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ABSTRACT
Work on argumentation-based dialogue has defined frame-
works within which dialogues can be carried out, established
protocols that govern dialogues, and studied different prop-
erties of dialogues. This work has established the space in
which agents are permitted to interact through dialogues.
Recently, there has been increasing interest in the mecha-
nisms agents might use to choose how to act — the rhetori-
cal manoeuvring that they use to navigate through the space
defined by the rules of the dialogue. Key in such consider-
ations is the idea of relevance, since a usual requirement is
that agents stay focussed on the subject of the dialogue and
only make relevant remarks. Here we study several notions
of relevance, showing how they can be related to both the
rules for carrying out dialogues and to rhetorical manoeu-
vring.

Categories and Subject Descriptors
I.2.11 [Artificial Intelligence]: Distributed Artificial In-
telligence: Coherence & co-ordination; languages & struc-
tures; multiagent systems.

General Terms
Design, languages, theory.

Keywords
Argumentation, dialogue, relevance

1. INTRODUCTION
Finding ways for agents to reach agreements in multia-

gent systems is an area of active research. One mechanism
for achieving agreement is through the use of argumentation
— where one agent tries to convince another agent of some-
thing during the course of some dialogue. Early examples of
argumentation-based approaches to multiagent agreement
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include the work of Dignum et al. [7], Kraus [14], Par-
sons and Jennings [16], Reed [23], Schroeder et al. [25] and
Sycara [26].

The work of Walton and Krabbe [27], popularised in the
multiagent systems community by Reed [23], has been par-
ticularly influential in the field of argumentation-based dia-
logue. This work influenced the field in a number of ways,
perhaps most deeply in framing multi-agent interactions as
dialogue games in the tradition of Hamblin [13]. Viewing di-
alogues in this way, as in [2, 21], provides a powerful frame-
work for analysing the formal properties of dialogues, and
for identifying suitable protocols under which dialogues can
be conducted [18, 20]. The dialogue game view overlaps with
work on conversation policies (see, for example, [6, 10]), but
differs in considering the entire dialogue rather than dialogue
segments.

In this paper, we extend the work of [18] by considering
the role of relevance — the relationship between utterances
in a dialogue. Relevance is a topic of increasing interest
in argumentation-based dialogue because it relates to the
scope that an agent has for applying strategic manoeuvering
to obtain the outcomes that it requires [19, 22, 24]. Our
work identifes the limits on such rhetorical manoeuvering,
showing when it can and cannot have an effect.

2. BACKGROUND
We begin by introducing the formal system of argumenta-

tion that underpins our approach, as well as the correspond-
ing terminology and notation, all taken from [2, 8, 17].

A dialogue is a sequence of messages passed between two
or more members of a set of agents A. An agent α maintains
a knowledge base, Σα, containing formulas of a propositional
language L and having no deductive closure. Agent α also
maintains the set of its past utterances, called the “com-
mitment store”, CSα. We refer to this as an agent’s “public
knowledge”, since it contains information that is shared with
other agents. In contrast, the contents of Σα are “private”
to α.

Note that in the description that follows, we assume that
` is the classical inference relation, that ≡ stands for logical
equivalence, and we use ∆ to denote all the information
available to an agent. Thus in a dialogue between two agents
α and β, ∆α = Σα ∪ CSα ∪ CSβ , so the commitment store
CSα can be loosely thought of as a subset of ∆α consisting of
the assertions that have been made public. In some dialogue
games, such as those in [18] anything in CSα is either in Σα

or can be derived from it. In other dialogue games, such as



those in [2], CSα may contain things that cannot be derived
from Σα.

Definition 2.1. An argument A is a pair (S, p) where p

is a formula of L and S a subset of ∆ such that (i) S is
consistent; (ii) S ` p; and (iii) S is minimal, so no proper
subset of S satisfying both (1) and (2) exists.

S is called the support of A, written S = Support(A) and p

is the conclusion of A, written p = Conclusion(A). Thus we
talk of p being supported by the argument (S, p).

In general, since ∆ may be inconsistent, arguments in
A(∆), the set of all arguments which can be made from ∆,
may conflict, and we make this idea precise with the notion
of undercutting :

Definition 2.2. Let A1 and A2 be arguments in A(∆).
A1 undercuts A2 iff ∃¬p ∈ Support(A2) such that p ≡
Conclusion(A1).

In other words, an argument is undercut if and only if there
is another argument which has as its conclusion the negation
of an element of the support for the first argument.

To capture the fact that some beliefs are more strongly
held than others, we assume that any set of beliefs has a
preference order over it. We consider all information avail-
able to an agent, ∆, to be stratified into non-overlapping
subsets ∆1, . . . , ∆n such that beliefs in ∆i are all equally
preferred and are preferred over elements in ∆j where i > j.
The preference level of a nonempty subset S ⊂ ∆, where
different elements s ∈ S may belong to different layers ∆i,
is valued at the highest numbered layer which has a member
in S and is referred to as level(S). In other words, S is only
as strong as its weakest member. Note that the strength of
a belief as used in this context is a separate concept from
the notion of support discussed earlier.

Definition 2.3. Let A1 and A2 be arguments in A(∆).
A1 is preferred to A2 according to Pref , A1 �Pref A2, iff
level(Support(A1)) > level(Support(A2)). If A1 is pre-
ferred to A2, we say that A1 is stronger than A2.

We can now define the argumentation system we will use:

Definition 2.4. An argumentation system is a triple:

〈A(∆), Undercut ,Pref 〉

such that:

• A(∆) is a set of the arguments built from ∆,

• Undercut is a binary relation representing the defeat
relationship between arguments, Undercut ⊆ A(∆) ×
A(∆), and

• Pref is a pre-ordering on A(∆) ×A(∆).

The preference order makes it possible to distinguish differ-
ent types of relations between arguments:

Definition 2.5. Let A1, A2 be two arguments of A(∆).

• If A2 undercuts A1 then A1 defends itself against A2

iff A1 �Pref A2. Otherwise, A1 does not defend itself.

• A set of arguments A defends A1 iff for every A2 that
undercuts A1, where A1 does not defend itself against
A2, then there is some A3 ∈ A such that A3 undercuts
A2 and A2 does not defend itself against A3.

We write AUndercut,Pref to denote the set of all non-undercut
arguments and arguments defending themselves against all
their undercutting arguments. The set A(∆) of acceptable
arguments of the argumentation system

〈A(∆),Undercut ,Pref 〉

is [1] the least fixpoint of a function F :

A ⊆ A(∆)

F(A) = {(S, p) ∈ A(∆) | (S, p) is defended by A}

Definition 2.6. The set of acceptable arguments for an
argumentation system 〈A(∆),Undercut ,Pref 〉 is recursively
defined as:

A(∆) =
[

Fi≥0(∅)

= AUndercut,Pref ∪
h

[

Fi≥1(AUndercut,Pref )
i

An argument is acceptable if it is a member of the acceptable
set, and a proposition is acceptable if it is the conclusion of
an acceptable argument.

An acceptable argument is one which is, in some sense,
proven since all the arguments which might undermine it
are themselves undermined.

Definition 2.7. If there is an acceptable argument for a
proposition p, then the status of p is accepted, while if there
is not an acceptable argument for p, the status of p is not
accepted.

Argument A is said to affect the status of another argument
A′ if changing the status of A will change the status of A′.

3. DIALOGUES
Systems like those described in [2, 18], lay down sets of

locutions that agents can make to put forward propositions
and the arguments that support them, and protocols that de-
fine precisely which locutions can be made at which points
in the dialogue. We are not concerned with such a level
of detail here. Instead we are interested in the interplay
between arguments that agents put forth. As a result, we
will consider only that agents are allowed to put forward
arguments. We do not discuss the detail of the mechanism
that is used to put these arguments forward — we just as-
sume that arguments of the form (S, p) are inserted into
an agent’s commitment store where they are then visible to
other agents.

We then have a typical definition of a dialogue:

Definition 3.1. A dialogue D is a sequence of moves:

m1, m2, . . . , mn.

A given move mi is a pair 〈α, Ai〉 where Ai is an argument
that α places into its commitment store CSα.

Moves in an argumentation-based dialogue typically attack
moves that have been made previously. While, in general,
a dialogue can include moves that undercut several argu-
ments, in the remainder of this paper, we will only consider
dialogues that put forward moves that undercut at most
one argument. For now we place no additional constraints
on the moves that make up a dialogue. Later we will see
how different restrictions on moves lead to different kinds of
dialogue.



The sequence of arguments put forward in the dialogue
is determined by the agents who are taking part in the di-
alogue, but they are usually not completely free to choose
what arguments they make. As indicated earlier, their choice
is typically limited by a protocol. If we write the sequence
of n moves m1, m2, . . . , mn as ~mn, and denote the empty se-
quence as ~m0, then we can define a profocol in the following
way:

Definition 3.2. A protocol P is a function on a sequence
of moves ~mi in a dialogue D that, for all i ≥ 0, identifies
a set of possible moves Mi+1 from which the mi+1th move
may be drawn:

P : ~mi 7→ Mi+1

In other words, for our purposes here, at every point in
a dialogue, a protocol determines a set of possible moves
that agents may make as part of the dialogue. If a dialogue
D always picks its moves m from the set M identified by
protocol P , then D is said to conform to P .

Even if a dialogue conforms to a protocol, it is typically
the case that the agent engaging in the dialogue has to make
a choice of move — it has to choose which of the moves in M

to make. This excercise of choice is what we refer to as an
agent’s use of rhetoric (in its oratorical sense of “influencing
the thought and conduct of an audience”). Some of our
results will give a sense of how much scope an agent has to
exercise rhetoric under different protocols.

As arguments are placed into commitment stores, and
hence become public, agents can determine the relationships
between them. In general, after several moves in a dia-
logue, some arguments will undercut others. We will denote
the set of arguments {A1, A2, . . . , Aj} asserted after moves
m1, m2, . . . , mj of a dialogue to be Aj — the relationship of
the arguments in Aj can be described as an argumentation
graph, similar to those described in, for example, [3, 4, 9]:

Definition 3.3. An argumentation graph AG over a set
of arguments A is a directed graph (V, E) such that every
vertex v, v′ ∈ V denotes one argument A ∈ A, every argu-
ment A is denoted by one vertex v, and every directed edge
e ∈ E from v to v′ denotes that v undercuts v′.

We will use the term argument graph as a synonym for “ar-
gumentation graph”.

Note that we do not require that the argumentation graph
is connected. In other words the notion of an argumentation
graph allows for the representation of arguments that do
not relate, by undercutting or being undercut, to any other
arguments (we will come back to this point very shortly).

We adapt some standard graph theoretic notions in order
to describe various aspects of the argumentation graph. If
there is an edge e from vertex v to vertex v′, then v is said
to be the parent of v′ and v′ is said to be the child of v.
In a reversal of the usual notion, we define a root of an
argumentation graph1 as follows:

Definition 3.4. A root of an argumentation graph AG =
(V, E) is a node v ∈ V that has no children.

Thus a root of a graph is a node to which directed edges
may be connected, but from which no directed edges con-
nect to other nodes. Thus a root is a node representing an

1
Note that we talk of “a root” rather than “the root” — as defined,

an argumentation graph need not be a tree.

v v’

Figure 1: An example argument graph

argument that is undercut, but which itself does no under-
cutting. Similarly:

Definition 3.5. A leaf of an argumentation graph AG =
(V, E) is a node v ∈ V that has no parents.

Thus a leaf in an argumentation graph represents an argu-
ment that undercuts another argument, but does no under-
cutting. Thus in Figure 1, v is a root, and v′ is a leaf. The
reason for the reversal of the usual notions of root and leaf
is that, as we shall see, we will consider dialogues to con-
struct argumentation graphs from the roots (in our sense)
to the leaves. The reversal of the terminology means that it
matches the natural process of tree construction.

Since, as described above, argumentation graphs are al-
lowed to be not connected (in the usual graph theory sense),
it is helpful to distinguish nodes that are connected to other
nodes, in particular to the root of the tree. We say that node
v is connected to node v′ if and only if there is a path from
v to v′. Since edges represent undercut relations, the notion
of connectedness between nodes captures the influence that
one argument may have on another:

Proposition 3.1. Given an argumentation graph AG, if
there is any argument A, denoted by node v that affects the
status of another argument A′, denoted by v′, then v is con-
nected to v′. The converse does not hold.

Proof. Given Definitions 2.5 and 2.6, the only ways in
which A can affect the status of A′ is if A either undercuts
A′, or if A undercuts some argument A′′ that undercuts A′,
or if A undercuts some A′′′ that undercuts some A′′ that
undercuts A′, and so on. In all such cases, a sequence of
undercut relations relates the two arguments, and if they are
both in an argumentation graph, this means that they are
connected.

Since the notion of path ignores the direction of the di-
rected arcs, nodes v and v′ are connected whether the edge
between them runs from v to v′ or vice versa. Since A only
undercuts A′ if the edge runs from v to v′, we cannot infer
that A will affect the status of A′ from information about
whether or not they are connected.

The reason that we need the concept of the argumentation
graph is that the properties of the argumentation graph tell
us something about the set of arguments A the graph repre-
sents. When that set of arguments is constructed through a
dialogue, there is a relationship between the structure of the
argumentation graph and the protocol that governs the dia-
logue. It is the extent of the relationship between structure
and protocol that is the main subject of this paper. To study
this relationship, we need to establish a correspondence be-
tween a dialogue and an argumentation graph. Given the
definitions we have so far, this is simple:

Definition 3.6. A dialogue D, consisting of a sequence
of moves ~mn, and an argument graph AG = (V, E) corre-
spond to one another iff ∀m ∈ ~mn, the argument Ai that



is advanced at move mi is represented by exactly one node
v ∈ V , and ∀v ∈ V , v represents exactly one argument Ai

that has been advanced by a move m ∈ ~mn.

Thus a dialogue corresponds to an argumentation graph if
and only if every argument made in the dialogue corresponds
to a node in the graph, and every node in the graph corre-
sponds to an argument made in the dialogue. This one-to-
one correspondence allows us to consider each node v in the
graph to have an index i which is the index of the move in
the dialogue that put forward the argument which that node
represents. Thus we can, for example, refer to the “third
node” in the argumentation graph, meaning the node that
represents the argument put forward in the third move of
the dialogue.

4. RELEVANCE
Most work on dialogues is concerned with what we might

call coherent dialogues, that is dialogues in which the par-
ticipants are, as in the work of Walton and Krabbe [27],
focused on resolving some question through the dialogue2

To capture this coherence, it seems we need a notion of rel-
evance to constrain the statements made by agents. Here
we study three notions of relevance:

Definition 4.1. Consider a dialogue D, consisting of a
sequence of moves ~mi, with a corresponding argument graph
AG. The move mi+1, i > 1, is said to be relevant if one or
more of the following hold:

R1 Making mi+1 will change the status of the argument
denoted by the first node of AG.

R2 Making mi+1 will add a node vi+1 that is connected to
the first node of AG.

R3 Making mi+1 will add a node vi+1 that is connected to
the last node to be added to AG.

R2-relevance is the form of relevance defined by [3] in their
study of strategic and tactical reasoning3. R1-relevance was
suggested by the notion used in [15], and though it differs
somewhat from that suggested there, we believe it captures
the essence of its predecessor.

Note that we only define relevance for the second move
of the dialogue onwards because the first move is taken to
identify the subject of the dialogue, that is, the central ques-
tion that the dialogue is intended to answer, and hence it
must be relevant to the dialogue, no matter what it is. In
assuming this, we focus our attention on the same kind of
dialogues as [18].

We can think of relevance as enforcing a form of parsi-
mony on a dialogue — it prevents agents from making state-
ments that do not bear on the current state of the dialogue.
This promotes efficiency, in the sense of limiting the num-
ber of moves in the dialogue, and, as in [15], prevents agents
revealing information that they might better keep hidden.
Another form of parsimony is to insist that agents are not
allowed to put forward arguments that will be undercut by
arguments that have already been made during the dialogue.
We therefore distinguish such arguments.

2
See [11, 12] for examples of dialogues where this is not the case.

3
We consider such reasoning sub-types of rhetoric.

Definition 4.2. Consider a dialogue D, consisting of a
sequence of moves ~mi, with a corresponding argument graph
AG. The move mi+1 and the argument it puts forward,
Ai+1, are both said to be pre-empted, if Ai+1 is undercut by
some A ∈ Ai.

We use the term “pre-empted” because if such an argument
is put forward, it can seem as though another agent an-
ticipated the argument being made, and already made an
argument that would render it useless. In the rest of this
paper, we will only deal with protocols that permit moves
that are relevant, in any of the senses introduced above, and
are not allowed to be pre-empted. We call such protocols ba-
sic protocols, and dialogues carried out under such protocols
basic dialogues.

The argument graph of a basic dialogue is somewhat re-
stricted.

Proposition 4.1. Consider a basic dialogue D. The ar-
gumentation graph AG that corresponds to D is a tree with
a single root.

Proof. Recall that Definition 3.3 requires only that AG

be a directed graph. To show that it is a tree, we have to
show that it is acyclic and connected.

That the graph is connected follows from the construction
of the graph under a protocol that enforces relevance. If the
notion of relevance is R3, each move adds a node that is
connected to the previous node. If the notion of relevance is
R2, then every move adds a node that is connected to the
root, and thus is connected to some node in the graph. If the
notion of relevance is R1, then every move has to change the
status of the argument denoted by the root. Proposition 3.1
tells us that to affect the status of an argument A′, the node
v representing the argument A that is effecting the change
has to be connected to v′, the node representing A′, and so
it follows that every new node added as a result of an R1-
relevant move will be connected to the argumentation graph.
Thus AG is connected.

Since a basic dialogue does not allow moves that are pre-
empted, every edge that is added during construction is di-
rected from the node that is added to one already in the graph
(thus denoting that the argument A denoted by the added
node, v, undercuts the argument A′ denoted by the node to
which the connection is made, v′, rather than the other way
around). Since every edge that is added is directed from the
new node to the rest of the graph, there can be no cycles.
Thus AG is a tree.

To show that AG has a single root, consider its construc-
tion from the initial node. After m1 the graph has one node,
v1 that is both a root and a leaf. After m2, the graph is two
nodes connected by an edge, and v1 is now a root and not a
leaf. v2 is a leaf and not a root. However the third node is
added, the argument earlier in this proof demonstrates that
there will be a directed edge from it to some other node, mak-
ing it a leaf. Thus v1 will always be the only root. The ruling
out of pre-empted moves means that v1 will never cease to
be a root, and so the argumentation graph will always have
one root.

Since every argumentation graph constructed by a basic di-
alogue is a tree with a single root, this means that the first
node of every argumentation graph is the root.

Although these results are straightforward to obtain, they
allow us to show how the notions of relevance are related.



Proposition 4.2. Consider a basic dialogue D, consist-
ing of a sequence of moves ~mi, with a corresponding argu-
ment graph AG.

1. Every move mi+1 that is R1-relevant is R2-relevant.
The converse does not hold.

2. Every move mi+1 that is R3-relevant is R2-relevant.
The converse does not hold.

3. Not every move mi+1 that is R1-relevant is R3-relevant,
and not every move mi+1 that is R3-relevant is R1-
relevant

Proof. For 1, consider how move mi+1 can satisfy R1.
Proposition 3.1 tells us that if Ai+1 can change the status
of the argument denoted by the root v1 (which, as observed
above, is the first node) of AG, then vi+1 must be connected
to the root. This is precisely what is required to satisfy R2,
and the relatiosnhip is proved to hold.

To see that the converse does not hold, we have to consider
what it takes to change the status of r (since Proposition 3.1
tells us that connectedness is not enough to ensure a change
of status — if it did, R1 and R2 relevance would coincide).
For mi+1 to change the status of the root, it will have to (1)
make the argument A represented by r either unacceptable,
if it were acceptable before the move, or (2) acceptable if it
were unacceptable before the move. Given the definition of
acceptability, it can achieve (1) either by directly undercut-
ting the argument represented by r, in which case vi+1 will
be directly connected to r by some edge, or by undercutting
some argument A′ that is part of the set of non-undercut
arguments defending A. In the latter case, vi+1 will be di-
rectly connected to the node representing A′ and by Propo-
sition 4.1 to r. To achieve (2), vi+1 will have to undercut
an argument A′′ that is either currently undercutting A, or
is undercutting an argument that would otherwise defend A.
Now, further consider that mi+1 puts forward an argument
Ai+1 that undercuts the argument denoted by some node v′,
but this latter argument defends itself against Ai+1. In such
a case, the set of acceptable arguments will not change, and
so the status of Ar will not change. Thus a move that is
R2-relevant need not be R1-relevant.

For 2, consider that mi+1 can satisfy R3 simply by adding
a node that is connected to vi, the last node to be added
to AG. By Proposition 4.1, it is connected to r and so is
R2-relevant.

To see that the converse does not hold, consider that an
R2-relevant move can connect to any node in AG.

The first part of 3 follows by a similar argument to that we
just used — an R1-relevant move does not have to connect to
vi, just to some v that is part of the graph — and the second
part follows since a move that is R3-relevant may introduce
an argument Ai+1 that undercuts the argument Ai put for-
ward by the previous move (and so vi+1 is connected to vi),
but finds that Ai defends itself against Ai+1, preventing a
change of status at the root.

What is most interesting is not so much the results but
why they hold, since this reveals some aspects of the in-
terplay between relevance and the structure of argument
graphs. For example, to restate a case from the proof of
Proposition 4.2, a move that is R3-relevant by definition has
to add a node to the argument graph that is connected to the

last node that was added. Since a move that is R2-relevant
can add a node that connects anywhere on an argument
graph, any move that is R3-relevant will be R2-relevant,
but the converse does not hold.

It turns out that we can exploit the interplay between
structure and relevance that Propositions 4.1 and 4.2 have
started to illuminate to establish relationships between the
protocols that govern dialogues and the argument graphs
constructed during such dialogues. To do this we need to
define protocols in such a way that they refer to the structure
of the graph. We have:

Definition 4.3. A protocol is single-path if all dialogues
that conform to it construct argument graphs that have only
one branch.

Proposition 4.3. A basic protocol P is single-path if, for
all i, the set of permitted moves Mi at move i are all R3-
relevant. The converse does not hold.

Proof. R3-relevance requires that every node added to
the argument graph be connected to the previous node. Start-
ing from the first node this recursively constructs a tree with
just one branch, and the relationship holds. The converse
does not hold because even if one or more moves in the pro-
tocol are R1- or R2-relevant, it may be the case that, because
of an agent’s rhetorical choice or because of its knowledge,
every argument that is chosen to be put forward will under-
cut the previous argument and so the argument graph is a
one-branch tree.

Looking for more complex kinds of protocol that construct
more complex kinds of argument graph, it is an obvious
move to turn to:

Definition 4.4. A basic protocol is multi-path if all dia-
logues that conform to it can construct argument graphs that
are trees.

But, on reflection, since any graph with only one branch is
also a tree:

Proposition 4.4. Any single-path protocol is an instance
of a multi-path protocol.

and, furthermore:

Proposition 4.5. Any basic protocol P is multi-path.

Proof. Immediate from Proposition 4.1

So the notion of a multi-path protocol does not have much
traction. As a result we distinguish multi-path protocols
that permit dialogues that can construct trees that have
more than one branch as bushy protocols. We then have:

Proposition 4.6. A basic protocol P is bushy if, for some
i, the set of permitted moves Mi at move i are all R1- or
R2-relevant.

Proof. From Proposition 4.3 we know that if all moves
are R3-relevant then we’ll get a tree with one branch, and
from Proposition 4.1 we know that all basic protocols will
build an argument graph that is a tree, so providing we ex-
clude R3-relevant moves, we will get protocols that can build
multi-branch trees.



Of course, since, by Proposition 4.2, any move that is R3-
relevant is R2-relevant and can quite possibly be R1-relevant
(all that Proposition 4.2 tells us is that there is no guaran-
tee that it will be), all that Proposition 4.6 tells us is that
dialogues that conform to bushy protocols may have more
than one branch. All we can do is to identify a bound on
the number of branches:

Proposition 4.7. Consider a basic dialogue D that in-
cludes m moves that are not R3-relevant, and has a corre-
sponding argumentation graph AG. The number of branches
in AG is less than or equal to m + 1.

Proof. Since it must connect a node to the last node
added to AG, an R3-relevant move can only extend an ex-
isting branch. Since they do not have the same restriction,
R1 and R2-relevant moves may create a new branch by con-
necting to a node that is not the last node added. Every
such move could create a new branch, and if they do, we
will have m branches. If there were R3-relevant moves be-
fore any of these new-branch-creating moves, then these m

branches are in addition to the initial branch created by the
R3-relevant moves, and we have a maximum of m + 1 pos-
sible branches.

We distinguish bushy protocols from multi-path protocols,
and hence R1- and R2-relevance from R3-relevance, because
of the kinds of dialogue that R3-relevance enforces. In a dia-
logue in which all moves must be R3-relevant, the argumen-
tation graph has a single branch — the dialogue consists of
a sequence of arguments each of which undercuts the previ-
ous one and the last move to be made is the one that settles
the dialogue. This, as we will see next, means that such a
dialogue only allows a subset of all the moves that would
otherwise be possible.

5. COMPLETENESS
The above discussion of the difference between dialogues

carried out under single-path and bushy protocols brings us
to the consideration of what [18] called “predeterminism”,
but we now prefer to describe using the term “complete-
ness”. The idea of predeterminism, as described in [18],
captures the notion that, under some circumstances, the re-
sult of a dialogue can be established without actually having
the dialogue — the agents have sufficiently little room for
rhetorical manoeuver that were one able to see the contents
of all the Σi of all the αi ∈ A, one would be able to iden-
tify the outcome of any dialogue on a given subject4. We
develop this idea by considering how the argument graphs
constructed by dialogues under different protocols compare
to benchmark complete dialogues. We start by developing
ideas of what “complete” might mean. One reasonable def-
inition is that:

Definition 5.1. A basic dialogue D between the set of
agents A with a corresponding argumentation graph AG is
topic-complete if no agent can construct an argument A that
undercuts any argument A′ represented by a node in AG.

The argumentation graph constructed by a topic-complete
dialogue is called a topic-complete argumentation graph and
is denoted AG(D)T .

4
Assuming that the Σi do not change during the dialogue, which is

the usual assumption in this kind of dialogue.

A dialogue is topic-complete when no agent can add any-
thing that is directly connected to the subject of the di-
alogue. Some protocols will prevent agents from making
moves even though the dialogue is not topic-complete. To
distinguish such cases we have:

Definition 5.2. A basic dialogue D between the set of
agents A with a corresponding argumentation graph AG is
protocol-complete under a protocol P if no agent can make
a move that adds a node to the argumentation graph that is
permitted by P .

The argumentation graph constructed by a protocol-complete
dialogue is called a protocol-complete argumentation graph
and is denoted AG(D)P . Clearly:

Proposition 5.1. Any dialogue D under a basic protocol
P is protocol-complete if it is topic-complete. The converse
does not hold in general.

Proof. If D is topic-complete, no agent can make a move
that will extend the argumentation graph. This means that
no agent can make a move that is permitted by a basic pro-
tocol, and so D is also protocol complete.

The converse does not hold since some basic dialogues (un-
der a protocol that only permits R3-relevant moves, for ex-
ample) will not permit certain moves (like the addition of
a node that connects to the root of the argumentation graph
after more than two moves) that would be allowed in a topic-
complete dialogue.

Corollary 5.1. For a basic dialogue D, AG(D)P is a
sub-graph of AG(D)T .

Obviously, from the definition of a sub-graph, the converse
of Corollary 5.1 does not hold in general.

The important distinction between topic- and protocol-
completeness is that the former is determined purely by the
state of the dialogue — as captured by the argumentation
graph — and is thus independent of the protocol, while the
latter is determined entirely by the protocol. Any time that
a dialogue ends in a state of protocol-completeness rather
than topic completeness, it is ending when agents still have
things to say but can’t because the protocol won’t allow
them to.

With these definitions of completeness, our task is to re-
late topic-completeness — the property that ensures that
agents can say everything that they have to say in a dialogue
that is, in some sense, important — to the notions of rel-
evance we have developed — which determine what agents
are allowed to say. When we need very specific conditions to
make protocol-complete dialogues topic-complete, it means
that agents have lots of room for rhetorical maneouver when
those conditions are not in force. That is there are many
ways they can bring dialogues to a close before everything
that can be said has been said. Where few conditions are
required, or conditions are absent, then dialogues between
agents with the same knowledge will always play out the
same way, and rhetoric has no place. We have:

Proposition 5.2. A protocol-complete basic dialogue D

under a protocol which only allows R3-relevant moves will
be topic-complete only when AG(D)T has a single branch
in which the nodes are labelled in increasing order from the
root.



Proof. Given what we know about R3-relevance, the con-
dition on AG(D)P having a single branch is obvious. This
is not a sufficient condition on its own because certain pro-
tocols may prevent — through additional restrictions, like
strict turn-taking in a multi-party dialogue — all the nodes
in AG(D)T , which is not subject to such restrictions, being
added to the graph. Only when AG(D)T includes the nodes
in the exact order that the corresponding arguments are put
forward is it necessary that a topic-complete argumentation
graph be constructed.

Given Proposition 5.1, these are the conditions under which
dialogues conducted under the notion of R3-relevance will
always be predetermined, and given how restrictive the con-
ditions are, such dialogues seem to have plenty of room for
rhetoric to play a part.

To find similar conditions for dialogues composed of R1-
and R2-relevant moves, we first need to distinguish between
them. We can do this in terms of the structure of the argu-
mentation graph:

Proposition 5.3. Consider a basic dialogue D, with ar-
gumentation graph AG which has root r denoting an argu-
ment A. If argument A′, denoted by node v is an an R2-
relevant move m, m is not R1-relevant if and only if:

1. there are two nodes v′ and v′′ on the path between v

and r, and the argument denoted by v′ defends itself
against the argument denoted by v′′; or

2. there is an argument A′′, denoted by node v′′, that af-
fects the status of A, and the path from v′′ to r has one
or more nodes in common with the path from v to r.

Proof. For the first condition, consider that since AG is
a tree, v is connected to r. Thus there is a series of undercut
relations between A and A′, and this corrresponds to a path
through AG. If this path is the only branch in the tree, then
A will affect the status of A′ unless the chain of “affect”
is broken by an undercut that can’t change the status of the
undercut argument because the latter defends itself.

For the second condition, as for the first, the only way
that A′ cannot affect the status of A is if something is block-
ing its influence. If this is not due to “defending against”,
it must be because there is some node u on the path that
represents an argument whose status is fixed somehow, and
that must mean that there is another chain of undercut rela-
tions, another branch of the tree, that is incident at u. Since
this second branch denotes another chain of arguments, and
these affect the status of the argument denoted by u, they
must also affect the status of A. Any of these are the A′′ in
the condition.

So an R2-relevant move m is not R1-relevant if either its
effect is blocked because an argument upstream is not strong
enough, or because there is another line of argument that
is currently determining the status of the argument at the
root. This, in turn, means that if the effect is not due to
“defending against”, then there is an alternative move that
is R1-relevant — a move that undercuts A′′ in the second
condition above5. We can now show

5
Though whether the agent in question can make such a move is

another question.

Proposition 5.4. A protocol-complete basic dialogue D

will always be topic-complete under a protocol which only in-
cludes R2-relevant moves and allows every R2-relevant move
to be made.

The restriction on R2-relevant rules is exactly that for topic-
completeness, so a dialogue that has only R2-relevant moves
will continue until every argument that any agent can make
has been put forward. Given this, and what we revealed
about R1-relevance in Proposition 5.3, we can see that:

Proposition 5.5. A protocol-complete basic dialogue D

under a protocol which only includes R1-relevant moves will
be topic-complete if AG(D)T :

1. includes no path with adjacent nodes v, denoting A,
and v′, denoting A′, such that A undercuts A′ and A′

is stronger that A; and

2. is such that the nodes in every branch have consecutive
indices and no node with degree greater than two is an
odd number of arcs from a leaf node.

Proof. The first condition rules out the first condition
in Proposition 5.3, and the second deals with the situation
that leads to the second condition in Proposition 5.3. The
second condition ensures that each branch is constructed in
full before any new branch is added, and when a new branch
is added, the argument that is undercut as part of the addi-
tion will be acceptable, and so the addition will change the
status of the argument denoted by that node, and hence the
root. With these conditions, every move required to con-
struct AG(D)T will be permitted and so the dialogue will be
topic-complete when every move has been completed.

The second part of this result only identifies one possible
way to ensure that the second condition in Proposition 5.3
is met, so the converse of this result does not hold.

However, what we have is sufficient to answer the ques-
tion about “predetermination” that we started with. For di-
alogues to be predetermined, every move that is R2-relevant
must be made. In such cases every dialogue is topic com-
plete. If we do not require that all R2-relevant moves are
made, then there is some room for rhetoric — the way in
which alternative lines of argument are presented becomes
an issue. If moves are forced to be R3-relevant, then there
is considerable room for rhetorical play.

6. SUMMARY
This paper has studied the different ideas of relevance in

argumentation-based dialogue, identifying the relationship
between these ideas, and showing how they can impact the
extent to which the way that agents choose moves in a di-
alogue — what some authors have called the strategy and
tactics of a dialogue. This extends existing work on rel-
vance, such as [3, 15] by showing how different notions of
relevance can have an effect on the outcome of a dialogue,
in particular when they render the outcome predetermined.
This connection extends the work of [18] which considered
dialogue outcome, but stopped short of identifying the con-
ditions under which it is predetermined.

There are two ways we are currently trying to extend this
work, both of which will generalise the results and extend its
applicability. First, we want to relax the restrictions that



we have imposed, the exclusion of moves that attack sev-
eral arguments (without which the argument graph can be
mulitply-connected) and the exclusion of pre-empted moves,
without which the argument graph can have cycles. Sec-
ond, we want to extend the ideas of relevance to cope with
moves that do not only add undercutting arguments, but
also supporting arguments, thus taking account of bipolar
argumentation frameworks [5].
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