A model for integrating dialogue and the execution of joint
plans

Yuqing Tang
Dept. of Computer Science
Graduate Center
City University of New York
365 Fifth Avenue
New York, NY 10016, USA
ytang@gc.cuny.edu

ABSTRACT

Coming up with a plan for a team that operates in a non-detéstid
environment is a complex process, and the problem is fucther
plicated by the need for team members to communicate while th
plan is being executed. Such communication is requiredesfer
ample, to make sure that information critical to the planassed

in time for it to be useful. In this paper we present a model for
constructing joint plans for a team of agents that takesantmunt
their communication needs. The model builds on recent dpvel
ments in symbolic non-deterministic planning, ideas tlatehnot
previously been applied to this problem.

Categories and Subject Descriptors

1.2.11 [Artificial Intelligence]: Distributed Artificial Intelligence—
Coherence and co-ordination; multiagent systems.

General Terms
Languages, theory.

Keywords

Agent interaction, planning, dialogue.

1. INTRODUCTION

One of the fundamental problems in multiagent systems is how
to get a team of agents to coordinate their behavior. Whéeethre
situations in which agents can do this without needing toroom
nicate [10], in general coordination requires commundaratiAn-
other important part of coordination is having the agentsidie
what to do. Since [2], the process of deciding what to do is con
sidered to break down into two parts — deciding what goals to
achieve, what [2] callgleliberation and then deciding how those
goals might best be achieved, which is usually describgulaas
ning. In this paper we are interested in the planning part of the
process. We assume the existence of a set of goals to be ethiev
in a form such as a set of joint intentions [8].

We are also greatly concerned with communication. Much re-
cent work on agent communication uses argumentation-tiised
logue [12], and the long term goal of our work is to extend &exis

Cite as: A model for integrating dialogue and the execution of joitairs,
Author(s),Proc. of 8th Int. Conf. on Autonomous Agents and Multia-
gent Systems (AAMAS 200B¢cker, Sichman, Sierra and Castelfranchi
(eds.), May, 10-15, 2009, Budapest, Hungary, pp. XXX-XXX.
Copyright (© 2008, International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights resetve

Timothy J. Norman
Dept of Computing Science
The University of Aberdeen

Aberdeen, AB24 3UE, UK
t.j.norman@abdn.ac.uk

Simon Parsons
Dept of Comp & Info Science
Brooklyn College
City University of New York
2900 Bedford Avenue
Brooklyn, NY 11210 USA
parsons@sci.brooklyn.cuny.edu

ing work on multiagent planning by developing models by vihic

a team of agents can, in the course of an argumentation-fofksed
alogue — by which we mean a process during which agents put
forward suggested partial plans backed by reasons, as jrf{18
develop a plan for the team. We want this to be done in a way
that respects the non-deterministic nature of the world,vahich
yields efficient implementation. This paper takes sevespsto-
wards this goal.

In particular, this paper gives a mechanism, albeit a ckseich
mechanism, by which a multiagent team can construct plaats th
take into account the need to communicate to ensure thatahésp
executed correctly [13]. By developing a representatioglage
that is an extension of languages used in non-determinptaic-
ning, our approach can make use of new techniques from model-
checking to provide efficient implementations. The extemsn-
corporates the elements necessary to take multiple agerdghe
necessary communication, into account. The use of a symboli
model makes it possible to turn the plan construction poa#e
an argumentation-based dialogue in the future.

Building our approach on top of work in planning has advan-
tages beyond ease and efficiency of implementation. By appro
ating the underlying formal models, we can easily acquiitable
formal guarantees for the planning model that we constrlids
straightforward, for example, to show that given an adexjdat
scription of the world, any plan that our planning proces ain-
struct is both a feasible and, in a specific sense an optinasi tov
achieve the goals of the plan.

2. REPRESENTATION LANGUAGE

We use a state-space model as a basis for our formalisation.
This model is an adaptation of a model commonly used in non-
deterministic planning [6]Statesare objects that capture some as-
pect of a system, anakctionsare transitions between states. States
and actions together definestate-spaceWhen action effects are
non-deterministic [6] then what one seeks for any stateesjma
policy. i.e. a state-action mapping that specifies which actiors on
should take in a given state. We define a non-deterministicaiio
to be a tupleM = (P, S, A, R) where:

e P = PsU Pais afinite set of propositions;
e S C 2Ps s the set of all possible states;
e A C 27 s the finite set of actions; and

e R C S x A x Sis the state-transition relation.

A propositional language& with quantification extension can be
defined by allowing standard connectivesVv, —, - and quanti-
fiers3,V over the proposition variables. The resulting language is
a logic of quantified boolean formulae (QBF) [3]. gymbol re-
naming operationwhich we use below, can be defined 6nde-
noted byZ[P/P’], which means that a new language is obtained
by substituting the symbols @ with the symbols of®’ whereP’
contains the same set of propositions as th&® dfut using differ-
ent symbol names (notice thi@'| = |P|). Similarly for a formula

& € L, if Xis a vector of propositional variables f@t, then a vari-
able renaming operation can be defineddi®/x'] which means
that all the appearances of variab¥es x;X. . . . X, are substituted
by ¥ = x{x;...x, which is a vector of the corresponding vari-
ables or constants i®’. In QBF, propositional variables can be
universally and existentially quantified: 4f[X] is a QBF formula
with propositional variable vectdt andx; is one of its variables,
the existential quantification of in ¢ is defined asIx¢[X] =
¢[X|[x/FALSE V ¢[X][x/TRUE; the universal quantification of
X in ¢ is defined as/xip[x] = ¢[X][x /FALSH A ¢[X][x/TRUE.
HereFALSEand TRUEare two propositional constants represent-
ing “true” and “false” in the logic. The introduction of quifi+
cation doesn't increase the expressive power of propositiogic
but allows us to write concise expressions whose quaniditat
free versions have exponential sizes [9].

Based on the two disjoint sets of propositiofs, and Pa, two
sub-language£s and La for states and actions can be defined re-
spectively. A states = {p1,pz,...,pP}, S C Ps, means that the
propositionsps, pz, . . ., px are true in stats and all other propo-
sitions inPs are false — we therefore make some form of closed-
world assumption. In other words, each stteexplicitly encoded
by a conjunction composed of all proposition symbol$iin ei-
ther positive or negative form

/\

v=ApA
pjZsandse Ps

pies

B

We denote that a formula is true in statesby s = . Then a set

of states can be characterized by a formyl& Ls, with the set
denoted byS(7), whereS(v) = {s|s = v}.! Actions are encoded

in a similar way to states. Actioa = {p1,pz2,...,p}, a C Pa
means that propositionsi, ..., p are true and all other formula

in Pa are false. We denote that a formulas true in an actiora

by a = «, and a set of actions can be characterized by a formula
a € La with the set denoted b#(a) = {ala E «}. Given a set

of statesS, and a set of actions, the corresponding formulae it

are denoted by (S) and{(A) respectively. With these notions we

Set operator QBF operator
XiNXe £(X1) NE(X2)
XiU%e | E0X) VEK)
X1\ Xo £(X1) A ~€(X2)
X e X E(x) — &£(X)
X1 € Xo EX1) — £(X2)

Table 1: The mapping between set operators and QBF opera-
tors

languagel = LsU Latobel = LsU LA U Lg WhereLy =
Ls[P/P’]. Psis for the current statePa is for the action, and
Py is for the next state in the representation of a state tiansit
Now a triple (v, o, 7'} can be rewritten by one formula i as
vy AaAvy wherey € Ls,a € Laandy' € Lg. Correspondingly,
a state transitiom = (s a,s) is said to satisfy a formulda =
v Aa A+, denoted by | 4§, if s = ~, anda | a ands
~'. A set of state transitionR can be characterized by a formulae
0 = ¢(R) and the corresponding set of state transiti®(g) =
{r|[r &= é§}. We can capture the meaning ®&fmore easily if we
expands into a disjunctiond = \/;(7i A ai A ~{), in which each
state transition is explicitly encoded as a conjunctiorcoliforms
to the mapping between the set operations on state tramskiod
boolean operations on the formulae in Table 1 by interpgeXin
andXz with two sets of state transitions.

3. POLICIES

The state-space model described above gives us a way of de-
scribing the world in which an agent finds itself, and the@wiit
can undertake. We can then turn to considering what the bafpu
the planning process will be. We call this outpup@icy, and we
consider it to simply be a set of state-action pairs,

m™={(s,a)}
wheres € S anda; € A(s) with
A(s) = {a|3(s,a,5) € R}

that is the set of actions that are applicables.inA policy = is a
deterministic policyif for a given states, there is no more than one
action is specified byt, otherwise it is anon-deterministic policy
What we are calling a policy is the state-action table usd@]int

is also related to what the literature on MDPs calls a polidytut
we allow a policy to only specify actions for a subset of alsgible
states.

can have a mapping between the set operations on stateseand th A policy can be specified by a set of pairs composed of a formula

boolean operations on formulae as shown in Table 1 wheand
Xz are interpreted as two sets of states. Similarly for actiores
can have the same operation mapping in Table 1 wheand X,

are interpreted as two sets of actions.

With states and actions defined, the state-transitionioekttip
can then be specified by a s8Rof triples: SR = {{vy,a,v')}
wherey,v’ € Lsanda € La. Each triple(y, o, v') corresponds
to a transitionR, .y = {(s,a,5)|s = v,a = o, | ~}, and
together:

U

(v,a,7") ESR

Rsr= Rivay)-

Using the renaming operation, we can extend the state aiwhact

INote thatS(py Ap2 A ... Apk) # {S} wheres = {p1,p2, ..., p} becauss,
doesn’t make the closed world assumption; that is, we dastme that the unspec-
ified propositions are false when using a formglac £ to specify the set of states

S(7)-

v € Ls, and an actiong € La: SA= {(v, o) }. Each pair(y, a)
corresponds to a policy segment;, ., = {(s,a)|s = v anda |=
a}, and together

U Ty a)

(v,a) ESA

TSA =

A state-action pairs, a) is said to satisfy a formula of the form
v A awherey € Lsanda € L, denoted bys, a) = v A a. We
can characterize a setof state-action pairs, namely a policy, by a
formula of the formr = \/, v A o and its equivalents. We denote
this by w(r) = {(s,a)|(s,a) = 7}. In the same way that we rep-
resent state transitions as propositions, we can have agitignal
representatiog(SA) for a setSAof state-action pairs, and the map-
ping between the set operations on policies and booleamtiqes
on the formulae given in Table 1 applies if we interpetand X

as two sets of state-action pairs. We can represent therauntst
A(s) by aformulaing: £(A(S(y)) = IXE(R(S A, S)) Ay where

X' is the vector of variables fd8 and¢(R(S A, S)) is the formula
representation of the state transition relation in theesystThen
we can conjoin the formul&(.A(S(y))) to each policy expression
of the form~y A a to bey A a A §(A(S(v))). For simplicity, we
will omit the formula componeng(A(S(y))) in the representation
of policy below.

The space of all policies is denoted Hy The set of states in a
policy 7 is S, = {s/(s,a) € 7}. Adapting from [6], we have the
following definition:

Definition 1. An execution structurénduced by the policyr
from a set of initial statet is a directed grap®x~ (1) = (Vx,Ex)
which can be recursively defined as

e if sel,thense V,, and

e if s € V, and there exists a state-action p@ra) € 7 such
that(s,a,) € R, thens € V; anda: (s,5) € E. where
the actioma is the label of the edge.

Definition 2. An execution patlof a policyr from a set of states
| is a possibly infinite sequenag, s1, S, . . . Of states in the exe-
cution structures, (1) = (Vr, Ex) such that for all states in the
sequence:

e eithers is the last state of the sequence, in which casea
terminal stateof > (1), or

e (S,S+1) € En.

A states' is said to baeachablefrom sin the execution structure
¥, if there is a path fronsto s’ in X.. ¥, is anacyclic execution
iff all its execution paths are finite.

These ideas then give us a way to classify policies:

Definition 3. Given a set of initial statdsand a set of goal states
G for a nondeterministic domaimM = (P, S, A, R), letw be a
policy for M with execution structur& (1), then

e 7 is aweak solutiorto achieveG iff for any statesy € | there
is some terminal statg of >, (1) such thas’ € G and it is
reachable fronsy;

e 7 is astrong solutionto achieveG iff X.(l) is acyclic and
all terminal states oE, (1) are also irG;

e 7 is astrong cyclic solutiorto achieveG iff from any state
S in X (1) some terminal state is reachable and all the
terminate states df~ (1) are inG.

With a weak solution policy, we have a path to the goal in a fi-

nite number of steps, but no guarantee that in a non-detistigin
world the goal will be achieved; with a strong solution pgliove

have a guarantee that the goal can be achieved in a finite mumbe

of steps despite actions being non-deterministic if thieestpace is
acyclic; and with a strong cyclic solution, we are guaradtdet
the goal will be achieved even in the face of non-determirésit

cycles in the state-space so long as the cycle can be broken no

deterministically.

4. JOINT POLICIES

Representation Meaning

joint(a) {ac AlakE=a}

joint(&) Nacealoint(ax)

joint(s) {s€ S[sE s}

joint(3 AN

joint(R) {(s,a,s) | (s,a,9) € R,ands ¢
joint(s), a € joint(a),s € joint(§))}

joint (i) {(s,a) | (s,a&) € m, ands € joint(s),a €
joint(a)) }

joint(S) US cs joint(s)

joint({(s,) })| {{oint(s), joint(s))}

joint(Xx,) (joint(Vx,), joint(Ex,))

joint({R}) | (ioint(R)

joint({mi}) (ioint(mi)

Table 2: Joint operations

Representation Meaning

proji(a) {a € Ailafa}

proji(s) {s e Silsks}

proji (R) {(s,a,9) | (sas) € R ands ¢
proji(s), & € proji(a), s’ € proji(s))}

proji () {(s,a) | (s, @) € 7, ands € proji(s),a €
proji(a)) }

proji (S) UscesProji(s)

proji({(s, $)}) | Uses{(Proii(s), proji(s)) }

proj (Eﬂi) (proji (VTri): proji (Em»

Table 3: Projection operations
soa = [ai,...,an). Thatis each action € .4 can be further de-

composed into actionsa; € A; of individual agentsTi. EachA;
is defined to be a subs@ly; of the propositions inP.4. By over-
loading the notion, we also denade= & if agentT;’s action isa
in a joint actiona. In total, we have:

A:H.Ai

Similarly, each stats € S is a tuple of states combined from the
perception of individual agents, o= [si,...,S]. Thatis each
states € S can be further decomposed intostatess € S; of
individual agentsT;. EachS; is defined to be a subs@ts, of the
propositions inPs. By overloading this notion, we also denote
s s if agentTi’s perception of a (joint) stateis s in.
Overall, we have:
s=]]s
|

Given these ideas, we can generate the set of join(t) andqtiaf
operations on an ageiit’s actions, states and state transitions as
shown in Tables 2 and 3 respectively. Joint operations caanbi
tions the states and actions that concern individual agetughe

To describe the behavior of a team, we need to prescribe morestates and actions that concern a set of agents, while fiovjep-

structure over the actions available to an agent. We asshate t

there is a set of agents labeled by = {T1,T2,...,Ta} in the
system. We call the actions in the sdtjoint actionsof these
agents. Each actiame A is a tuple of actions of individual agents,

erations extract states and actions of individual ageots fthose
of a set of agents.

An additional formulag € £ can be introduced to constrain
possible combinations so that(8) = {a € Ala = 3}. For

example, this constraint:

n
s=ANa—n
i=1ji
wherer; is a special symbol for an empty action, captures a sit-
uation in which agents are not allowed to carry out actions co
currently. The corresponding constrained joint statesitam rela-
tionship is:

joint({Ri}, B)

{(s;a,9) | (s,a,9) €joint({Ri}),
anda = 3,s = 6)}

and the corresponding constrained joint policy is:

joint({ri}, 5) {{sas)[(s @) € joint({mi}),
anda |= §,s|=)}

It is should be noted that in practice we need to be carefudtgxa
how we specify formulae like the constraifitsince they can ad-
versely affect the complexity of reducing the the formulamia
form in which they can be fed into the BDD implementation. We
will discuss this briefly in Section 8.

5. POLICY AND COMMUNICATION

At this point we have a language that is sufficiently rich taco
struct plans that just involve the physical actions thahégearry
out. However, we want to create plans that include commtinits
that permit the necessary sharing of information, so we teadd
a dialogue model to the model we already have. As the basieeof t
dialogue model, we will use the same kind of state space naxiel
we use for the world model. To distinguish the two state fitaors
models, we will denote these two models and their elemertts wi
subscripts. We writg, to denote elements of the dialogue model,
for example Mp denotes the state transition model for a dialogue
andS|p denotes the states of a dialogue. We wyjjgo denote el-
ements of the world model, for exampld,,y denotes the external
world model andS)y the states of the world. However, when the
state transition model is obvious from the context, we witlicthe
subscripts.

As before, we assume that, in the dialogue, there is a set of
agents labeledy, To, ..., Tn where each agerit has a model of
the world Mijw = (Pijw, Sijws Aijw, Rijw) and for which it has a
policy mijw = {(s,a)}. Given this, a dialogue model is then a state
transition syster\Mp = (Pjp, Sp, Ajp, Rjp) for which there is
a policy for conducting dialoguesp. The dialogue language,p
contains elements from langua@g.w that individual agents use to
describe the world, along with auxiliary language elemesutsh
as a proposition to mark the differences between two wodtbst
The dialogue information is induced frof. The set of dialogue
acts Ap are those available to the agents. How these dialogues
change the information state will be specified by the diadogfate
transition relationship of these dialogue ad®&p C Sjp x A|p X
Sip- Depending on the specific dialogue, we may distinguish a set
of initial dialogue statesp C S|p and a set of goal dialogue states
Gpp € S)p (see [14] for an example).

Definition 4. Agent Ti’s behavior model is a joint model of its
external world(M;w, mjw) and its dialogue mode{M;,mi) =
(M|, mijp) defined as:

(Mi, i) = (joint(M”W, Mi\D); joint(m‘w, 71'”[))>.

The whole system behavior modejjdsntr,; ({{(Mi, m)}).
As before, a policy for a dialoguerp = {(Sp,ap)}, speci-
fies what dialogue action should be taken in a given dialo¢ate s

EXEC(s, a)

StatesOfr)

GetActior(s,)
ComputeWeakPrelmag®)
ComputeStrongPrelmags)
ComputeNextimags)
PrunStateér, S)

{d|(s,a,9) € R}

{sl{s;a) € 7}

{al(s,a) € 7}
{{s,a)|Exeds,a) A S# 0}
{(s,a)|0 # Exeds,a) C S}
{s|Exeds, a) A S}

{(s @) enls¢ S}

Figure 1: Operations on transition relations and policies

Set representation
EXECs, a)

StatesOfr)

GetActior(s,)
ComputeWeakPrelma@®
ComputeStrongPrelmag®)

QBF implementation

£(s) AE(@) ANER)X /X
3a (n)

£(s) AE(m)
IXE(S)X/X] A E(R)
VX (E(R) — E(SK/XT) A

WE(R)
ComputeNextimag8) IXE(S) NE(R)
PrunStateér, S) £(m) A —E(S)

Table 4: The mapping between set representation and QBF im-
plementation of some transition relation and policy functbns

to reach the goal statéSp from the initial statedp at the least
expected cost. To distinguish such policies from the pedidchat
govern an agent'’s actions in the world, we call the polictest t
govern an agent’s actions in a dialogueaaversation policyand a
policy that governs an agent’s actions in the worlaiald policy.
Before we go on to give the description of the algorithm for ex
ecuting world and conversation policies, we need to takek &t
some properties that capture the interaction between theudrn
of actions in the world and communication between team mesnbe

Definition 5.

e A state-action paits, a) € m is calledtotally autonomous
if for every agentT; there is no othexs’, &) € proji(mw)
such that(s,a) € proji({(s,a)), ands = § buta # &.
In other words, action-state pairs are totally autonoméus i
for every agent involved there is no confusion about which
action it should take. A team policy,y is called totally
autonomous if all its constituent joint state-action pairs
totally autonomous. In this case, an individual agent can
choose what it should do based only on local information
about the world.

e A state-action paifs,a) €) is calledstate communica-
tion sufficientif there is no other state-action pds, a’) €
mw such thas = ' buta # a’. Ateam policyr)y is called a
state communication sufficieifiall its joint state-action pairs
are state communication sufficient (making it equivalerg to
deterministic joint policy). In this case, each individaglent
can choose correctly what it should do based only on knowl-
edge of the global state.

e A state-action pai(s, a) € my is called astate and action
communication sufficientf there is anothels’,a’) € mw
such that(s',a’) € mw such thas = s’ buta # &'. A team
policy 7y is calledstate and action communication suffi-
cientif some of its joint state-action pairs are state and ac-
tion communication sufficient (making it equivalent to a non

Algorithm 5.1 Execution of world and conversation policies

1: procedure ExecPolicy M w, mjw, Mp, Tp) {

(1) Myw: Joint external world model ,

(2) mw: Joint external world policy ,

(3) M|p: Joint dialogue model

(4) mp: Joint dialogue policy }
21 Mijw = proji(Mw)
3 Tijw < Proji (mw)
4. MHD — proji (M‘D)
5! mjp + Proji(mp)
6
7
8

I §|w < SenseCurrentStae
! §)p < ReceiveCommunicatioh A ComputeDialState w A jjw)
. while s € StatesOfr;w) V S)p € StatesOf;p) do

9 if |joint(GetActior{s |, 7ijw))| > 1 then

10: WorldSA«— ComputeJointS@p)

11: if |WorldSA = 1 then

12: a)w « proji (GetActior{\WorldSA)

13: Executéa;yy)

14: else

15: dp GetACtiOf(S‘D,ﬂ'i‘D)

16: if &p # 0 then

17: Execut¢g;p) {Communicate to resolve the ambiguity
about which action to select}

18: else

19: WorldSA — RetrieveExternalDecisigiolrdSA {Com-
munication cannot help, ask for external decision}

20: Sjp «— ComputeDialStat@VorldSA{Update the external
decision into the information state}

21: end if

22: end if

23: else

24: a)w — GetActior(sw, Tijw)

25: Executéa;)

26: endif

27: §)w < SenseCurrentStae

28: s)p +— ReceiveCommunicati¢hn ComputeDialState w A mijw)

29: end while
30: end procedure

deterministic joint policy). In this case, individual agen
need to decide what to do during policy execution by picking
among the set of all possible actions given by the joint pol-

icy, and need to communicate with one another to come to a

decision.

e A policy 7 is called aout of usagen a states if there is no
(s,a@) € 7. Inthis case, agents need to replan.

A procedure to execute a combined world policy and conver-
sation policy is given in Algorithm 5.1. It is adapted frometh
corresponding procedure in [6] and with the addition of step
execute the conversation policy. It uses the transitiorraifmns

defined in Figure 1 and assumes that the these operators,llas we

as thegjoint andproj; operations, operate on the world and the dia-
logue transition model according to the symbéiéand|D respec-
tively. ComputeDialStateComputeJointSAand RetrieveExternal

Decisionare application dependent, and define how the dialogue is

related to the external world model, as in Section 6. In esséme
procedure steps through the world policy, executing thpssté a
communication policy when communication is required.

6. GENERATING POLICIES

Given the general model of dialogue defined in Section 5, we 3

can define a specific conversation policy which will ensuee the
correct information is exchanged during world policy exému In

this section we describe an algorithm for generating pedichat
combine world policies and conversation policies.

We start by assuming that each agéniaintains a model of the
external worldM;w and its finite propositional languag® will
depend on the applicatiofi;'s dialogue modelM; p is based on a
propositional language

Pisip = Psjw U Paw U PaU Pem

wherePa. contains a boolean variable for every variabléigy U

P 4w to indicate its validity in dialogue stat@cw contains a bool-
ean variable for every variable s, w U P4, w of the agenfTi’s
(the informationT; can effectively known) to indicate whether its
value has been communicated in dialogue sfate,l ... N andN

is the number of agents in the system, and

Pi,.A\D = {tel|(|717 Xk,V)}

wherej = 1...N, x € Pyw andv = {0, 1}. tell(i,], X, v) means
thatT; tells T; that the boolean variabbe representing some bit
of the state and action information is in the vale We denote
variables inPg,p by Xijk, IXijx andcxk for Ti's information
aboutT; on state variablé, about its validity and whether it has
been communicated t@;, and those irP 4 p by i, lyij1 and
cyi,j, for Ti’s information aboufl; on action variable, its validity
and whether it has been communicateditovherej = 1,... N,
k=1...K=|Pslandl =1...L =[Py In total, we have
3N N = (K 4 L) variables for the dialogue system of the whole
teant

The mapping between agehts current state and its information
state in the dialogue can be described by @onnection) condi-
tions. For example,

N K

/\ /\ VX k= (Xjk = X)]

B(sjw; Sip) =

wherexix € Psjw andx;x € Pjp. More complex mappings
can be defined using representation languages such asieteelstr
linear time logic or a computation tree logic, representatithat
are used in the symbolic model checking literature [4].

Similarly, there is a mapping between agé&n$ next action de-
cision and its information state in the dialogue. This magpian
be described by thg condition, for example,

N oL
B(aiw; Sjp) = /\/\VX,JI = (Vi) <)]

whereyi i1 € Py wandy;; € Pp. Please notice that the above
two 3 conditions depends on the validity variables in the diatogu
information states. These validity variables will be iaitzed by

/\[vx,.,k 1A /\[vy.,.,|]

k=1

v (Sp) =

As shown in the dialogue state transitions below, the vafubase
validity variables will also been changed by the dialogus.ac

Using the mappings of states and actions, we can compute a set

of initial dialogue states — those that exist before takimtp iac-
count the effects of any communication — from the fragmeffits o
world policy that individual agents possess:

ComputeDialStat@NorldSA = Jxep,, [WorldSA
ANB(Sjws S.) A B(@ijw: Sip) A vo(Sp)]] »

This can be improved by encoding the indicesigfx andy; j,1 with logN + logN +
logK + logL boolean variables, and maintain the information using atiml to map
these indices to the values they correspond to.

Algorithm 6.1 Dialogue goal computation

Algorithm 6.2 World policy generation

1: function ComputeDialGogNewWorldSA{
(1) NewWorldSAA new external policy segment,
(2) IIMAP: The global variable holding the dialogue states to world
joint states mapping
}
: SetComputeNextimag® useRp
: NewDialS«+ ComputeDialStat@NewWorldSA
repeat
DialS + NewDialS
NewDialS« ComputeNextimagBialS)
DJMAP «— ComputeDIJMARNewDialS NewWorldSA
. until DialS = NewDialSV GoodEx¢DIJMAP)
. return NewDialS
. end function

We can also compute a mapping, denotedBWAP, between the
dialogue states and the corresponding fragments of woticypo

ComputeDIJMAFDialS, NewWorldSA =
[DialS A NewWorldSA\ AN[B(Sjw, S.a) A B(8ijw: Sp)]]

and conversely we ca compute a joint external world stateitand
policy action out of a dialogue state using Bé@MAP mapping:

ComputeJointS|p) = Ixep,,uU; P,siw [Sjp A DIMAP|
The set of dialogue state transitions associated Witk is:

Rip = {(Xiik = VACX,k=0,telli,j, X, V),
Xik =VACKjk=1AWjk=1),

(Vii) = VACY,j = 0,tell(i,j, v, V),
Viik=VACYjk=1Awjx=1)}

For now, we assume that the execution of communication ratio
will be much faster than that of actions in the external wexd
for example assuming that communication is carried out oigla h
speed network while external actions are carried out utngensgual
limitations of the physical world. This assumptions enahigto be
sure that agents can always carry out the necessary comationic
before performing the external world actions that requihedcom-
munication. This assumption can be relaxed, however, bingdd
variables that capture temporal information. This consitien is

a topic for our future research.

By adding communication conditions to the nondetermioighi
anning algorithms proposed in [6], we obtain the commuiocat
aware policy planning algorithm of Algorithm 6.2. In the alg
rithm, | will be set to the initial states which the team of agents
will start with, andG will be set to the goal states which the team
is intended to end up with, an@omputePrelmagean be either
ComputeWeakPrelmage ComputeStrongPrelmagkefined in Fig-
ure 1 in Section 2, corresponding to the weak and strongisaolut
concepts respectively. Strong acyclic solutions can bélagiy
constructed following the approaches used in [6] but omhittere
for lack of space.

As for dialogue policy synthesis, the set of initial dialegtates
can be computed usinQomputeDialStatérom the set of the new
world policy segmentdNewSAand the set of dialogue goal states
can be computed using the functi@omputeDialGoahkre defined
in Algorithm 6.1 where the function good for execution is defi
as:

GOo0odExe(DIMAP) = [IIMAP A IIMAP[X, /X, V'] A
A [Auerpy = X) A (Ayep, 01 =)]
< FALSE

which means that thBJMAP has evolved into a mapping table in

1: function ComputeWorldPolicyl, G, ComputePrelmage{
(2) I: Initial states,
(2) G: Goal states,
(3) ComputePrelmageA pre-image function }
DIMAP «— ()
OldSA«— Fall
SA— 0
Sh — 0
: while OldSA# SAA | € (G U StatesOfSA)) do
Prelmage— ComputePrelmad& U StatesOfSA))
NewSA— PruneState®relmage G U StatesOfSA))
if Jiljoint(GetActior{proji (NewSA))| > 1 then
Ip < ComputeDialStai@NewSA
Gp < ComputeDialGodINewSA
NewS4A «— ComputePolicyip, Gp, Rp, ComputePrelmage
if NewSA = 0 then
return Fail
end if
SAb < SA U NewSA
end if
OldSA+— SAU NewSA
: end while
. if I C (GU StatesOfSA)) then
21: return (SA SA)
22: else
23: return Fail
24: end if
25: end function

ORONEOORNDUAWN

16:

N
(SRR RN

Algorithm 6.3 General policy generation

1: function ComputePolic{l, G, ComputePrelmage{ (1) I: Ini-
tial states,
(2) G: Goal states,
(3) ComputePrelmageA pre-image function }
. OldSA+ Fail
SA—0
: while OldSA# SAA | Z (G U StatesOfSA)) do
Prelmage— ComputePrelmad& U StatesOfSA))
SA«— PruneStatePrelmage G U StatesOfSA))
OldSA+— SAU SA
. end while
1 if I C (G U StatesOfSA)) then
10: return SA
11: else
12: return Fail
13: end if
14: end function

CaANOTRWN

which different joint world policy items won’t be mapped énbne

dialogue state. ThBIJMAPtable with thisGoodExe@roperty can
be used by every agent witbomputeJointSAo obtain an unique
external state-action pair. Howev&pmputeDialGoamay return

a goal dialogue state without satisfyi@podExeqroperty. This
means that the external policy is non-deterministic, anedren

external decision maker to choose an action.

PrRoOPOSITION1 (CORRECTNESS. If Algorithm 6.2 returns
a policy 7, then is a weak or a strong solution to achieve the
goals G from initial states I. If the algorithm returns FAlthen
there is no weak or strong solution.

PROOF The algorithm does a backward breadth first search from
the goal states with respect to tB®mputePrelmagéeing set to
weak pre-image or strong pre-image function. There is an add
tional step of computing dialogue policy to combine infotina
from different agents to determine the current state andiaddl
action decision so that every agent can determine the néiwnhac
uniquely. The correctness of the policy computation cancbed

o

J/OA

o,

Figure 2: An NGO team task

B

in work on non-deterministic planning [6]. If the proceddaded,
either there is no weak or strong solution to the joint tramsi
model or the dialogue policy synthesis failed. The dialogok
icy synthesis is guaranteed to succeed, because in wokstivas
joint state and additional decision of joint action is futlgmmuni-
cated, and the application BruneState#n Algorithm 6.2 and the
way in which the dialogue states aBdMAPare constructed in Al-
gorithm 6.1 guarantees that no two dialogue states will besime
in the dialogue policy so we avoid conflicting dialogue actie-
scriptions. Therefore if the procedure to construct a gmiufails,
it is because there is no weak or strong solution]

7. AN EXAMPLE

Consider the following example, based on the example in [5].
Two agents, one representing an NGY) @nd one representing
a peace keeping forcd=), are working in a conflict zone. The
agents (and the organizations they represent) work inadispely
and have different agendal is based aA in Figure 2.F is based
at pointH. N’s goal is to reaciD to help the villagers therel’s
goal is keeping the peace in general in the area, but it also ha
to protectN while N is carrying out its work. At any time, with
some probability, some disruption may flare up\atlf it happens,
only F has the surveillence data to know this is happening, and
F must go toW to suppress the disturbance. The routes between
different points are shown as arcs in FigureN.cannot traverse
the routes(J, W), (W, C), (W, B), when there is a disturbance at
W, and it is only able to traversgC, D) and (B, D) without harm
when it is accompanied by. N can traverse the rest of the routes
independently an# can traverse any route. The goal of the agents
is to haveN reachD and to have~ put down the conflict ilW if it
happens.

We can formalise this a®s, = {In.} U {health}, Ps. =
{le,L} U {war}, Pa, = {stayw, moveN, L', L")}, and P4
{moveF, Ly,Ls) whereL,L’,L"” € {A,H,J,W, B, C, D}, conflict
means that there is a disturbance in pdihtandhealthmeans that
N is not harmed.

Initially, I = In,a A len A healthA (conflict v —conflict). The
goalG = In,p A —conflict A health The joint transition modeR
for the scenarios is as follows

Rmove

Rstay

(Iex A In,y, moveF, x, X') A moveN,y,y), I » Alyy)

(TRUE staw, TRUE }

Rhealth

(TRUE —[moveF, B, D)] A movéN, B, D), —health,
(TRUE —[moveF,C,D)] A moveN, C,D), —health,

We have additional conditionSy andBagentroute:

Bw = lgw — —conflict
Broute = /\ [lF,x A ”:,x’]
(x,x") €Route
5N,route - [lN,x A ”\l,x/]

(xx") €Route\ { (J,W),(W,C),(W,B) }

whereRouteis the directed graph of the routes showed in Figure 2.
Overall,

R = Raction A Rstay N Rhealth A Bw A ﬁF,route N ﬂN,routeh

Algorithm 6.2 will generate the necessary individual waaltd
dialogue policies. Started backward from the Gatf goal states,
althoughG does specify onl§¥’s location, but the system only al-
lows N to travel to the destinatioD if it is accompanied by, and
no route is available frord back tow. This indicates that, at the
end,F must also be iD. Therefore from the desired goal states,
the backward chaining search will trace back to the stateevbie
ther bothF andN are inC or both are inB. Rolling back from
these two joint states, if there is conflict W, F must come from
W where it can resolve the conflict; otherwigecan come from
eitherW or J. As for N, no matter whether it is i€ or B, it must
come fromJ. Therefore if there is no conflict &/, the algorithm
will force F come directly fromJ (becausd’runeStatesvill prune
the longer paths). However, whé&nandN are in both atl (with a
conflict atW), the algorithm will produce two valid joint actions:
either both going te&C or both going tdB. Here let’'s assume one of
them, for exampld-, seeks an external decision to decide the next
step, say the result is going By then it must communicate the de-
cision withN, so that they can both go ®to guarantee a chance
of success. If there is conflict W, F will go to W to resolve it,
while N will reachB. As N andF don’t know each other’s posi-
tions, although they have a valid joint plan, they must comicete
with each other so that knows it will need to stay iB and wait
for F to come, andr will know it will need to go toB instead ofC.
The same kind of communication about positions will be ndede
for all other locations except & andB where they can decide by
themselves to go td without needing to communicate with each
other.

8. THE BDD IMPLEMENTATION

In the above, we have showed the natural connections between
set paradigm on state transitions and its implicit represdgiEm us-
ing QBF formulae. There is a data structure called a Binargi-De
sion Diagram (BDD) [3] that represents QBF formulae and rmake
it possible to perform efficient operations over them. A BBIxi
rooted directed acyclic graph used to encode the set ofassdign-
ments to a QBF. BDDs guarantee that the basic boolean opesati
on QBFs can be computed in quadratic time [3, 9] as summarized
in in Table 5. The intuition behind this efficiency is that BD&p-
resentation is actually a form of minimal description of thior-
mation encoded — the BDD for a QBF is actually the minimum
automaton that accepts the corresponding set of truthramsigts
with respect to a specific variable ordering [4], and thisimadity
can be preserved across the basic boolean operations.

9. CONCLUSIONS

This paper has presented a model of individual and joinbagti
suitable for describing the behavior of a multiagent tearoluid-
ing communication actions. The model is symbolic, and ckgpab
of handling non-deterministic actions. In addition to thedual, we

QBF/Set operatoif BDD operator Complexity [2]
~£ —G(¢) O(lI<]1)

i (€) G(&=0) V G(&=1) | O(EIP)

vxi(£) G(éx=0) A G(&=1) | O(II]) 3]
G NE G(£1) A G(&2) O(l&]! - [[€21D)

&1V G(&1) V G(&2) O([I&]! - [1€211)

&1 — & G(&1) — G(&2) O([I&1 - [1€211) [4]
X[=1 Satong(G(£(X))) | O(X)

Table 5: The mapping between QBF operators and BDD op-
erators. &,&1,& are formulae in QBF; G(&),G(&1),G(&2) are
BDD representations for these formulaej| - || is the number of
nodes used in the BDDs.

(5]

have provided procedures for creating joint plans, plaasititlude

the communication necessary for plan execution — that isléhe
tection and communication of information relevant to theciion

of the plan. We believe this is the first time that this kind &fp

ning model, drawn from the literature of non-determinigilan-
ning, has been combined with a communication model and then
applied to multiagent teams.

As discussed by [16], teamwork requires requires the establ
ment of joint intentions and the determination of which gotl
achieve, the creation of a plan, the sharing of knowledgeitathe
environment in which the team is operating, and the abititybn-
itor plan execution. While we do not claim that what we have de
scribed in this paper is a comprehensive model of teamworlt — i
is much less powerful and comprehensive than Teamcore [17] o
Retsina [15], for example — it marks a useful step towards our [11]
overall goal of constructing a model of argumentation-Hadia-
logue that can support many of the important aspects of teskaw
In particular, it deals with planning, albeit in a centratisvay, the
sharing of information,and a limited form of plan monitagin

One obvious area of future work is moving from a centralised
planning process, which just hands every agent a policywiihat
help the team achieve its goals, to a decentralised procegsich
agents can engage in a discussion of the best plan. For th@awe
to combine our prior work on argumentation-based planni&j, [
which assumes a simple, deteministic model of actions, thi¢h
work we have described here. Another area of future workgckvhi
addresses the main area in which our model falls short of &emod
of teamwork, is to consider the formation of joint intensorHere
there is a rich vein of work to draw on, for instance [7, 11} ave
will seek to incorporate this into our model.

(6]

(7]

(8]
(9]

[10]

[12]

[13]

[14]

[15]
Acknowledgments

Research was sponsored by the U.S. Army Research Laboratory[16]
and the U.K. Ministry of Defence and was accomplished under
Agreement Number W911NF-06-3-0001. The views and conclu-
sions contained in this document are those of the authon@) a
should not be interpreted as representing the official j@sjcei-
ther expressed or implied, of the U.S. Army Research Laboyat
the U.S. Government, the U.K. Ministry of Defence or the U.K.
Government. The U.S. and U.K. Governments are authorizesl to
produce and distribute reprints for Government purposésitic
standing any copyright notation hereon.

[17]

[18]

10. REFERENCES
[1] C. Boutilier, T. Dean, and S. Hanks. Decision-theoretic
planning: Structural assumptions and computational
leverage Journal of Artificial Intelligence Research
11:1-94, 1999.

M. E. Bratman, D. J. Israel, and M. E. Pollack. Plans and
resource-bounded practical reasoni@gmputational
Intelligence 4, 1988.

R. E. Bryant. Symbolic boolean manipulation with ordiére
binary-decision diagram#&CM Comput. Surveys
24(3):293-318, 1992.

J. R. Burch, E. M. Clarke, D. E. Long, K. L. Mcmillan, and
D. L. Dill. Symbolic model checking for sequential circuit
verification.IEEE Transactions on Computer-Aided Design
of Integrated Circuits and Systenis3:401-424, 1994.

C. Burnett, D. Masato, M. McCallum, T. J. Norman,

J. Giampapa, M. J. Kollingbaum, and K. Sycara. Agent
support for mission planning under policy constraints. In
Proceedings of the Second Annual Conference of the ITA
Imperial College, London, 2008.

A. Cimatti, M. Pistore, M. Roveri, and P. Traverso. Weak,
strong, and strong cyclic planning via symbolic model
checking Artificial Intelligence 147(1-2):35-84, 2003.

P. Cohen and H. Levesque. Intention is choice with
commitmentArtficial Intelligence 42:213-261, 1990.

P. Cohen and H. Levesque. Teamwdxlaus 25(4), 1991.

O. Coudert and J. C. Madre. The implicit set paradigm: a
new approach to finite state system verificatigormal
Methods in System Desigh(2):133-145, 1995.

M. R. Genesereth, M. L. Ginsberg, and J. S. Rosenschein.
Cooperation without communication. Rroceedings of the
Fifth National Conference on Atrtificial Intelligence
Philadelphia, PA, 1986.

B. Grosz and S. Kraus. The evolution of sharedplans. In
A. Rao and M. Wooldridge, editorfpundations and
Theories of Rational Agencilluwer, 2003.

S. Parsons and P. McBurney. Argumentation-based gliai®
for agent coordinationGroup Decision and Negotiation
12(5), 2003.

S. Parsons, S. Poltrock, H. Bowyer, and Y. Tang. Analp$i
a recorded team coordination dialogue Pimceedings of the
Second Annual Conference of the | Tiperial College,
London, 2008.

C. Sierra, N. R. Jennings, P. Noriega, and S. Parsons. A
framework for argumentation-based negotiations. In M. P.
Singh, A. Rao, and M. J. Wooldridge, editohstelligent
Agents IV pages 177-192. Springer Verlag, Berlin,
Germany, 1998.

K. Sycara, M. Paolucci, J. Giampapa, and M. van Velsen.
The RETSINA multiagent infrastructurdournal of
Autonomous Agents and Multiagent Systern(t), 2003.

K. Sycara and G. Sukthankar. Literature review of teamiuw
Technical Report CMU-RI-TR-06-50, Carnegie Mellon
University, November 2006.

M. Tambe. Towards flexible teamworBournal of Artificial
Intelligence Researcly, 1997.

Y. Tang and S. Parsons. Argumentation-based dialofjues
deliberation. InProceedings of the Fourth International Joint
Conference on Autonomous Agents and Multiagent Systems
pages 552-559, New York, NY, USA, 2005. ACM Press.

