good at a given
price—orasks—offers to sell a good at a given price. Al-
though such markets have long since become electronic, the
same basic principles apply with buyers and sellers “gather-
ing” in a virtual space in which bids and asks are broadcast.
When a bid is greater than an ask, a trade is possible, and
a price between thebid price and theask priceis decided
on as thetrade price. This is acontinuousdouble auction
in which a trade is possible after every offer, anotherperi-



auctioneer
..
.

buyer 1

buyer 2

buyer n

..

.

seller 1

seller 2

seller n

Figure 1. The basic architecture of the double
auction

odicvariant of the double auction collects bids and asks un-
til some deadline and then finds possible trades [8].

The wide applicability of auctions as resource-allocation
mechanisms [5] and the fact that double auctions can be
composed into supply chains have led to a great deal of in-
terest in double auctions within the agents community. In-
deed, following Smith [34], there has been much investiga-
tion of double auctions within both the fields of economics
and computer science. This work has primarily tried to iden-
tify what makes double auctions effective [10, 25, 34], to
find ways of analysing optimal behavior in a double auc-
tion [11, 32, 38], and to identify efficient bidding strategies
for double auctions [5, 9, 27, 29]. The only work we are
aware of on ensuring robustness in double auctions is that
which looks to explain how such auctions are effective—
that is provide highallocative efficiencyand ensure prices
are set close to the theoretical equilibrium—even with a
small number of traders (since the underlying theory only
guarantees such properties [10, 25, 34] for many traders).

As already stated, the investigation of exceptions ex-
plored in this paper concentrates on the first class of ex-
ceptions listed above—unreliable infrastructure. We consid-
ered that in practice2 agents participating in an auction will
be physically somewhat removed from the auction site and
communicate with it through some form of message pass-
ing. The overall architecture of the kind of system we con-
sider is shown in Figure 1 with the auctioneer agent taken
as embodying the functions of the auction market. There are
several different types of message that need to be sent be-
tween auctioneer and the traders.

• Bid callsMessages indicating that buyers should start

2 This is in contrast to the experimental conditions used by most work-
ers on double auctions—[36], where asynchronous communication
is considered, being an honourable exception—who have run exper-
iments in which communication between agents is consideredto be
synchronous, instantaneous, and completely reliable, understandably
since their focus is entirely on the behavior of the bidding aspects of
the agents.

buyer 1

buyer 2

buyer n

..

. ..
.

seller 1

seller 2

seller n

sentinel

sentinel

sentinel

auctioneer

sentinel

sentinel

sentinel

sentinel

Figure 2. The architecture of the double auc-
tion with exception handling facilities

bidding.

• Ask callsMessages indicating that sellers should start
asking.

• BidsOffers to buy.

• AsksOffers to sell.

• Quote PricesIndicators of the price of the last trade.

• Winner messagesIndicators that the addressee has pro-
vided a winning ask or bid.

Any of these messages can then be lost, delivered late, or
corrupted, and these are exactly the exceptions that we con-
sider in this paper.

To provide a citizen approach to exception handling we
also define an exception handling infrastructure, which, fol-
lowing the approach in [24], associates asentinelwith every
agent, resulting in a system like that in Figure 2. These sen-
tinels can then provide exception handling services. For ex-
ample, a sentinel for a trader can identify the loss of a bid
or ask call message intended for that trader (which would
otherwise shut that trader out of the auction) by spotting
messages (like quote prices) that indicate the auction is in
progress that are being transmitted to the agent. It can then
work with the auctioneer sentinel to ensure that its agent is
included in the auction by having the necessary call mes-
sage be resent. As another example, sentinels can handle
corrupted messages. Assuming that corruption is introduced
stochastically on the link between the sentinels (sentinels
are presumed to run on the same machines as the agents
they are watching so this is reasonable), a sentinel can iden-
tify a corrupted message and organise for it to be resent by
the sentinel of the issuing agent.

Note that in order to provide the exception handling ser-
vices, the sentinel need have no access to the internal state
of the agent it is associated with. Indeed, the essence of the
approach is that it does not have such access. In our first
example, the sentinel needs only to know the type of the
messages being transmitted, and in the second need only



perform a parity check. Other exception handling services
(such as detecting fraudulent behavior on the part of the auc-
tioneer) may require sentinels to “look inside” messages,
but to do this the sentinel has no more access to informa-
tion than, for example, the auctioneer does.

The advantage of the citizen approach is that the mecha-
nisms for detecting and resolving the exceptions, the excep-
tion handlers, are generic. Exactly the same mechanisms
can be used for other classes of auction since (as described
elsewhere [26]) the specific exceptions that are detected and
resolved by for a double auction may be found across all
kinds of auction, and so may be handled by the same mech-
anisms. Indeed, these kinds of exception—exceptions due
to message delay, loss and corruption—will be common to
all coordination mechanisms operating over unreliable in-
frastructures, and potentially the same handlers can be used
for a wide range of multi-agent systems.

3.2. A general approach to exception handling

The way that we have built the auction exception han-
dlers explicitly acknowledges this. Klein’s previous work
has described how knowledge about multi-agent coordina-
tion mechanisms can be described in the framework of the
MIT Process Handbook3, a repository of taxonomic infor-
mation about general business processes—the tasks carried
out and the exceptions that may occur. Building on this we
have added knowledge of mechanisms for detecting and re-
solving exceptions in coordination mechanisms in this same
framework, and furthermore have added knowledge about
the specific exception handling mechanisms discussed here.

The Process Handbook does more than provide ab-
stract knowledge of the different process components
and capture the relationship between them. In the seg-
ment that we built during our work on auctions, we in-
cluded the code that detects—thedetection handlers—and
the code that resolves—theresolution handlers—the excep-
tions. This structure can then be used by the agent sentinels
to handle exceptions (the precise approach we use is de-
tailed in [23]). When the sentinels are created, they are
informed of the kinds of exception that they should be try-
ing to detect. They use the process taxonomy to iden-
tify what detection handlers should be used to do this for
the specific kind of coordination mechanisms they are sur-
veying, and then load the detection handlers. When the de-
tection handlers first encounter a specific kind of exception,
they use the process taxonomy to locate the correct resolu-
tion handler to resolve the exception, and then load and run
it.

This method adds a further level of generality to the citi-
zen approach to exception handling. In our experiments the

3 http://ccs.mit.edu/ph/

taxonomy was included as part of the local system on which
all the agents were running, but it could equally well be in
some remote location. This offers a number of advantages.

The main advantage of this approach is that it makes the
development of sentinels very easy. They do not need to be
programmed with any exception handlers. They just have to
be programmed with the knowledge that they need to load
and apply handlers at certain points. For example, our sen-
tinels are programmed to run any detection handlers relat-
ing to messages in every message they pass. The handlers
themselves take care of knowing about, and calling, the req-
uisite resolution handlers.

The second advantage is that sentinels (and thus the
agents they survey) do need to be altered in any way when
they switch between different coordination mechanisms.
All they need to do is to load the new handlers. Indeed, they
don’t even need to know what handlers are required—this
information can be stored with the handlers, and all the sen-
tinel needs to do is to request a list of handler names for the
new kind of mechanism. When the mechanism start run-
ning, the detection handlers are loaded, and when excep-
tions occur, resolution handlers are loaded.

This lazy approach to loading the handlers then pro-
vides a third advantage. Updating handlers is straightfor-
ward. The new handler is just added to the central repos-
itory, and will be automatically uploaded into exactly the
sentinel that needs it, when it is required.

All these advantages are, of course, just the classic ad-
vantages of making problem solving knowledge declarative
as far as possible rather than purely procedural.

As it stands, our implementation provides detection and
resolution handlers for lost bid and ask calls, and for corrupt
messages which work as described above. We also have de-
tectors for lost trade messages (the auctioneer sentinel re-
ceives a bid from an agent to which a winner message has
been sent) and resolvers for this exception (the trade mes-
sage is resent), and detectors for exceptions in auctioneer
behavior—where the auctioneer matches bids and asks in-
correctly, or sets the wrong price. These latter two detectors
involves the auctioneer sentinel recording incoming bids
and asks, duplicating the correct behavior of the auction-
eer, and then checking the outgoing messages against its
own computations. The exceptions can then be resolved by
having the sentinel substituting a message based on its com-
putation for that of the auctioneer.

4. Empirical work

4.1. Experimental setup

We tested this approach to exception handling in the con-
text of a small simulated double auction market. The auc-
tion simulator is designed to be extremely flexible, allow-



ing many different auction configurations to be examined.
We will report results across the full range of possibilities
in due course. For now we describe some preliminary ex-
periments.

All the experiments we describe here involve a market
of 10 buyers and 10 sellers, each of which is trading a sin-
gle good and has a randomly selected private value. Each
auction is run once, so we do not measure results over sev-
eral periods. Because we are simulating an unreliable infras-
tructure, and so simulate that infrastructure, messages take
time to travel from agent to auctioneer and from auctioneer
to agent. Traders also bid asynchronously—each starts bid-
ding/asking some random time after the receipt of a bid/ask
call, and updates its bid/ask when it chooses to.

Our traders can use a range of mechanisms to pick their
offer. While it is possible to create markets in which differ-
ent agents use different mechanisms, so far we have only
studied homogeneous markets. The strategies we use are
the familiar zero-intelligence strategies of Gode and Sunder
[10], both constrainedZIC and unconstrainedZIU4, Cliff’s
zero-intelligence plusZIP strategy [5], Preist and Van Tol’s
[27] variation onZIP, and a variation of our own which we
call the “dumb trader” (this was designed to be robust and
easy to implement rather than particularly effective5).

With this setup, we ran experiments in which we intro-
duced two main kinds of error. First we ran a series of auc-
tions in which there were no errors. Then we introduced er-
rors in the initial broadcast by the auctioneer of calls for
bids, so that some agents were not informed of the start of
the auction, but turned off the resolution handlers which re-
sponded to the detection of these errors (the detection han-
dlers were still run, though equally well they they could be
turned off). Then we ran a third set of experiments in which
the same error was introduced at the same rate, but the res-
olution handlers were also run. We then repeated the pro-
cess for an error in which the content of messages was cor-
rupted.

4.2. Results

The results of these experiments are shown in Figures 3–
6. For each experiment we use two metrics of market per-
formance. One isallocative efficiency—a measure of how
well the market runs. We measure this as a ratio of the profit
made during the auction to the profit that could be made if
the agents traded in the most efficient way (if each offered at
its private value, and the traders were matched to maximise

4 A zero-intelligence trader picks a random offer within a predefined
range of possible prices. The unconstrained trader bids or asks this
price. The constrained buyer will bid no more than its private value,
and the constrained seller will ask no less than its private value.

5 It can be thought of as a simple-minded version ofZIP—it decreases
an initial profit margin by a predetermined amount when a previous
offer fails to win a good.

the profits obtained). This provides a measure of the effec-
tiveness of the market in economic terms. The second mea-
sure is the number of messages sent during the course of the
auction. This gives a computational measure of efficiency—
how many resources the auction consumes in a run. All
measures are plotted with standard deviations after 200 iter-
ations (except for theZIP results for corrupt data which are
based on 75 iterations). These results show the broad effec-
tiveness of the exception handling approach for auctions.

For all bidding mechanisms exceptZIU, the loss of some
bid calls causes a significant drop in efficiency (exactly as
one might expect). This indicates that this is an exception
that needs to be handled by the operators of the market—
without fixes, traders in such auctions will lose profits, and
may well move to other exchanges. When the exception is
resolved, for all trading strategies exceptZIP, efficiency is
restored to a level that is not significantly different to the
level without exceptions. For the case ofZIP, the efficiency
may not be entirely restored by the resolution handler—we
need more data (which we are currently collecting) to deter-
mine if this difference is significant.

ZIU is impervious, at least within the bounds of what is
statistically significant, to the bid-call loss exception just be-
cause it is so bad at extracting profit from the market (or
rather, because it is so stochastic). Taking agents out of the
auction is as likely to reduce the chance to make a loss as it
is to make a profit.

Turning to the number of messages sent, the introduc-
tion of bid-call losses has the expected impact. Since some
traders are taken out of the market, the number of messages
falls. The important conclusion we can reach is that the res-
olution handler does not create a significant computational
overhead (not that we would expect it to). When the han-
dler is run, the number of messages returns to a level that is
not significantly different to that without the exceptions.

Corrupt message errors at this rate of incidence have a
much smaller effect on efficiency than bid call losses. This
is understandable. The agents are all bidding (the corrupt
messages are just bid and asks), so the only real impact on
efficiency will be when an trader makes what would have
been a winning offer, only to have that offer corrupted. We
would only really expect these exceptions to hurt strategies
like ZIP and the Preist and van Tol strategy since they are
the only ones that try to take detailed account of how fail-
ure to win a good should affect the next offer. These strate-
gies show some loss of efficiency, but nothing too signifi-
cant. (“Dumb” takes account of failure to win a good too,
but in such a naive way that it is not surprising that a subtle
effect is missed.) When the corrupt message exception han-
dlers are turned on, any loss in efficiency is erased. Again
this confirms the effectiveness of the handlers.

Looking at the number of messages passed for this sec-
ond experiment confirms what one would expect. When



-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

ziu zic dumb zip preist

Figure 3. Results of the bid-call loss experi-
ments (a): Efficiency

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

ziu zic dumb zip preist

Figure 4. Results of the bid-call loss experi-
ments (b): Messages

messages are getting corrupted more are sent (because the
total includes the corrupt messages and extra messages that
are needed to replace the corrupted messages that would
otherwise have secured trades) and this number broadly
rises again when the handlers are switched on. This indi-
cates that there is an expense in running the handlers (un-
like the case for the bid-call loss handler).

Two other observations, more general than those about
the exception handlers, are worth making here. One is that
the Preist and van Tol strategy does surprisingly badly
across the board. We suspect this is due to the random val-
ues that agents have for their goods since efficiencies over-
all are below what one would expect in more structured
markets. However, if this is the case, it makes it surpris-
ing that the similarZIP strategy does comparatively well.
This is something else we will investigate more in the fu-
ture. The second observation is the message cost of run-
ning ZIP and Preist and van Tol traders compared with the
simpler traders in our markets—the adaptation achieved by
such strategies comes a price.

-0.1

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

ziu zic dumb zip preist

Figure 5. Results of the corrupt message ex-
periments (a): Efficiency

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

ziu zic dumb zip preist

Figure 6. Results of the corrupt message ex-
periments (a): Messages

5. Related work

The work described here is clearly very close to
Kaminka’s work on execution monitoring [18, 19, 20]
(and also [3] which builds on it). In execution monitor-
ing, agents have a normative model of a process (which
is basically a plan that all the agents are meant to be fol-
lowing) and use this to detect variations from the norm
by some of their peers. Since team members are as-
sumed to be both cooperative and under the control
of the same organization, this work is set in the con-
text of closed rather than open systems. That is one point of
contrast with out work.

Now, the execution monitoring problem requires the
agents identifying exceptions to infer the plan of the peer
they are considering (since the former agents don’t neces-
sarily know which plan the latter is meant to be following),
and this means carrying out successful plan recognition. To
do this the agents require a lot of detailed knowledge about
the domain and the intentions of their peers, whereas the ex-



ception handling approach only requires very general infor-
mation about the infrastructure and the coordination mech-
anism. As a result, execution monitoring can probably do
more in the way of handling problems in a narrow domain
(while requiring a whole new knowledge base to handle a
different domain) while exception handling can do less in a
particular domain, but is applicable across a wide range of
domains with little alteration.

In this respect our work, just like Kaminka’s (as ac-
knowledged in [20]) is an outgrowth of work on planning
[6] that sought to ensure the correct outcome of a plan by
checking that it was unfolding successfully (this was in the
days in which planning was carried out without considering
the inherent uncertainty in action execution when building
the plan, but acknowledging that the plan might fail exactly
because of this uncertainty). This work unfolded through
a series of papers [30], [14], [28], and by the end the ba-
sic model was exactly that which we follow. Each keystone
provides a checkpoint where expected progress is checked
against actual progress, and a problem flagged up if one ex-
ists. However, our work goes further in fixing the exceptions
once they are detected.

Since our work is concerned with finding handlers to
overcome the exceptions, and to then get the system be-
ing monitored running again, our work is very much in the
same domain asCIRCA [1]. However, an important differ-
ence is that whileCIRCA tries to deal with states that are
“unplanned for” our approach has the long term aim of en-
gineering the very idea of “unplanned for” states out of
existence by providing a compact knowledge base of gen-
eral purpose processes to handleanyunplanned states that
emerge. Another important difference betweenCIRCA and
our approach is that the former assumes access to the inter-
nal state of the agents being monitored.

Finally, we can relate our approach to [15, 16]. Once
again there is a close relation between the two approaches,
but with a rather different emphasis. Both approaches make
use of a causal model of a system in order to diagnose prob-
lems with it, and both make use of this diagnosis to over-
come the problem. However, [15, 16] once again seems in-
tended to operate in a closed system, and only considers a
single exception—inadequately managed dependencies be-
tween a set of fully cooperative agents. It can therefore be
subsumed by our approach.

6. Conclusions

This paper studied the question “How can we develop
robust multi-agent systems from unreliable components?”,
and proposed the use of domain-independentexception han-
dling services as a solution. In the context of multi-agent
systems that implement double auctions, we showed em-

pirically that the particular exception handling approachwe
describe here is able to provide this robustness.

While the idea of using exception handling services is
not novelper sesince it was suggested in previous work
by the second author, there is still considerable novelty in
this paper. First, we have extended the kinds of exception
handling service beyond handling agent death exceptions to
handling infrastructure issues like the unreliability of com-
munication. This provides support for the generality of the
exception handling approach. Second, we have extended
the kinds of coordination mechanism covered by exception
handling from the rather specific contract net model, to the
much more general double auction model (indeed the same
framework could be used to handle single sided-auctions
without much alteration). This provides results that will be
of interest to the large number of researchers who are inter-
ested in auctions.

Acknowledgments

This work was partially supported by NSF IIS-0329037,
and by HP under the “Always on” grant.

References

[1] E. Atkins, E. H. Durfee, and K. G. Shin. Detecting and re-
acting to unplanned-for world states. InProceedings of the
14th National Conference on Artificial Intelligence, 1997.

[2] J. A. Barnett. How much is control knowledge worth? A
primitive example.Artificial Intelligence, 22:77–89, 1984.

[3] B. Browning, G. A. Kaminka, and M. M. Veloso. Principled
monitoring of disributed agents for detection of coordination
failure. In Proceedings of Distributed Autonomous Robotic
Systems, 2002.

[4] M. H. Chia, D. E. Neiman, and V. R. Lesser. Poaching and
distraction in asynchronous agent activities. InProceedings
of the Third International Conference on Multi-Agent Sys-
tems, Paris, France, 1998.

[5] D. Cliff and J. Bruten. Minimal-intelligence agents forbar-
gaining behaviours in market-based environments. Techni-
cal Report HP-97-91, Hewlett-Packard Research Laborato-
ries, Bristol, England, 1997.

[6] R. Doyle, D. Atkinson, and R. Doshi. Generating perception
requests and expectations to verify the execution of plans.In
Proceedings of the National Conference on Artificial Intelli-
gence, 1986.

[7] K. Fischer, J. P. Müller, I Heinmig, and A-W. Scheer. In-
telligent agents in virtual enterprises. InProceedings of the
First International Conference on the Practical Applications
of Intelligent Agents and Multi-AgentTechnology, Blackpool,
UK, 1996.

[8] D. Friedman. The double auction institution: A survey. In
D. Friedman and J. Rust, editors,The Double Auction Mar-
ket: Institutions, Theories and Evidence, Santa Fe Institute
Studies in the Sciences of Complexity, chapter 1, pages 3–
25. Perseus Publishing, Cambridge, MA, 1993.



[9] S. Gjerstad and J. Dickhaut. Price formation in double auc-
tions. Games and Economic Behaviour, 22:1–29, 1998.

[10] D. K. Gode and S. Sunder. Allocative efficiency of mar-
kets with zero-intelligence traders: Market as a partial susti-
tute for individual rationality.The Journal of Political Econ-
omy, 101(1):119–137, February 1993.

[11] D. K. Gode and S. Sunder. Lower bounds for efficiency of
surplus extraction in double acuctions. In D. Friedman and
J. Rust, editors,The Double Auction Market: Institutions,
Theories and Evidence, Santa Fe Institute Studies in the
Sciences of Complexity, chapter 7, pages 199–219. Perseus
Publishing, Cambridge, MA, 1993.

[12] T. R. Gruber. A method for acquiring strategic knowledge.
Knowledge Acquisition, 1:255–277, 1989.

[13] S. Hägg. A sentinel approach to fault handling in multi-agent
systems. InProceedings of the Second Australian Workshop
on Distributed AI, Cairns, Australia, 1996. Workshop held in
conjunction with the Fourth Pacific Rim Conference on Ar-
tificial Intelligence.

[14] D. Hart, S. Anderson, and P. Cohen. Envelopes as a vehi-
cle for improving the efficiency of plan execution. InPro-
ceedings of the DARPA Workshop on Innovative Approaches
to Planning, Scheduling and Control, 1990.

[15] B. Horling, B. Benyo, and V. Lesser. Using self-diagnosis
to adapt organizational structure. InProceedings of the 5th
International Conference on Autonomous Agents, 2001.

[16] B. Horling, V. Lesser, R. Vincent, A. Bazzan, and P. Xuan.
Diagnosis as an integral part of multi-agent adaptability.
Technical Report 99-03, Department of Computer Science,
University of Massachusetts, January 1999.

[17] N. R. Jennings, K. P. Sycara, and M. Wooldridge. A roadmap
of agent research and development.Journal of Autonomous
Agents and Multi-Agent Systems, 1(1):7–36, 1998.

[18] G. A. Kaminka, D. V. Pynadath, and M. Tambe. Monitor-
ing deployed agent teams. InProceedings of the 5th Interna-
tional Conference on Autonomous Agents, 2001.

[19] G. A. Kaminka and M. Tambe. What is wrong with us? im-
proving robustness through social diagnosis. InProceedings
of the 15th National Conference on Artificial Intelligence,
1998.

[20] G. A. Kaminka and M. Tambe. I’m ok, you’re ok, we’re ok:
Experiments in distributed and centralized socially attentive
monitoring. InProceedings of the 3rd International Confer-
ence on Autonomous Agents, 1999.

[21] M. Klein. Supporting conflict resolution in cooperative
design systems. IEEE Systems, Man and Cybernetics,
21:1379–1390, 1991.

[22] M. Klein. Exception handling in process enactment systems.
Working paper, MIT Center for Coordination Science, Cam-
bridge, MA, December 1997.

[23] M. Klein and S. Parsons. Diagnosing faults in open
dstributed systems. Working paper, MIT Center for Coor-
dination Science, Cambridge, MA, February 2003.

[24] M. Klein, J. A. Rodriguez-Aguilar, and C. Dellarocas. Us-
ing domain-independent exception handling services to en-
able robust open multi-agent systems: The case of agent
death.Journal of Autonomous Agents and Multi-Agent Sys-
tems, 7(1/2), 2003.

[25] J. Nicolaisen, V. Petrov, and L. Tesfatsion. Market power
and efficiency in a computational electricity market with dis-
criminatory double-auction pricing.IEEE Transactions on
Evolutionary Computation, 5(5):504–523, 2001.

[26] S. Parsons. Exception analysis for double auctions. Work-
ing paper, MIT Center for Coordination Science, Cambridge,
MA, May 2002.

[27] C. Preist and M. van Tol. Adaptative agents in a persis-
tent shout double auction. InProceedings of the 1st Inter-
national Confernece on the Internet, Computing and Eco-
nomics, pages 11–18. ACM Press, 1998.

[28] G. Reece and A. Tate. Synthesizing protection monitorsfrom
causal structure. InProceedings of the Conference on Artifi-
cial Intelligence Planning Systems, 1994.

[29] J. Rust, J. H. Miller, and R. Palmer. Characterizing effec-
tive trading strategies.Journal of Economic Dynamics and
Control, 18:61–96, 1994.

[30] J. Sanborn and J. Hendler. A model of reaction for plan-
ning in dynamic environments.Artificial Intelligence in En-
gineering, 3(2):95–102, 1988.

[31] T. Sandholm, S. Sikka, and S. Norden. Algorithms for op-
timizing levelled commitment contracts. InProceedings of
the International Joint Conference on Artificial Intelligence,
Stockholm, Sweden, 1999.

[32] M. A. Satterthwaite and S. R. Williams. The Bayesian the-
ory of thek-double auction. In D. Friedman and J. Rust, edi-
tors,The Double Auction Market: Institutions, Theories and
Evidence, Santa Fe Institute Studies in the Sciences of Com-
plexity, chapter 4, pages 99–123. Perseus Publishing, Cam-
bridge, MA, 1993.

[33] R. G. Smith and R. Davis. Distributed problem solving: The
contract net approach. InProceedings of the Second National
Conference of the Canadian Society for Computational Stud-
ies of Intelligence, 1978.

[34] V. L. Smith. An experimental study of competitive market
behaviour. The Journal of Political Economy, 70(2):111–
137, April 1962.

[35] A. Tate, editor. Proceedings of the International Workshop
on Knowledge-based Planning for Coalition Forces, Edin-
burgh, Scotland, 1999.

[36] G. Tesauro and R. Das. High-performance bidding agents
for the continuous double auction. InProceedings of the 3rd
ACM Conference on Electronic Commerce, pages 206–209,
2001.

[37] M. B. Tsvetovatyy, M. Gini, B. Mobasher, and Z. Wieck-
owski. Magma: An agent-based virtual marketplace for elec-
tronic commerce. Applied Artificial Intelligence, 11:501–
524, 1997.

[38] W. E. Walsh, R. Das, G. Tesauro, and J. O. Kephart. Ana-
lyzing complex strategic interactions in multi-agent systems.
In P. Gymtrasiwicz and S. Parsons, editors,Proceedings of
the 4th Workshop on Game Theoretic and Decision Theo-
retic Agents, 2001.

[39] M. Youssefmir and B Huberman. Resource contention in
multi-agent systems. InProceedings of the First Interna-
tional Conference on Multi-AgentSystems, San Francisco,
CA, 1995.


