
On the relationship between MDPs and the BDI architecture

Gerardo I. Simari
Department of Computer Science

University of Maryland College Park
College Park, MD 20742

gisimari@cs.umd.edu

Simon Parsons
Dept of Computer & Information Science

Brooklyn College, City University of New York
Brooklyn, NY 11210 USA

parsons@sci.brooklyn.cuny.edu

ABSTRACT
In this paper we describe the initial results of an investigation into
the relationship between Markov Decision Processes (MDPs) and
Belief-Desire-Intention (BDI) architectures. While these approaches
look rather different, and have at times been seen as alternatives,
we show that they can be related to one another quite easily. In
particular, we show how to map intentions in the BDI architecture
to policies in an MDP and vice-versa. In both cases, we derive
both theoretical and related algorithmic mappings. While the map-
pings that we obtain are of theoretical rather than practical value,
we describe how they can be extended to provide mappings that are
useful in practice.

Categories and Subject Descriptors
I.2.11 [Artificial Intelligence]: Distributed Artificial Intelligence—
Intelligent Agents.

General Terms
Theory, Design

Keywords
Markov Decision Process, Policy, Intention.

1. INTRODUCTION
Markov decision processes (MDPs) can be regarded as an ideal

approach to the implementation of intelligent agents provided that
one can either assign utilities to states and probabilities to transi-
tions between states, or that it is feasible to learn such values. Once
these values are known, algorithms such as value iteration [10] will
yield an MEU-optimal policy, that is a mapping from every state
into the best action to execute in that state. Such a policy is a com-
plete specification of what the agent should do in every state, based
on the probable outcomes of every action possible in that state.

However, the very nature of these algorithms, and in particular
the need to establish the outcome of every possible action in every
state, means that finding policies is intractable in many practical

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
AAMAS’06 May 8–12 2006, Hakodate, Hokkaido, Japan.
Copyright 2006 ACM 1-59593-303-4/06/0005 ..$5.00

cases. This has led to the search for approximate solutions to MDPs
[1], but even state of the art approaches like those in [8] are not able
to handle particularly large or complex problems.

A contrasting approach to building agents is the use of the BDI

architecture [3, 12, 23]. Agents constructed in this way have a set
of belief s about the state of the world and a set of desires which,
broadly speaking, identify those states of the world that the agent
has as goals. From its beliefs and desires, and via a process of delib-
eration, and agent formulates one or more intentions. The precise
semantics of an intention vary across the literature, but intentions
can be broadly considered to be states that the agent has committed
to bringing about. The agent then constructs a plan to achieve its
intentions, typically through some form of means-ends reasoning,
and executes it.

This is a heuristic approach, and naturally enough agents built
using it are outperformed by the those programmed using MDPs
when the full MDP solution is tractable [19]. However, the BDI

model can scale to handle problems that are beyond the scope of
a full MDP solution, and can outperform approximate MDP mod-
els [19] for some relatively small problems (such as a simplified
Tileworld [9]).

Given this trade-off, we are interested in the formal relationship
between the two approaches, and that is our subject in this paper.
In particular we investigate the following questions:

1. Given a policy that is a solution to an MDP, how can we ex-
tract a BDI description that can be used to approximate the
solution to the MDP?

2. Given a complete BDI description, how can we obtain a pol-
icy that an MDP-based agent can use to control its actions?

We start by briefly summarizing how actions, states, and transition
functions for BDI and MDP descriptions can be related. Drawn from
[16] this summary considers the formal descriptions provided by
the BDI and MDP frameworks. Both descriptions consists of a state
space S, a set of actionsA, and a a state transition function T which
depends on the current state and the action performed. In addition,
an MDP description includes:

• a reward function R,

• a probability distribution P over the set of states, and

• a set of policies Π, each member of which identifies the best
action to take in each state.

We will denote an MDP description as a tuple

〈S,A, T, R,P,Π〉

An agent that uses an MDP description to decide how to act will be
called an MDP agent.

Figure 1: Part of a state-space

A BDI description consists, in addition to the state space, actions,
and transition function, of:

• A set current beliefs B, desires D, and intentions I;

• a deliberation component Del; and

• a means-ends reasoning component M

We will denote a BDI description as a tuple:

〈S,A, T,B,D, I,Del,M〉

An agent that uses a BDI description to decide how to act will be
called a BDI agent.

For a given agent in a given environment, it is clear that the S,
A and T will be the same for both the BDI and MDP descriptions.
Furthermore, we will consider that P , the probability distribution
in the MDP description and B in the BDI description do exactly the
same thing — they identify which state in S the agent is currently
in. While we deal with fully observable worlds, we can imagine
both pick a single state (and we will revisit this when we talk about
partially observable worlds).

With these equivalences in place, we can see that answering the
two questions posed above comes down to relating rewards and
policies, on the one hand, to desires, deliberation, means ends rea-
soning and intentions on the other hand. In fact, since rewards are
merely a means of determining policies, and desires a step on the
way to determine intentions, these components can be effectively
ignored. Indeed, the relation we have to consider in detail is that
between policies and intentions.

2. INTENTIONS, PLANS AND POLICIES
As mentioned above, the precise semantics for an intention varies

across the literature. An intention is often taken to be “the agent’s
current focus”, that a state that the agents is committed to bring
about (for example by [23]). An intention can also be taken (as in
PRS [5]), to be a linear plan that an agent has adopted to reach a
state that the agent is committed to bring about. Here we will use
the term intention to denote a state that an agent has committed to
bring about, and use the term intention-plan (i-plan) to denote a se-
quence of actions built to reach a specific state, or, in other words,
to achieve a specific intention. Since the precise sequence of ac-
tions selected will vary depending on what state the agent was in
when it deliberated, an i-plan will depend on both state and inten-
tion — an agent will, in general, create different i-plans to achieve
the same intention from different states, and will, in general, create
different i-plans to achieve different intentions from the same state.

The reason that we are interested in i-plans is that they are key
in the development of BDI agents. In practical implementations
like PRS, once an agent has adopted an intention, it rifles through
a pre-compiled set of plans (confusingly also called intentions, and
hence i-plans in our terminology) to determine how to achieve the
intention it has adopted. Building an efficient BDI system hinges
on having a good plan library, and such a library will contain a set
of i-plans tailored for the environment in which an agent operates.
Thus, in order to answer our motivating questions, we need to relate
i-plans to policies. We are interested in both establishing i-plans by
solving MDPs, and using a set of i-plans to solve MDPs (hence the
two questions we posed in the previous section).

We will adopt the following notation. An i-plan will be denoted
by a lowercase Greek letter such as ψ, indexed ψi,s, where neces-
sary, to denote the state s and intention i it relates to. I-plans are
sequences of actions and ψi denotes the i-th action in ψ, while sψi
denotes the i-th state that the agent plans to visit while executing
ψ. Thus, for an i-plan ψ of length p, the agent starts at state sψ0 and
plans on subsequently visiting states sψ1 , s

ψ
2 , ...s

ψ
p . Of course, the

agent may deviate from this sequence of states thanks to nondeter-
ministic actions or changes in the environment. For example, in the
case of the state-space in Figure 1, an agent in s18 might adopt an
i-plan ψs18 :

s18
a3−→ s23

a4−→ s25
a1−→ s79

but find that executing a4 in s23 takes it to s28, where executing a1

will take it back to s18 rather than on to s79.
When such a deviation occurs, then execution of an i-plan will

not have exactly its desired effect, though it may still help to bring
the agent towards its goal. When the agent realizes that a deviation
from the sequence of states laid down in the i-plan has occurred,
then it needs to decide if it needs a new intention (which would
typically require a new i-plan). This process of intention reconsid-
eration [14, 15, 24] identifies whether or not the agent should keep
its current intention, or whether it should deliberate to determine a
new intention. Clearly if a new intention is adopted, the agent will
need to create a new i-plan, and it may need a new i-plan even if it
doesn’t change intention.

Deliberation, reconsideration and the generation of i-plans can
be done decision theoretically. Such approaches to intention re-
consideration are explored in [17, 18]. The expected utility of an
i-plan can be obtained exactly as one obtains the expected utility of
a policy when solving MDP models — by establishing the expected
value of executing each action in the state in which it is executed.
The difference, however, is that in evaluating an i-plan in this way
we only consider a single trajectory through the state-space rather
than, as for policy evaluation, consider executing an action in ev-
ery state. Typically, though, this is not the way that deliberation is
done. Indeed, the BDI model was developed largely because it was
felt [3] that decision-theoretic approaches were intractable (though
see [11] for an example of a decision-theoretic approach to delib-
eration).

Whether reconsideration and deliberation are carried out deci-
sion theoretically or not, a BDI agent will have the same approach
to traversing a state-space such as that in Figure 1. It will select
an intention, identify an i-plan to achieve that intention, and exe-
cute that i-plan until it either it realizes that the current i-plan will
no longer achieve its intention or until it realizes that the current
intention is no longer achievable (or no longer the best possible in-
tention). At such a point the agent will generate a new i-plan, or
choose a new intention and generate an i-plan to achieve it, and the
process will repeat.

We can contrast this process to that of an MDP agent in the same

state-space, which will always know, from its policy, what is the
best action to take. The policy cannot fail to provide a suitable
action — it is a universal plan [13] — and will eventually take an
agent to its goal. The price paid by the MDP agent is that it has to
compute the policy to begin with, a computation that is expensive
compared with establishing a simple linear plan. The price paid by
the BDI agent is that it has to compute what to do online (while the
MDP agent can compute what to do offline) and has to suffer the
sub-optimality of likely deviation from its chosen path through the
state-space (though the loss of utility can be reduced by effective
approaches to intention consideration [18]).

Now, despite the differences between the BDI and MDP models,
we can establish a broad equivalence between them by consider-
ing how they work on the same state-space. Informally this can be
done as follows. Given a policy, we have an action selection for ev-
ery state, and so can establish one or more i-plans that summaries
trajectories through the state-space from a given state to the goal.
Thus such a policy incorporates a set of i-plans. Conversely, con-
sider a set of i-plans, each of which captures a trajectory through a
set of states. This set of i-plans identifies what action to take in all
the states on the trajectory, and if one adds to that the null action
for all states not on a trajectory, then one has a policy (albeit not a
very good one).

The main contribution of this paper is to make this informal re-
lationship between policies and i-plans more precise. In particular,
Section 4 describes how i-plans can be used to create policies, and
Section 3 details how policies can be used to derive i-plans.

3. FROM POLICIES TO I-PLANS
Assume we have a policy π that is the solution to a fully specified

MDP. For now we assume that π is optimal — the results we obtain
depend on this assumption — but we will see that this assumption
can be dropped. From any π, it is possible to extract utility values
for states that will induce π, and these can be used to establish i-
plans.

For the purposes of this section, we shall consider the policy π
to be the result obtained by the convergence of an algorithm such
as Q-learning [20, 22] which gives a value for every state/action
pair. BDI agents can also map states and actions into values. These
values can be computed by assigning a value to each i-plan. Let ψ
be an i-plan of length p, and ψi the i-th action involved in ψ. One
way of assigning a value to ψ is:

V (ψ) =

p
X

i=1

R(sψi−1, ψi)

i

where V (ψ) is the value of i-plan ψ, sψo is the initial state of ψ,
s
ψ
i+1 is the state to which the agent expects to arrive after executing

action ψi, and R(sψi−1, ψi) is the reward received for taking action

ψi in state sψi−1. Therefore, the value assigned to an i-plan is the
sum of rewards that will be achieved if all of the actions have the
desired effect; the division of the reward by i in the above formula
captures time discounting — rewards gained early are more valu-
able than the ones gained in the future.

It is important to note that this is only one of many possible ways
of assigning a value to an i-plan. In general, we only require that for
an i-plan ψ, every action that is added to the plan has a non-negative
cost1, and that these values depend on the rewards of the states that
the agent plans to visit. For example, for a simple environment, the

1This restriction, basically the same restriction that is required of the path cost func-
tion to ensure the optimality of A* search, means that the agent can follow a value
gradient to the goal state.

reward function could be defined by:

R(sψi−1, ψi) =

(

1 if ψi leads directly to a goal
0 otherwise.

and R(s, a) = 0 for every other state/action pair.
We will now formally define the concepts of i-plan and i-plan

length, and what it means for an i-plan to obey a given policy.

DEFINITION 1. A sequence of actions ψ = ψ0, ψ1, ..., ψp is
called an i-plan if the ψi’s (0 ≤ i ≤ p) were selected with the
objective of executing them in turn in order to reach a given goal.

DEFINITION 2. Given an i-plan ψ = ψ0, ψ1, ..., ψp, we say
that p is the length of ψ.

DEFINITION 3. An i-plan ψ of length p obeys a policy π if, and
only if, ∀i, 1 ≤ i ≤ p, π(sψi−1) = ψi, where sψi is the state to which
the agent is planning on arriving after executing action ψi−1, and
s
ψ
0 is the initial state.

Definition 3 simply states that an i-plan obeys a policy if, and only
if, the actions prescribed by the i-plan are the same as those pre-
scribed by the policy through the i-plan’s intermediate states. Re-
member that we are assuming that i-plans are linear plans, that
is no considerations are made for unexpected outcomes of actions
(which is typical for BDI implementations).

The dual of the notion of obedience is the notion of conformance:

DEFINITION 4. A policy π conforms to an i-plan ψ of length p
if, and only if, ∀i, 1 ≤ i ≤ p, π(sψi−1) = ψi where sψi is the state

that results from executing action ψi−1 in state sψi−1, and sψ0 is the
state in which the first action is executed.

Since an i-plan is indexed by the intention that it will achieve when
executed, we can extend the notions of obedience and conformance
to intentions. A policy π conforms to an intention i if for all i-plans
ψi,s, π conforms to ψi,s, and an intention i obeys a policy π if all
i-plans ψi,s obey π.

With the concepts that we have now introduced, we can state the
following claim:

CLAIM 1. Given a BDI agent and an MDP agent with an opti-
mal policy π, if the BDI agent is in state si, then the i-plan ψ with
the highest utility value will be such that ψ obeys π, starting at si.

The remainder of this section explores this claim.
In general, the claim will only hold if states with the same re-

ward are considered in the same order by both MDP and BDI ap-
proaches. Otherwise, even though the utilities are equivalent, the
actions might not be exactly the same because the order in which
states with the same reward are considered can affect the selection
of actions. The proof of the claim can be made with respect to
progressively more complex scenarios.

Our initial result relating policies to intentions and i-plans is es-
tablished for the deterministic, fully accessible case (in other words
the simplest):

PROPOSITION 1. Let 〈S,A, T, R, P,Π〉 be an MDP agent, and
let π ∈ Π be a policy that is optimal under the maximum expected
utility criterion. Let 〈S,A, T,B,D, I,Del,M〉 be a BDI agent.
Let Del always select the intention with the highest reward and
M select the i-plan with the highest reward. If the environment is
observable and deterministic, so ∀s ∈ S, ∀a ∈ A, |T (s, a)| = 1,
then ∀i ∈ I , ∀s ∈ S, it holds that ψi,s obeys π.

Intention policyToIplan(Policy π, MDP m) {

Iplan i;

s = getCurrentState(m);
g = getGoalState(s,π,m);

p = obtainPath(s,g,m);
while not empty(p) do {

i.addAction(p);
p.deleteAction();

}

return i;

}

Figure 2: Pseudocode for mapping policies into intentions

PROOF. The result follows directly from the fact that we are as-
suming thatD is optimal and that actions are completely determin-
istic in the environment. Because π is MEU-optimal, it will always
select actions that take the agent to the best goal state in the best
possible way. Because D picks the intention with the highest re-
ward, and actions are deterministic, it will select the same inten-
tion/goal that π takes the agent to. Similarly since M picks the
i-plan with the highest rewards it will pick an i-plan that traces the
same path through the state space (from whichever state the agent
is in) as π. Therefore, if we assume that states with equal rewards
are considered in the same order by π and M , it is clear that the
i-plans generated by M will obey π.

If actions are not deterministic, the utility of i-plans is not so clearly
defined. Instead of a simple summation of rewards along the path
of the plan, the failure of actions must be considered. Therefore, we
must now assume that the deliberation and means-ends reasoning
components are MEU-optimal as opposed to being able to pick the
intention and i-plan (respectively) with the highest rewards.

PROPOSITION 2. Let 〈S,A, T,R, P,Π〉 be an MDP agent, and
let π ∈ Π be a policy that is optimal under the maximum expected
utility criterion. Let 〈S,A, T,B,D, I,Del,M〉 be a BDI agent
where M and Del are MEU-optimal. If the environment is observ-
able and non-deterministic, so |T (s, a)| ≥ 1, then, then ∀i ∈ I
∀s ∈ S, it holds that ψi,s obeys π.

PROOF. Because we are now assuming that D is picking MEU-
optimal intentions and thatM is building MEU-optimal i-plans, the
same argument as in Proposition 1 tell us that every i-plan will obey
π even though actions are now non-deterministic.

This result also encapsulates the reason why the BDI approach
struggles to generate optimal behavior. If we stick with the classic
BDI model in which deliberation selects an intention and means-
ends analysis then builds a plan to achieve it, in order to pick an
optimal set of actions (which is what Proposition 2 is all about), the
deliberation component has to be able to pick an intention that is
MEU-optimal before means-ends analysis picks out a suitable i-plan
(and thus before the agent has considered the cost and likelihood of
achieving the intention it is selecting).

Now we turn to the case where the environment is not fully ob-
servable — in other words the agent doesn’t know which state in
S it is in, and must rely on its estimates of the current state of the
environment [7]. MDP models (technically POMDP models under
these conditions) handle this kind of situation by extending the no-
tion of state. Rather than dealing (as we have until now) with a
state that is some s ∈ S, the state space describing all the states of
the environment, a state becomes a probability distribution across
all the s. If we imagine enumerating all these possible distributions

Figure 3: Part of the state space of an MDP

s′i, then we can think of the policies and i-plans as being concerned
with a new state space S′ = ∪is

′

i. If we call S′ the partially ob-
servable counterpart to S and consider this new state space to be
the space in which our BDI and MDP agents operate — so that both
B and P identify some s′ ∈ S′ as the current state that the agent is
in — we can carry forward Proposition 2 as:

PROPOSITION 3. Let 〈S,A, T, R, P,Π〉 be an MDP agent, and
let π ∈ Π be a policy that is optimal under the maximum ex-
pected utility criterion. Let 〈S,A, T, B,D, I,Del,M〉 be a a BDI

agent where M and Del are MEU-optimal. If the environment is
partially-observable, with S′ the partially-observable counterpart
of S, and non-deterministic, so that |T (s, a)| ≥ 1, then ∀i ∈ I

∀s′ ∈ S′, it holds that ψi,s
′

obeys π.

PROOF. This result generalizes the previous one because we are
now considering a partially observable environment. However, be-
cause we have just expanded S into S′ on both the BDI and MDP

sides, the result follows directly from Proposition 2.

Thus it turns out that there is a simple formal correspondence be-
tween policies and i-plans, similar to the one informally discussed
in Section 2. This correspondence holds under rather restrictive
assumptions, in particular the optimality requirements, but ensures
that the i-plans generated reflect an optimal policy. If we are will-
ing to relax the requirement for a set of i-plans to correspond to an
optimal policy, we can create i-plans under fewer restrictions.

Now, these formal results, though they tell us that we can extract
i-plans that obey a policy don’t tell us how we might do so. We
consider how to do this next. We can obtain an i-plan from any pol-
icy in practice by means of a simple search through the state space,
following policy π until a local maximum is reached — this state is
then selected as the intention. In order to select a unique intention
using this process, we assume that the agent’s actions always have
the most likely outcome; otherwise, a tree would result instead of
a simple path. Figure 2 outlines an algorithm policyToIplan
that can do this in a Java-like pseudocode.

By following policy π in this manner, we are able to obtain
as many i-plans as desired: after reaching a intention state, sim-
ply continue following the policy from the state that results after
achieving the previous intention. For example, in Figure 3 we il-
lustrate this using a fragment of the same state space we considered
before. Assume the agent is currently in state S18, π(S18) = a3,
and π(S23) = a2, and that state S28 is an intention for the agent.
The i-plan that can be extracted in this situation is the linear plan
〈a3, a2〉. In this case, the i-plan that arises is obtained as the result
of only one iteration of the process. The same is true in the case
of the simplified TileWorld considered in [19], where agents only
build plans for reaching one hole, not multiple hole tours.

The process that we have outlined here will construct a set of
i-plans that obey an arbitrary policy. Such a policy will not nec-
essarily be optimal, and so nothing can be inferred about the opti-
mality or otherwise of the set of i-plans that are established, but the
members of the set of i-plans will obey the policy.

With the procedure policyToIplan, and the fact that we can
determine intentions from i-plans — intentions are, by definition,
the states that i-plans lead to — we have answered the first of the
questions that we set ourselves at the start of the paper.

4. FROM I-PLANS TO POLICIES
In this section, we will look to answer the second question. We

consider how to use a set of i-plans to assign rewards to states in
order to provide a policy for the underlying MDP that will mimic
the behavior of an agent with the given i-plans. Such an approach
makes it possible to use domain knowledge to solve problems that
are intractable for existing MDP solution techniques (at the cost of
providing sub-optimal solutions) — we use domain knowledge to
construct i-plans and then use these i-plans to obtain a policy. In-
deed, we can use intentions to construct i-plans and then i-plans to
construct policies.

4.1 A single i-plan
We will start off by showing how rewards can be assigned in the

state space in order to map one i-plan into a policy. Later on, we
will see how the process is generalized to an arbitrary set of i-plans.

Assume the agent is currently in state sa, and has adopted some
i-plan ψ of length p. Then, we can assign a value to each state-
action pair according to the following formula:

val(sψi−1, ψi)
def
= i · U(ψ)

∀i, 1 ≤ i ≤ p, sψi is the i-th state involved in ψ, and ψi is the i-th
action in ψ. In any other case, we have

val(sj , ak)
def
= 0

∀sj 6= s
ψ
i , for any sψi such that 1 ≤ i ≤ p, ∀ak.

These values can be used induce a policy by selecting the action
with the highest value given the current state. This process iden-
tifies a path through the state space assuming that nothing will go
wrong. Such a policy only considers what to do in states that are
involved in ψ, and therefore allows for no deviation from the path.

This mapping of states into values is then used as the reward
function, which will clearly “mark the path” that the agent must
follow in order to reach the goal, and executing the actions along
this path will constitute a policy that conforms to the i-plan ψ and
hence achieves the intention that ψ was constructed to achieve. In
Figure 4, we show this assignment of values to states for the frag-
ment of state space from Figure 3. The agent is initially in state
S18, and has formed the intention of reaching state S25 by execut-
ing actions a2 and a1. Therefore, if we assume that the intention
has unit value, state S18 is given the value 1.0, S15 is given 2.0, and
the goal is given 3.0; the rest of the states are assigned the value 0.

What we have so far is a mapping that turns an i-plan into its
“equivalent” in terms of policies. That is, we have only obtained a
correspondence from states to actions similar to the one described
in Section 2, which doesn’t consider what to do in cases in which
the agent drifts from the path of its initial i-plan because of the
failure of some action to reach the state that was planned for. To
obtain a full policy — one that considers every possible state — we
can extend the partial policy obtained from the i-plan using value
iteration to establish a value for every state from the values that
have been assigned to states that were part of the intention. The

Figure 4: Part of a state space, with values assigned to the states
leading to a goal.

Figure 5: The state space from Figure 4, with values assigned
to every state.

example in Figure 5 illustrates how doing this will assign the rest
of the states an associated value, with value iteration working in
exactly its normal fashion [10], assigning a state a value by suitably
discounting the value of states to which it is connected by an action
(with the discount determined by the expected cost of the action
relating the two).

4.2 Sets of i-plans
So far we have only considered how to build a policy from a

single i-plan. In order to use the same technique when an agent has
more than one i-plan, only a minor change needs to be made. We
must now take into account that the i-plan being considered is not
necessarily the first. Therefore, we must keep count of the number
of actions involved in the i-plans that have already been processed,
which will be represented by the letter κ. When the process starts,
we set κ = 1, indicating that the action to be considered is the first.
The function val is now defined as:

val(sψi−1, ψi)
def
= κ · U(ψ)

∀i, 1 ≤ i ≤ p, si is the i-th state involved in ψ, and ψi is the
i-th action in ψ. After each action is considered, the value of κ is
increased by 1. After all intentions have been processed, we have

val(sj , ak)
def
= 0

∀sj 6= si, for any si involved in some i-plan, ∀ak. Suppose, for
example, that the agent has two i-plans ψ and ϕ, of lengths p and q,
respectively. After processing ψ, κ will have the value p + 1 and,
after processing ϕ, its value will be p+ q + 1.

The process just described is captured by the algorithm iplan-
ToPolicy outlined in the form of JAVA-like pseudocode in Fig-

Policy iplanToPolicy(IplanSet I, BDI A) {

MDP m; Policy π;
ValueFunction val; int κ, j = 0;

val.initialize(0); m.initialize(A);
orderedIplan = I.obtainOrdering();
for each i in orderedIplan do {

j = 0;
for each action a in i do {

s = i.obtainInvolvedState(j++);

val.setState(s,a) = κ*i.getUtil();
κ++;

}

}

π = valueIteration(m,val);

return π;
}

Figure 6: Pseudocode for mapping i-plans into policies

ure 6. The following proposition formalizes the relationship be-
tween a set of i-plan and a policy as established by this algorithm:

PROPOSITION 4. The algorithm iplanToPolicy obtains a
policy which conforms to the given set of i-plans.

PROOF. The algorithm considers each i-plan in the set in turn,
assigning a value to each state-action pair that is involved in the
i-plan. The value that is assigned is the product of the current i-
plan’s utility and a monotonically increasing succession of inte-
gers. Therefore, each state-action pair will receive a monotonically
increasing value with respect to the one before it. Up to this point
we have an assignment of monotonically increasing values to the
state-action pairs that the given set of intentions dictates, which al-
lows us to obtain a straightforward policy using these values. If we
feed the value iteration algorithm with these value assignments, the
rest of the state-action pairs (not involved in the set of intentions)
will receive values according to this assignment. The value itera-
tion algorithm ensures us that the resulting policy will be MEU with
respect to the input values.

iplanToPolicy generalizes the process described above for sin-
gle i-plans, and to do so requires the i-plans to be ordered — the
order in which the i-plans are processed. As we have seen above,
i-plans can be assigned utilities in relation with how their execution
will reward the agent by reaching certain goals, and this provides a
suitable ordering.

Using iplanToPolicy to assign rewards to states, we can use
value iteration as an anytime algorithm to construct a policy. With
each iteration, more and more states will receive non-zero values,
making the plan more universal. The example in Figure 7 shows
how the policy evolves through three iterations of the algorithm on
a specific state space.

Of course value iteration always works like this — with values
backing-up across the state space from states with rewards — but it
is not usually considered an anytime algorithm. That is because in
early iterations most states have zero values, and so no useful policy
can be extracted. However, in this case, an initial useful policy is
provided by the values established by an i-plan. That policy can
be used “as is”. The worst that will happen is that whenever an
agent strays off the “path” marked by states with non-zero values,
it will try immediately to get “back on” that path by the shortest
route rather than taking the optimal route that would be visible if
all states had values. As more states have values filled in by value

(a)

(b)

(c)

Figure 7: State values after the (a) first, (b) second, and (c)
third iterations

iteration, the less likely this is to happen, and thus the better the
policy that is computed.

4.3 Practical reasoning and policies
Up to now, we have only been considering the problem of how

to map a single i-plan or a group of i-plans into a policy. Even
though we have established a relationship between the most impor-
tant components of the BDI and MDP models, the mapping is not
yet complete because a policy obtained using the methods devel-
oped in the previous section corresponds to a “snapshot” of the BDI

agent’s state. If the agent switches intention (for example, due to
reconsideration performed in order to profit from a change in the
environment), the policy might no longer be valid.

It is possible to map the complete set of possible i-plans (all the
i-plans for all its possible intentions) into a single policy by consid-
ering what intention, and hence what i-plans, the BDI agent would
adopt in every possible state. If deliberation is performed in every
state, followed by means-ends reasoning, a policy can be built by
assigning actions to states corresponding to what the BDI planner
dictates. It is clear that this process need not be initiated in every
state in practice — if a state already has an action assigned to it

Figure 8: Grouping of states into “envelopes”.

(because a previously built plan runs through it), then there is no
sense in performing the same computations again.

The fact that we can do this, and that we can establish a set of
i-plans from a set of intentions, gives us an answer to the second
question we posed at the start of the paper.

It is interesting to point out that such a policy can be built in
this way without considering rewards. Rewards played a funda-
mental role in previous sections because they were the basis for
the construction of contingencies — once the main plans were laid,
the actions performed in the rest of the states were based on these
rewards. However, because we are now considering how the BDI

agent behaves in every state, such an assignment of rewards is no
longer necessary.

We should also point out that this mapping is initially of theoret-
ical interest only, and its sole purpose is to show that a relationship
exists between the universal behavior of a BDI agent and a policy
for an MDP agent. The computational costs of constructing such a
policy would be just as high as (or higher than) the actual process
of solving the MDP directly.

5. TOWARDS HIERARCHICAL POLICIES
The analysis in the previous section established a relationship

between BDI and MDP models based on the existence in the BDI

agent’s plan library of i-plans that lay out a precise sequence of
actions that the agent has to carry out. It turns out that the i-plans
that a BDI agent are typically equipped with aren’t quite so detailed.

What happens in a typical BDI implementation is that the delib-
eration process decides what is to be achieved — what intention to
adopt. Once a decision is made, the means-ends reasoning process
then decides how this will be achieved — what i-plan will be used
— picking from a set of relatively abstract i-plans and instantiat-
ing it to fit the specific situation. The result is to effectively groups
states into “envelopes” which contain sets of states that are equiv-
alent as far as the current intention of the agent is concerned but
which might differ in detail. For example, considering Figure 8,
imagine that each state represents an agent location. The agent is
currently at s34 and needs to get to s60, and its environment is split
into a series of rooms that group states together — s34 with s8 and
s32, all in the same room but at different locations within the room,
say — and so on. Now the important thing as far as the agent is
concerned, while navigating around, is which room it is in, so it
can construct an i-plan at the “room level”, figuring that it needs to
get to the 〈s36, s47〉 room first, then to the 〈s3, s5, s60〉 room.

The idea of this kind of state aggregation is not a novel one.
In fact, much work has been dedicated to the grouping of states
in MDPs and POMDPs, as can be seen in [2, 4, 6, 21], with the
aim of improving the tractability of solving problems with ever
larger state-spaces. However, it does tie in very neatly with the

BDI model, and we can easily see that it will be possible to es-
tablish similar results to those we have obtained above, but where
the correspondence is not between whole-environment policies and
i-plans at the level of individual states, but between i-plans and
policies at the state-aggregation level.

Now, being able to construct policies at the state-aggregation
level is a useful thing to do. Open questions in work on state-
aggregation are how to aggregate states, what level states should
be aggregated at, and which states should be grouped with which
states. The methods we have developed here potentially provide
answers — i-plans identify what states to group together, and these
can then be turned into high-level policies for a partial MDP solu-
tion that can then be refined, filling in policies that tell the agent
how to act within grouped states (which is a smaller, and hence
more tractable problem than determining a whole-world policy).

6. DISCUSSION
The BDI model was established at least in part [3] because it

was felt that decision-theoretic models were too computationally
intractable to use in practice. This has led to a perception that the
two models are somehow cast in opposition with one another, that
one adopts the BDI model only if one believes that decision theo-
retic models are somehow wrong or impractical, and that to use the
BDI is to somehow settle for less than perfect performance (it is,
after all, a heuristic approach). Our aim in this work is to steer a
middle course.

We have previously shown [19] that on a particular task there are
cases where using an MDP model provides the best solution, while
in other cases an BDI approach works best — as the task grows
in size beyond the range of problems that can be optimally solved
using an MDP, the BDI approach outperforms the best one can do
with an MDP. This suggests that some aspects of the BDI approach
may be worth considering in more detail. Here we provide some of
that detail.

The results from Section 3 show that the BDI model is not in-
herently sub-optimal. If we can, as the results there show we can
in theory, construct a set of intentions that obey an optimal pol-
icy, then the BDI model will give us optimal performance. That it
doesn’t in practice, is because intentions are constructed not from
optimal policies but from domain knowledge, and it is because of
the mismatch of the two that sub-optimality creeps in.

The results in Section 3 don’t help us in practice since there is
no need to build intentions from an optimal policy — if we have
an optimal policy we can just execute it directly. However, the
results in section Section 4 can help us in practice. They show
us how to construct policies from i-plans, and we can (as in [19])
create i-plans in situations where the state-space is so large that it
isn’t possible to generate anything like an optimal policy from first
principles.

Finally, the discussion in Section 5 suggests that we can use the
relationships we have developed to construct policies at a suffi-
ciently abstract level that we can gain some computational advan-
tage over directly solving an MDP. Of course, so far we have only
demonstrated that it is possible to do this in theory. Some practi-
cal demonstration will be necessary to be completely convincing,
and providing empirical results that do demonstrate this, using the
same Tileworld testbed as we used in [19], is what we are currently
working towards.

7. SUMMARY
In this paper, we have presented a series of relationships that

exist between certain components of the BDI model and those of

MDPs. We have extended the work of [16] by exploring how i-
plans on the BDI side and policies on the MDP side can be related
to one another. To our knowledge, this is the first time that such a
relationship has been proposed.

We have mapped from policies to i-plans by proving that the i-
plans derived from an optimal policy are those adopted by a BDI

agent which selects i-plans with the highest utility, and an opti-
mal reconsideration strategy; furthermore, we presented a compu-
tational version of this mapping, by means of a search algorithm
based on following the given policy through the state space. The
other part of the mapping, obtaining policies from i-plans and thus
intentions, was also characterized both theoretically and algorith-
mically. First, we established the mapping declaratively, by assign-
ing rewards to states in such a way as to induce the selection of
actions in the same way as they are selected by the intentions. This
allows the derivation of a policy by means of any of the MDP so-
lution algorithms. A simple algorithmic version of this mapping
was also presented, indicating that one possible solution is a policy
that simply follows the actions as dictated by the i-plan, and says
nothing about the rest of the possible states. The use of value it-
eration as an anytime algorithm which refines and completes the
policy with each i-plan was also proposed as an alternative way of
deriving a policy.

This work constitutes the first steps in a line of research that
aims to unify the two approaches. In the future we will test these
findings empirically in pursue of the development of agent design
methodologies that make use of the best of both the BDI and MDP

models.

8. ACKNOWLEDGMENTS
The work described in this paper was partially supported by a

grant from the City University of New York PSC-CUNY Research
Awards Program and partially supported by the Air Force Office
of Scientific Research under Grant Nr. FA95500510298, by Army
Research Office grant number DAAD190310202, by NSF grants
IIS0329851 and 0205489, and by the Joint Institute for Knowledge
Discovery

9. REFERENCES
[1] D. Aberdeen. A (revised) survey of approximate methods for

solving partially observable markov decision processes.
Technical report, National ICT Australia, Canberra, Austalia,
2003.

[2] C. Boutilier, R. Dearden, and M. Goldszmidt. Stochastic
dynamic programming with factored representations.
Artificial Intelligence, 121(1–2):49–107, 2000.

[3] M. E. Bratman, D. Israel, and M. Pollack. Plans and
resource-bounded practical reasoning. In R. Cummins and
J. L. Pollock, editors, Philosophy and AI: Essays at the
Interface, pages 1–22. The MIT Press, Cambridge,
Massachusetts, 1991.

[4] T. Dean, R. Givan, and S. Leach. Model reduction techniques
for computing approximately optimal solutions for Markov
decision processes. In Proceedings of the 13th Conference on
Uncertainty in Artificial Intelligence, pages 124–131, 1997.

[5] M. P. Georgeff and F. F. Ingrand. Decision-making in
embedded reasoning systems. In Proceedings of the 6th
International Joint Conference on Artificial Intelligence,
pages 972–978, 1989.

[6] J. Goldsmith and R. H. Sloan. The complexity of model
aggregation. In Artificial Intelligence Planning Systems,
pages 122–129, 2000.

[7] W. S. Lovejoy. A survey of algorithmic methods for partially
observed Markov decision processes. Annals of Operations
Research, 28(1–4):47–66, Apr. 1991.

[8] J. Pineau, G. Gordon, and S. Thrun. Policy-contingent
abstraction for robust robot control. In Proceedings of the
Conference on Uncertainty in AI, Acapulco, Mexico, 2003.

[9] M. Pollack and M. Ringuette. Introducing the Tileworld:
experimentally evaluating agent architectures. In
Proceedings of the 8th National Conference on Artificial
Intelligence, pages 183–189, 1990.

[10] M. L. Puterman. Markov decision processes: Discrete
Stochastic Dynamic Programming. John Wiley and Sons,
Inc., New York, 1994.

[11] A. S. Rao and M. P. Georgeff. Deliberation and its role in the
formation of intentions. In Proceedings of the 7th Annual
Conference on Uncertainty in Artificial Intelligence, pages
300–307, 1991.

[12] A. S. Rao and M. P. Georgeff. BDI-agents: from theory to
practice. In Proceedings of the First International
Conference on Multiagent Systems, 1995.

[13] M. J. Schoppers. Universal plans for reactive robots in
unpredictable environments. In Proceedings of the 10th
International Joint Conference on Artificial Intelligence,
pages 1039–1046, 1987.

[14] M. Schut and M. Wooldridge. Intention reconsideration in
complex environments. In Proceedings of the Fourth
International Conference on Autonomous Agents, pages
209–216, 2000.

[15] M. Schut and M. Wooldridge. Principles of intention
reconsideration. In Proceedings of the Fifth International
Conference on Autonomous Agents, pages 340–347, 2001.

[16] M. Schut, M. Wooldridge, and S. Parsons. On partially
observable MDPs and BDI models. Lecture Notes in
Computer Science, 2403:243–??, 2002.

[17] M. Schut, M. Wooldridge, and S. Parsons. The theory and
practice of intention reconsideration. Journal of Theoretical
and Experimental AI, 16(4):261–293, 2004.

[18] M. C. Schut. Intention Reconsideration. PhD thesis,
University of Liverpool, 2002.

[19] G. I. Simari and S. Parsons. On approximating the best
decision for and autonomous agent. In Proceedings of the
Sixth Workshop on Game Theoretic and Decision Theoretic
Agents, pages 91–100, 2004.

[20] R. S. Sutton and A. G. Barto. Reinforcement learning: An
introduction. MIT Press, Cambridge, MA, 1998.

[21] J. Tsitsiklis and B. van Roy. Feature-based methods for large
scale dynamic programming. Machine Learning,
22(1/2/3):59–94, 1996.

[22] C. J. C. H. Watkins. Learning with delayed rewards. PhD
thesis, Cambridge University, 1989.

[23] M. Wooldridge. Intelligent Agents. In G. Weiss, editor,
Multiagent Systems - A Modern Approach to Distributed
Artificial Intelligence, chapter 1, pages 27–78. The MIT
Press, Cambridge, Massachussetts, 1999.

[24] M. Wooldridge and S. Parsons. Intention reconsideration
reconsidered. In J. Müller, M. P. Singh, and A. S. Rao,
editors, Agent Theories, Architectures, and Languages V,
pages 63–80. Springer-Verlag: Heidelberg, Germany, July
1999.

