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ABSTRACT

We present a novel method for automatically acquiring strate-
gies for the double auction by combining evolutionary op-
timization together with a principled game-theoretic anal-
ysis. Previous studies in this domain have used standard
co-evolutionary algorithms, often with the goal of search-
ing for the “best” trading strategy. However, we argue that
such algorithms are often ineffective for this type of game
because they fail to embody an appropriate game-theoretic
solution-concept, and it is unclear, what, if anything, they
are optimizing. In this paper, we adopt a more appropriate
criterion for success from evolutionary game-theory based on
the likely adoption-rate of a given strategy in a large popula-
tion of traders, and accordingly we are able to demonstrate
that our evolved strategy performs well.
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1. INTRODUCTION

The automatic discovery of game-playing strategies has
long been considered a central problem in Artificial Intel-
ligence. The standard technique in evolutionary comput-
ing for discovering new strategies is co-evolution, in which
the fitness of each individual in an evolving population of
strategies is assessed relative to other individuals in that
population by computing the payoffs obtained when the se-
lected individuals interact. Co-evolution can sometimes re-
sult in arms-races, in which the complexity and robustness of
strategies in the population increases as they counter-adapt
to adaptations in their opponents.

Often, however, co-evolutionary learning can fail to con-
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verge on robust strategies. In this paper we explore some of
the limitations of current co-evolutionary algorithms, and we
introduce a novel method for automated strategy-acquisition
by combining a game-theoretic analysis together with an
evolutionary search involving a single non-coevolving popu-
lation. The novel aspect of our method is that rather than
using payoffs to individual strategies as our fitness function,
we instead use the size of their basin of attraction under an
evolutionary game-theoretic analysis. We apply our method
to the double auction market [6]: a domain which has long
served as a benchmark problem in understanding strategic-
interactions in multi-agent systems.

The outline of this paper is as follows. In Sections 2 and
3 we give a brief introduction to game theory and evolution-
ary game theory within the context of automated strategy-
acquisition. In Section 4 we review some of the weaknesses of
standard co-evolutionary algorithms from the perspective of
game-theory. In Section 5 we give a brief overview of a tech-
nique called heuristic-strategy approximation, also known
as empirical game theory, on which our method is based,
and discuss how it is able to overcome some of the limita-
tions of co-evolutionary algorithms when analysing strate-
gic interactions amongst existing well-known strategies for
a given game. In Section 6 we perform a heuristic-strategy
analysis on a variant of the double auction market called
a clearing-house. In Section 7 we describe our novel con-
tribution to this domain; viz, how we are able to combine
heuristic-strategy analysis and evolutionary search in order
to automatically acquire new strategies for the double auc-
tion game, and finally in sections 8 and 9 we discuss our
results.

2. NASH EQUILIBRIUM

The failure of certain types of co-evolutionary algorithms
to converge on robust strategies in certain scenarios is well
known, and has many possible causes; for example, the pop-
ulation may enter a limit cycle if strategies learnt in earlier
generations are able to exploit current opponents and cur-
rent opponents have “forgotten” how to beat the revived liv-
ing fossil. Whilst many effective techniques have been devel-
oped to overcome these problems, there remains, however,
a deeper problem which is only beginning to be addressed
successfully. In some games, such as Chess, we can safely
bet that if player A consistently beats player B, and player
B consistently beats player C, then player A is likely to beat



player C. Since the dominance relationship is transitive, we
can build meaningful rating systems for objectively rank-
ing players in terms of ability, and the use of such ranking
systems can be used to assess the “external” fitness of strate-
gies evolved using a co-evolutionary process and ensure that
the population is evolving toward better and better strate-
gies. In many other games, however, the dominance graph is
highly intransitive, making it impossible to rank strategies
on a single scale. In such games, it makes little sense to talk
about “best”, or even “good”, strategies since even if a given
strategy beats a large number of opponent strategies there
will always be many opponents that are able to beat it. The
best strategy to play in such a game is always dependent on
the strategies adopted by one’s opponents.

Game theory provides us with a powerful concept for rea-
soning about the best strategy to adopt in such circum-
stances: the notion of a Nash equilibrium. A set of strate-
gies for a given game is a Nash equilibrium if, and only if,
no player can improve their payoff by unilaterally switching
to an alternative strategy.

If there is no dominant strategy' for the game, then we
should play the strategy that gives us the best payoff based
on what we believe our opponents will play. If we assume
our opponents are payoff maximisers, then we know that
they will play a Nash strategy set by reductio ad absur-
dum; if they did not play Nash then by definition at least
one of them could do better by changing their strategy, and
hence they would not be maximising their payoff. This is
very powerful concept, since although not every game has
a dominant strategy, every finite game posseses at least one
equilibrium solution [8]. Additionally, if we know the entire
set of strategies and payoffs, we can deterministically com-
pute the Nash strategies. If only a single equilibrium exists
for a given game, this means that, in theory at least, we
can always compute the “appropriate” strategy for a given
game.

Note, however, that the Nash strategy is not always the
best strategy to play in all circumstances. For 2-player zero-
sum games, one can show that the Nash strategy is not ex-
ploitable. However, if our opponents do not play their Nash
strategy, then there may be other non-Nash strategies that
are better at exploiting off-equilibrium players. Addition-
ally, many equilibria may exist and in n-player non-constant-
sum games it may be necessary for agents to coordinate on
the same equilibrium if their strategy is to remain secure
against exploitation; if we were to play a Nash strategy from
one equilibrium whilst our opponents play a strategy from
an alternative equilibrium we may well find that our payoff
is significantly lower than if we had coordinated on the same
equilibrium as our opponents.

3. BEYOND NASH EQUILIBRIUM

Standard game theory does not tell us which of the many
possible Nash strategies our opponents are likely to play.
Evolutionary game theory [11] and its variants attack this
problem by positing that, rather than computing the Nash
strategies for a game using brute-force and then selecting one
of these to play, our opponents are more likely to gradually
adjust their strategy over time in response to to repeated
observations of their own and others’ payoffs. One approach

L A strategy which is always the best one to adopt no matter
what any opponent does.

to evolutionary game-theory uses the replicator dynamics
equation to specify the frequency with which different pure
strategies should be played depending on our opponent’s
strategy:

rivy = [u(e;, m) — u(m, m)|m; (1)

where 7 is a mixed-strategy vector, u(m,m) is the mean
payoff when all players play 7, and u(e;, ) is the average
payoff to pure strategy j when all players play m, and m;
is the first derivative of m; with respect to time. Strate-
gies that gain above-average payoff become more likely to
be played, and this equation models a simple co-evolutionary
process of mimicry learning, in which agents switch to strate-
gies that appear to be more successful.

For any initial mixed-strategy we can find the eventual
outcome from this co-evolutionary process by solving 1m; = 0
for all j to find the final mixed-strategy of the converged
population. This model has the attractive properties that:
(i) all Nash equilibria of the game are stationary points un-
der the replicator dynamics; and (ii) all focal points of the
replicator dynamics are Nash equilibria of the evolutionary
game.

Thus the Nash equilibrium solutions are embedded in the
stationary points of the direction field of the dynamics spec-
ified by equation 1. Although not all stationary points are
Nash equilibria, by overlaying a dynamic model of learning
on the equilibria we can see which solutions are more likely
to be discovered by boundedly-rational agents. Those Nash
equilibria that are stationary points at which a larger range
of initial states will end up, are equilibria that are more
likely to be reached (assuming an initial distribution that is
uniform).

This is all well and good in theory, but the model is
of limited practical use since many interesting real-world
games are multi-state?. Such games can be transformed into
normal-form games, but only by introducing an intractably
large number of pure strategies, making the payoff matrix
impossible to compute.

4. CO-EVOLUTION

But what if we were to approximate the replicator dynam-
ics by using an evolutionary search over the strategy space?
Rather than considering an infinite population consisting
of a mixture of all possible pure strategies, we use a small
finite population of randomly sampled strategies to approxi-
mate the game. By introducing mutation and cross-over, we
can search hitherto unexplored regions of the strategy space.
Might such a process converge to some kind of approxima-
tion of a true Nash equilibrium? Indeed, this is one way
of interpreting existing co-evolutionary algorithms; fitness-
proportionate selection plays a similar role to the replica-
tor dynamics equation in ensuring that successful strategies
propagate, and genetic operators allow them to search over
novel sets of strategies. There are a number of problems
with such approaches from a game-theoretic perspective,
however, which we shall discuss in turn.

Firstly, the proportion of the population playing different
strategies serves a dual role in a co-evolutionary algorithm
[4]. On the one hand, the proportion of the population play-
ing a given strategy represents the probability of playing

2The payoff for a given move at any stage of the game de-
pends on the history of play.



that pure strategy in a mixed-strategy Nash equilibrium.
On the other hand, evolutionary search requires diversity
in the population in order to be effective. This suggests
that if we are searching for Nash equilibria involving mixed-
strategies where one of the pure strategy components has
a high frequency, corresponding to a co-evolutionary search
where a high percentage of the population is adopting the
same strategy, then we may be in danger of over-constraining
our search as we approach a solution.

Secondly and relatedly, although the final set of strategies
in the converged population may be best responses to each
other, there is no guarantee that the final mix of strategies
cannot be invaded by other yet-to-be-countered strategies
in the search space, or strategies that became extinct in
earlier generations because they performed poorly against
an earlier strategy mix that differed from the final converged
strategy mix. Genetic operators such as mutation or cross-
over will be poor at searching for novel strategies that could
potentially invade the newly established equilibrium because
of the above problem. If these conditions hold, then the final
mix of strategies is implausible as a true Nash equilibrium
or ESS, since there will be unsearched strategies that could
potentially break the equilibrium by obtaining better payoffs
for certain players. We might, nevertheless, be satisfied with
the final mix of strategies as an approximation to a true
Nash equilibrium on the grounds that if our co-evolutionary
algorithm is unable to find equilibrium-breaking strategies,
then no other algorithm will be able to do so. However,
as discussed above, we expect a priori that co-evolutionary
algorithms will be particularly poor at searching for novel
strategies once they have discovered a (partial) equilibrium.

Finally, co-evolutionary algorithms employ a number of
different selection methods, not all of which yield population
dynamics that converge on game-theoretic equilibria [5].

These problems have led researchers in co-evolutionary
computing to design new algorithms employing game theo-
retic solution concepts [3]. In particular, [4] describe a game-
theoretic search technique for acquiring approximations of
Nash strategies in large symmetric 2-player constant-sum
games with type-independent payoffs. In this paper, we
address n-player non-constant-sum multi-state games with
type-dependent payoffs. In such games, playing our Nash
strategy (or an approximation thereof) does not guaran-
tee us security against exploitation, thus if there are mul-
tiple equilibria, it may be more appropriate to play a best-
response to the strategies that we infer are in play.

5. EMPIRICAL GAME-THEORY

Reeves et al. [1] and Walsh et al. [12] obviate many of the
problems of standard co-evolutionary algorithms by restrict-
ing attention to small representative sample of “heuristic”
strategies that are known to be commonly played in a given
multi-state game. For many games, unsurprisingly none of
the strategies commonly in use is dominant over the others.
Given the lack of a dominant strategy, it is then natural
to ask if there are mixtures of these “pure” strategies that
constitute game-theoretic equilibria.

For small numbers of players and heuristic strategies, we
can construct a relatively small normal-form payoff matrix
which is amenable to game-theoretic analysis. This heuristic
payoff matrix is calibrated by running many iterations of the
game; variations in payoffs due to different player-types (eg
black or white, buyer or seller) or stochastic environmental

factors (eg PRNG seed) are averaged over many samples of
type information resulting in a single mean payoff to each
player for each entry in the payoff matrix. Players’ types
are assumed to be drawn independently from the same dis-
tribution, and an agent’s choice of strategy is assumed to
be independent of its type, which allows the payoff matrix
to be further compressed, since we simply need to specify
the number of agents playing each strategy to determine
the expected payoff to each agent. Thus for a game with k
strategies, we represent entries in the heuristic payoff matrix
as vectors of the form

= (p1,-. - pk)

where p; specifies the number of agents who are playing the
ith strategy. Each entry p € P is mapped onto an outcome
vector ¢ € Q of the form

7= (qu;---qx)

where g; specifies the expected payoff to the ith strategy. For
a game with n agents, the number of entries in the payoff
matrix is given by

. (n'+k—1)! @)

nl(k —1)!

For small n and small k£ this results in payoff matrices of
manageable size; for kK = 3 and n = 6, 8, and 10 we have
s = 28, 45, and 66 respectively.

Once the payoff matrix has been computed we can sub-
ject it to a rigorous game-theoretic analysis, search for Nash
equilibria solutions and apply different models of learning
and evolution, such as the replicator dynamics model, in
order to analyse the dynamics of adjustment to equilibrium.

The equilibria solutions that are thus obtained are not
rigorous Nash equilibria for the full multi-state game; there
is always the possibility that an unconsidered strategy could
invade the equilibrium. Nevertheless, heuristic strategy equi-
libria are more plausible as models of real world game play-
ing than those obtained using a standard co-evolutionary
search precisely because they restrict attention to strategies
that are commonly known and are in common use. We can
therefore be confident that no commonly known strategy for
the game at hand will break our equilibrium, and thus the
equilibrium stands at least some chance of persisting in the
short term future.

Of course, once an equilibrium is established, the design-
ers of a particular strategy may not be satisfied with their
strategy’s adoption-rate in the game-playing population at
large. As [12] suggest, the designers of, for example, a par-
ticular trading strategy in a market game may have financial
incentives such as patent rights to increase their “market-
share” — that is, the proportion of players using their strat-
egy, or, in game-theoretic terms, the probability of their pure
strategy being played in a mixed-strategy equilibrium with
a large basin of attraction. They go on to propose a simple
methodology for performing such optimization using manual
design methods. A promising-looking candidate strategy is
chosen for perturbation analysis; a new, perturbed, version
of the original heuristic payoff matrix is computed in which
the payoffs of the candidate strategy are increased by a small
fixed percentage, thus modelling a hypothetical tweak to
the strategy that yields in a small increase in payoffs. The
replicator-dynamics direction field is then replotted to estab-
lish whether the hypothetically-optimized strategy is able to



to achieve a high adoption rate in the population. Strategy
designers can then concentrate their efforts on improving
those strategies that become strong attractors with a small
increase in payoffs.

In this paper, we extend this technique by using a genetic-
algorithm (GA) to automatically optimize candidate strate-
gies by searching for a hitherto-unknown best-response —
or, to use more appropriate nomenclature, a better-response
— to an existing mix of heuristic strategies. Rather than us-
ing a standard co-evolutionary algorithm to perform the op-
timization, we use a single-population GA where the fitness
of an individual strategy is computed from the heuristic-
strategy payoff matrix according to the basin size it yields
under the replicator dynamics.

6. THE DOUBLE-AUCTION

We apply our method to the acquisition of strategies for
the double auction [6]. The double auction is a generalisa-
tion of more commonly-known single-sided auctions, such as
the English ascending auction, which involve a single seller
trading with multiple buyers. In a double auction, we al-
low multiple traders on both sides of the market; as well as
soliciting offers to buy a good from buyers, that is bids, we
also solicit offers to sell a good from sellers, so called asks.
Variants of the double auction are commonly used in many
real-world market places such as stock exchanges in scenar-
ios where supply and demand are highly dynamic. Whilst
single-sided auctions are well-understood from a game the-
oretic perspective, double-sided auctions remain intractable
to a full game-theoretic analysis especially when there are
relatively few traders on each side of the market. Thus much
analysis of this game has focused on using heuristic methods
to explore viable bidding strategies.

In previous work [10], we used a heuristic-strategy analysis
to analyse two variants of the double auction market mecha-
nism populated with a mix of heuristic strategies, and were
able to find approximate game-theoretic equilibrium solu-
tions. In this paper, we use the same basic framework, but
we focus on the clearing-house double auction (CH) [6] with
uniform pricing, in which all agents are polled for their offers
before transactions take place, and all transactions are then
executed at the same market-clearing price. In this paper,
we consider only the following three heuristic-strategies. Fu-
ture work will use a more representative (and larger) set of
heuristic-strategies to optimize against.

e The truth-telling strategy (TT), whereby agents sub-
mit offers equal to their valuation for the resource be-
ing traded (in a strategy-proof market, TT will be a
dominant strategy);

e The Roth-Erev strategy (RE) — a strategy based on
reinforcement learning, described in [2] and calibrated
with the parameters specified in [9]; and

e The Gjerstad-Dickhaut strategy (GD) [7], whereby agents

estimate the probability of any bid being accepted
based on historical market data and then bid to max-
imize expected profit.

Since all mixed-strategy vectors lie in the unit-simplex,
for k = 3 strategies we can project the unit-simplex onto a
two dimensional space and then plot the switching between
strategies that occurs under the dynamics of equation 2.

Figure 1 shows the direction-field of the replicator-dynamics
equation for these three heuristic strategies, showing that we
have two equilibrium solutions. Firstly, we see that GD is
a best-response to itself, and hence is a pure-strategy equi-
librium. We also see it has a very large basin of attrac-
tion; for any randomly-sampled initial configuration of the
population most of the flows end up in the bottom-right-
hand-corner. Additionally, there is a second mixed-strategy
equilibria at the coordinates (0.88, 0.12, 0) in the simplex
corresponding to an 88% mix of TT and a 12% mix of RE,
however the attractor for this equilibrium is much smaller
than the pure-strategy GD equilibrium; only 6% of random
starts terminate here vs 94% for pure GD. Hence, according
to this analysis, we expect most of the population of traders
to adopt the GD strategy.

RE

TT GD

Figure 1: The original replicator dynamics direction
field for a 12-agent clearing-house auction with the
original unoptimized Roth-Erev strategy (labelled
RE).

How much confidence can we give to this analysis given
that the payoffs used to construct the direction-field plot
were estimated based on only 2 x 10% samples of each game?
One approach to answering this question is to conduct a
sensitivity analysis; we perturb the mean payoffs for each
strategy in the matrix by a small percentage to see if our
equilibria analysis is robust to errors in the payoff estimates.
Figure 2 shows the direction-field plot after we perform a
perturbation where we remove 2.5% of the payoffs from the
TT and GD strategies and assign +5% payoffs to the RE
strategy. This results in a qualitatively different set of equi-
libria; the RE strategy becomes a best-response to itself with
a large basin of attraction (61%), and thus we conclude that
our equilibrium analysis is sensitive to small errors in pay-
off estimates, and that our original prediction of widespread
adoption of GD may not occur if we have underestimated
the payoffs to RE.

If we observe a mixture of all three strategies in actual
play, however, the perturbation analysis also suggests that
we could bring about widespread defection to RE if were
able to tweak the strategy by improving its payoff slightly;
the perturbation analysis points to RE as a candidate for
potential optimization.



RE’

Equilibrium 1

Equilibrium 2

T GD

Figure 2: Replicator dynamics direction field for
a 12-agent clearing-house auction perturbed with
+5% payoffs to the Roth-Erev strategy (labeled
RE’)

7. STRATEGY ACQUISITION

In the previous section we described how we used heuristic-
strategy approximation to identify a candidate strategy for
optimization. We also introduced an intriguing metric for
ranking strategies on a single fully-ordered scale: viz, the
size of the strategy’s basin of attraction under the replica-
tor dynamics. In this section we use this metric to perform a
heuristic search of a space of strategies closely related to the
RE strategy. In the following we define the space of strate-
gies that we search, and the details of the search algorithm.

The RE strategy uses re-inforcement learning (RL) to
choose from n possible markups over the agent’s limit price
based on a reward signal computed as a function of profits
earned in the previous round of bidding. Agents bid or ask
at price p

p=I1l+mo (3)

where [ is the agent’s limit price, o is the output from the
learning algorithm and m is a scaling parameter. Addition-
ally, the Roth-Erev learning algorithm itself has several free
parameters: the recency parameter r, the experimentation
parameter x, and an initialisation parameter sl1. In addition
to the original Roth-Erev (RE) algorithm, there are several
other learning-algorithms that that have successfully been
used for RL strategies in ACE. We search over three addi-
tional possibilities: stateless Q-learning (SQ), modifications
to RE used by [9] (NPT) and a control algorithm which se-
lects a uniformly random action regardless of reward signal
(DR). SQ has free parameters: the discount-rate g, experi-
mentation €, and a learning-rate p.

Individuals in this search space were represented as a 50-
bit string, where:

e bits 1-8 coded for parameter m in the range (1, 10);

e bits 9-16 coded for the parameters € or z in the range
(0,1);

e bits 17-24 coded for parameter n in the range (2, 258);

e bits 25-32 coded for parameters g or r in the range
(0,1);

e bits 33-40 coded for parameter sl in the range (1,1.5 X
10%);

e bits 41-42 coded for the choice of learning algorithm
amongst RE, NPT, SQ or DR; and

e Bits 43-50 coded for parameter p in the range (0,1).

We used a genetic-algorithm (GA) to search this space of
strategies, where the fitness of each individual strategy in
the search space was computed by estimating its basin size
under the replicator dynamics under interaction with our
existing three strategies: GD, TT and RE. Basin size was
estimated using the same brute-force methods described in
Section 5, but since we recompute all entries in the heuristic-
payoff matrix in support of each candidate strategy, we used
lower sample sizes in order to facilitate evaluation of many
strategies; the sample size for the number of games played
for each entry in the heuristic payoff matrix was increased as
a function of the generation number: 104 int(100 In(g+1))
allowing the search-algorithm to quickly find high-fitness re-
gions of the search-space in earlier generations and reducing
noise and allowing more refinement of solutions in later gen-
erations. We used a constant number of replicator-dynamics
trajectories — 50 — in order to estimate the basin size from
the payoff matrix once it had been recomputed for our can-
didate strategy.

We chose a GA as our search algorithm principally be-
cause of its ability to cope with the additional noise that
the lower sample size introduced into the objective function
Our GA was configured with a population size of 100, with
single-point cross-over, a cross-over rate of 1, a mutation-
rate of 107* and fitness-proportionate selection. The GA
was run for 32 generations, which took approximately 1800
CPU hours.

8. RESULTS

Figure 5 shows the mean fitness of the GA population
for each generation. As can be seen, there is still a large
amount of variance in fitness values in later generations.
However, inspection of a random sample of strategies from
each generation revealed a partial convergence of phenotype,
but with significant fluctuations in fitness values due to small
sample sizes (see above). Most notably, the fittest individual
at generation 32 had also appeared intermittently as the
fittest individual five times in the previous 10 generations,
and thus we took this as the output from the search.

Our optimised strategy uses the stateless Q-learning algo-
rithm with the following parameters:

= 1.210937
n = 6
e = 0.18359375
g = 0.4140625
p = 0.1875

The notable feature of this strategy is the small number of
possible markups (n), and the narrow range of the markups



[1, nm] as compared with the distribution of valuation distri-
bution widths. This feature was shared by all of the top five
strategies in the last ten generations, and is another factor
that indicated convergence of the search.

We proceeded to analyze our specimen strategy under a
full heuristic-strategy analysis using 10* samples of the game
for each of the 455 entries in the payoff matrix. With the
current version of our simulator®, we are able to complete
this analysis in less than twenty four hours using a dual-
processor 3.6Ghz Xeon workstation.

Figure 6 shows twenty trajectories of the replicator dy-
namics plotted as a time series for each strategy, and shows
the interaction between the new, optimised strategy, OS,
together with the existing strategies: GD, TT and RE.

Taking 10 randomly sampled initial mixed-strategies, we
calculate that there are two attractors:

A = (0.0,0.0,1.0,0.0)
B = (0.67,0.32,0.0,0.0)

over (OS,TT,GD, RE). Attractor A captures only 3%
of trajectories, whereas attractor B captures virtually the
entire four-dimensional simplex (97%). Although this basin
is very large, our optimized strategy shares this equilibrium
with the truth-telling strategy (TT), giving us a final to-
tal market share to 0.67 x 0.97 = 65%. This compares
favourably with a market-share of 32% for truth-telling and
3% for GD. The original RE strategy is dominated by our op-
timised strategy. Figures 3 and 4 show the direction field for
two of the 3-strategy combinations involving our optimised
strategy: (OS, TT, GD) and (OS, GD, RE) respectively.

9. DISCUSSION

It is somewhat remarkable that our somewhat simplistic
optimised strategy is able to gain defectors from a highly so-
phisticated strategy like GD, whilst at the same time truth-
telling is able to retain a share of followers in a popula-
tion predominated by OSers (TT appears to be parasitic
on OS). What accounts for the ability of small OS mixes
to invade high-probability mixes of a sophisticated adaptive
strategy (GD), whilst remaining vulnerable to invasion by a
low-probability mix of a non-adaptive strategy (TT)?

Our current hypothesis is that OS is able to exploit a flaw
in the way that we construct valuation distributions. As
discussed earlier, we use the same method of assigning valu-
ations as in [12]; that is, for each run of the game, the lower-
bound, b, of the valuation distribution is selected uniformly
at random from the range [61, 160] and the upper-bound b’
is similarly drawn from [b 4 60,b + 209]. For that run of
the game, each agent’s valuation is then drawn uniformly
from [b,b’]. However, we hypothesise that this results in a
statistical correlation between the meta-bounds and the av-
erage slope of truthful supply and demand schedules— that
is, given these distribution parameters there is insufficient
variance in the difference between valuations of traders who
are neighbours on the supply or demand curve. Since we are
using a uniform-price k=0.5 clearing rule, the mechanism
is vulnerable to price-manipulation from the least efficient
trades; the buyer with the lowest matched bid, and the seller
with the highest matched ask can potential manipulate the
final clearing price - provided that they do not overstate their

3http://freshmeat.net/projects/jasa

Equilibrium A

Equilibrium B

Equilibrium C

os GD

Figure 3: Replicator dynamics direction field for a
12-agent clearing-house auction showing interaction
between optimised strategy (OS) verses T'T and GD

value claim to the extent that it impinges on the 2nd-lowest
matched bid, or the 2nd-highest matched ask. Given suffi-
cient variance in valuations between the lowest and the 2nd-
lowest matched offers (call this random variable the “match
delta”), this vulnerability is not easily exploited. However,
in a market with a small number of traders and a narrow
distribution for the match delta there is an opportunity to
trade at small margin above truth if you find yourself with a
valuation close to the equilibrium price. This is precisely the
behaviour of the strategies that we observe to be predomi-
nant in the later generations of our GA- they all use a small
number of possible markups, each of them small in compar-
ison to the possible valuation bounds. The reinforcement-
learning component of the strategy is then able to fine-tune
the markup depending on where the trader finds themselves
on the supply or demand curve after valuations are drawn.
If it is far away from the equilibrium-price it can adjust its
margin close to zero, whilst if it is near the equilibrium-
price it can find a small margin that does not impinge on its
nearest-neighbour. This hypothesis is also consistent with
parasitic truth-telling; it is easy to see that truth-telling is
a best-response for a 2nd-lowest matched bidder to a lowest
matched bidder playing OS. Further work needs to be car-
ried out to verify this hypothesis, but early indications are
that the efficacy of our optimised strategy is highly sensitive
to changes in the valuation meta-bounds.

Thus it appears that our evolved strategy over-fits to what
is potentially an artifact. Does this invalidate our approach?
On the contrary, we believe that it demonstrates that highly
sophisticated strategies can possess an Achilles heel in cer-
tain situations, and that our method for strategy acquisition
can find and exploit these vulnerabilities. GD performs ro-
bustly given a large variance in match delta, but given some
partial prior knowledge about valuation distributions in a
small market, then there may exist a more effective, and
simpler strategy. In the particular case that valuation dis-
tributions are constructed as above, then the strategy OS
will perform remarkably well.

10. SUMMARY
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Figure 4: Replicator dynamics direction field for a
12-agent clearing-house auction showing interaction
between optimised strategy (OS) verses GD and the
original Roth-Erev strategy (RE)

In this paper we have described a novel method for strat-
egy acquisition for n-player non-zero-sum games, and we
have successfully applied our method to the acquisition of a
trading strategy for the double-auction market; a recognised
benchmark problem for this domain. Our method combines
two existing methodologies in a very simple way: empiri-
cal game-theory and heuristic search (in this case, using a
genetic-algorithm). Our key contribution to this domain is
the use of the basin-size metric to rank strategies. Although
we have not provided a thorough analytical verification of
our method, we believe that at this stage its novel features
over and above those of empirical game-theory are simple
enough that a successful application of our method to well-
known benchmark problem suffices to demonstrate the po-
tential for future research.

11. FURTHER WORK

The main weaknesses of our current approach stem from:
a) potential weaknesses in the underlying empirical game-
theory methodology, and b) the lack of a customised search
algorithm tailored specifically for this domain.

As regards a), we recognise that empirical game-theory
is an emerging field. As such, advances and refinements
are continually being made to address some of its earlier
weaknesses. For example, Walsh et al. [13] describe a re-
finement to the method which allows for a more principled
approach for determining optimal sample size, and [14] de-
scribe a further approximation technique that allows for a
greatly reduced number of strategy profiles to be consid-
ered. These and other refinements will be incorporated into
our approach in future work. One of the key acknowledged
weaknesses of empirical game-theory is the somewhat arbi-
trary selection of initial heuristic-strategies. However, it is
our hope that the search method outlined in this paper will
become the basis of an iterative approach to extending an
initial set of manually chosen heuristic-strategies by popu-
lating the mix with additional heuristic-strategies that are
discovered through heuristic-search.

As regards b), designing such a search algorithm is future
work. But note that despite the lack of a custom-designed
search algorithm, we are still able to use a general-purpose
heuristic-search method to successfully acquire an interest-
ing novel strategy for our benchmark problem.

12. ADDITIONAL AUTHORS

Additional author: P. McBurney (Department of Com-
puter Science, University of Liverpool,
email: peter@csc.liv.ac.uk).
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Figure 6: Replicator dynamics time series plot for a 12-agent clearing-house auction showing interaction
between optimised strategy (OS) verses GD, TT and the original Roth-Erev strategy (RE)



