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ABSTRACT
Coming up with a plan for a team that operates in a non-deterministic
environment is a complex process, and the problem is furthercom-
plicated by the need for team members to communicate while the
plan is being executed. Such communication is required, forex-
ample, to make sure that information critical to the plan is passed
in time for it to be useful. In this paper we present a model for
constructing joint plans for a team of agents that takes intoaccount
their communication needs. The model builds on recent develop-
ments in symbolic non-deterministic planning, ideas that have not
previously been applied to this problem.

Categories and Subject Descriptors
I.2.11 [Artificial Intelligence ]: Distributed Artificial Intelligence—
Coherence and co-ordination; multiagent systems.

General Terms
Languages, theory.

Keywords
Agent interaction, planning, dialogue.

1. INTRODUCTION
One of the fundamental problems in multiagent systems is how

to get a team of agents to coordinate their behavior. While there are
situations in which agents can do this without needing to commu-
nicate [10], in general coordination requires communication. An-
other important part of coordination is having the agents decide
what to do. Since [2], the process of deciding what to do is con-
sidered to break down into two parts — deciding what goals to
achieve, what [2] callsdeliberation, and then deciding how those
goals might best be achieved, which is usually described asplan-
ning. In this paper we are interested in the planning part of the
process. We assume the existence of a set of goals to be achieved,
in a form such as a set of joint intentions [8].

We are also greatly concerned with communication. Much re-
cent work on agent communication uses argumentation-baseddia-
logue [12], and the long term goal of our work is to extend exist-
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ing work on multiagent planning by developing models by which
a team of agents can, in the course of an argumentation-baseddi-
alogue — by which we mean a process during which agents put
forward suggested partial plans backed by reasons, as in [18] —
develop a plan for the team. We want this to be done in a way
that respects the non-deterministic nature of the world, and which
yields efficient implementation. This paper takes several steps to-
wards this goal.

In particular, this paper gives a mechanism, albeit a centralised
mechanism, by which a multiagent team can construct plans that
take into account the need to communicate to ensure that the plan is
executed correctly [13]. By developing a representation language
that is an extension of languages used in non-deterministicplan-
ning, our approach can make use of new techniques from model-
checking to provide efficient implementations. The extension in-
corporates the elements necessary to take multiple agents,and the
necessary communication, into account. The use of a symbolic
model makes it possible to turn the plan construction process into
an argumentation-based dialogue in the future.

Building our approach on top of work in planning has advan-
tages beyond ease and efficiency of implementation. By appropri-
ating the underlying formal models, we can easily acquire suitable
formal guarantees for the planning model that we construct.It is
straightforward, for example, to show that given an adequate de-
scription of the world, any plan that our planning process will con-
struct is both a feasible and, in a specific sense an optimal, way to
achieve the goals of the plan.

2. REPRESENTATION LANGUAGE
We use a state-space model as a basis for our formalisation.

This model is an adaptation of a model commonly used in non-
deterministic planning [6].Statesare objects that capture some as-
pect of a system, andactionsare transitions between states. States
and actions together define astate-space. When action effects are
non-deterministic [6] then what one seeks for any state-space is a
policy: i.e. a state-action mapping that specifies which actions one
should take in a given state. We define a non-deterministic domain
to be a tupleM = 〈P ,S ,A,R〉 where:

• P = PS∪ PA is a finite set of propositions;

• S ⊆ 2PS is the set of all possible states;

• A ⊆ 2PA is the finite set of actions; and

• R ⊆ S ×A× S is the state-transition relation.



A propositional languageL with quantification extension can be
defined by allowing standard connectives∧,∨,→,¬ and quanti-
fiers∃,∀ over the proposition variables. The resulting language is
a logic of quantified boolean formulae (QBF) [3]. Asymbol re-
naming operation, which we use below, can be defined onL, de-
noted byL[P/P ′], which means that a new language is obtained
by substituting the symbols ofP with the symbols ofP ′ whereP ′

contains the same set of propositions as that ofP but using differ-
ent symbol names (notice that|P ′| = |P|). Similarly for a formula
ξ ∈ L, if ~x is a vector of propositional variables forP , then a vari-
able renaming operation can be defined byξ[~x/~x′] which means
that all the appearances of variables~x = x1x2 . . . xn are substituted
by ~x′ = x′1x′2 . . . x

′
n which is a vector of the corresponding vari-

ables or constants inP ′. In QBF, propositional variables can be
universally and existentially quantified: ifφ[~x] is a QBF formula
with propositional variable vector~x andxi is one of its variables,
the existential quantification ofxi in φ is defined as∃xiφ[~x] =
φ[~x][xi/FALSE] ∨ φ[~x][xi/TRUE]; the universal quantification of
xi in φ is defined as∀xiφ[x] = φ[~x][xi/FALSE] ∧ φ[~x][xi/TRUE].
HereFALSEandTRUEare two propositional constants represent-
ing “true” and “false” in the logic. The introduction of quantifi-
cation doesn’t increase the expressive power of propositional logic
but allows us to write concise expressions whose quantification-
free versions have exponential sizes [9].

Based on the two disjoint sets of propositions,PS andPA, two
sub-languagesLS andLA for states and actions can be defined re-
spectively. A states = {p1, p2, . . . , pk}, s ⊆ PS, means that the
propositionsp1, p2, . . . , pk are true in states and all other propo-
sitions inPS are false — we therefore make some form of closed-
world assumption. In other words, each states is explicitly encoded
by a conjunction composed of all proposition symbols inPS in ei-
ther positive or negative form

ψ =
^

pi∈s

pi ∧
^

pj 6∈s ands∈PS

¬pj

We denote that a formulaγ is true in states by s |= γ. Then a set
of states can be characterized by a formulaγ ∈ LS, with the set
denoted byS(γ), whereS(γ) = {s|s |= γ}.1 Actions are encoded
in a similar way to states. Actiona = {p1, p2, . . . , pl}, a ⊆ PA

means that propositionsp1, . . . , pl are true and all other formula
in PA are false. We denote that a formulaα is true in an actiona
by a |= α, and a set of actions can be characterized by a formula
α ∈ LA with the set denoted byA(α) = {a|a |= α}. Given a set
of statesS, and a set of actionsA, the corresponding formulae inL
are denoted byξ(S) andξ(A) respectively. With these notions we
can have a mapping between the set operations on states and the
boolean operations on formulae as shown in Table 1 whenX1 and
X2 are interpreted as two sets of states. Similarly for actions, we
can have the same operation mapping in Table 1 whenX1 andX2

are interpreted as two sets of actions.
With states and actions defined, the state-transition relationship

can then be specified by a setSRof triples: SR = {〈γ, α, γ′〉}
whereγ, γ′ ∈ LS anda ∈ LA. Each triple〈γ, α, γ′〉 corresponds
to a transitionR〈γ,a,γ′〉 = {〈s, a, s′〉|s |= γ, a |= α, s′ |= γ}, and
together:

RSR =
[

〈γ,α,γ′〉∈SR

R〈γ,α,γ′〉.

Using the renaming operation, we can extend the state and action
1Note thatS(p1 ∧ p2 ∧ . . . ∧ pk) 6= {s} wheres = {p1, p2, . . . , pk} becauseSγ

doesn’t make the closed world assumption; that is, we don’t assume that the unspec-
ified propositions are false when using a formulaγ ∈ L to specify the set of states
S(γ).

Set operator QBF operator
X1 ∩ X2 ξ(X1) ∧ ξ(X2)
X1 ∪ X2 ξ(X1) ∨ ξ(X2)
X1 \ X2 ξ(X1) ∧ ¬ξ(X2)
x ∈ X ξ(x) → ξ(X)
X1 ⊆ X2 ξ(X1) → ξ(X2)

Table 1: The mapping between set operators and QBF opera-
tors

languageL = LS ∪ LA to beL = LS ∪ LA ∪ LS′ whereLS′ =
LS[P/P

′]. PS is for the current state,PA is for the action, and
PS′ is for the next state in the representation of a state transition.
Now a triple 〈γ, α, γ′〉 can be rewritten by one formula inL as
γ ∧α∧ γ′ whereγ ∈ LS, α ∈ LA andγ′ ∈ LS′ . Correspondingly,
a state transitionr = 〈s, a, s′〉 is said to satisfy a formulaδ =
γ ∧ α ∧ γ′, denoted byr |= δ, if s |= γ, anda |= a, ands′ |=
γ′. A set of state transitionsR can be characterized by a formulae
δ = ξ(R) and the corresponding set of state transitionsR(δ) =
{r|r |= δ}. We can capture the meaning ofδ more easily if we
expandδ into a disjunction,δ =

W

i(γi ∧ αi ∧ γ
′
i ), in which each

state transition is explicitly encoded as a conjunction. Itconforms
to the mapping between the set operations on state transitions and
boolean operations on the formulae in Table 1 by interpreting X1

andX2 with two sets of state transitions.

3. POLICIES
The state-space model described above gives us a way of de-

scribing the world in which an agent finds itself, and the actions it
can undertake. We can then turn to considering what the output of
the planning process will be. We call this output apolicy, and we
consider it to simply be a set of state-action pairs,

π = {〈si , ai〉}

wheresi ∈ S andai ∈ A(s) with

A(s) = {a|∃〈s, a, s′〉 ∈ R}

that is the set of actions that are applicable ins. A policy π is a
deterministic policy, if for a given states, there is no more than one
action is specified byπ, otherwise it is anon-deterministic policy.
What we are calling a policy is the state-action table used in[6]. It
is also related to what the literature on MDPs calls a policy [1], but
we allow a policy to only specify actions for a subset of all possible
states.

A policy can be specified by a set of pairs composed of a formula,
γ ∈ LS, and an action,α ∈ LA: SA= {〈γ, α〉}. Each pair〈γ,α〉
corresponds to a policy segment:π〈γ,α〉 = {〈s, a〉|s |= γ anda |=
α}, and together

πSA =
[

〈γ,α〉∈SA

π〈γ,α〉

A state-action pair〈s, a〉 is said to satisfy a formula of the form
γ ∧ α whereγ ∈ LS andα ∈ LA, denoted by〈s, a〉 |= γ ∧ α. We
can characterize a setπ of state-action pairs, namely a policy, by a
formula of the formτ =

W

i γi ∧ αi and its equivalents. We denote
this byπ(τ ) = {〈s, a〉|〈s, a〉 |= τ}. In the same way that we rep-
resent state transitions as propositions, we can have a propositional
representationξ(SA) for a setSAof state-action pairs, and the map-
ping between the set operations on policies and boolean operations
on the formulae given in Table 1 applies if we interpretX1 andX2

as two sets of state-action pairs. We can represent the constraint
A(s) by a formula inL: ξ(A(S(γ)) = ∃~x′ξ(R(S,A,S′))∧γ where



~x′ is the vector of variables forS′ andξ(R(S,A,S′)) is the formula
representation of the state transition relation in the system. Then
we can conjoin the formulaξ(A(S(γ))) to each policy expression
of the formγ ∧ α to beγ ∧ α ∧ ξ(A(S(γ))). For simplicity, we
will omit the formula componentξ(A(S(γ))) in the representation
of policy below.

The space of all policies is denoted byΠ. The set of states in a
policy π is Sπ = {s|〈s, a〉 ∈ π}. Adapting from [6], we have the
following definition:

Definition 1. An execution structureinduced by the policyπ
from a set of initial statesI is a directed graphΣπ(I) = (Vπ,Eπ)
which can be recursively defined as

• if s∈ I , thens∈ Vπ, and

• if s ∈ Vπ and there exists a state-action pair〈s, a〉 ∈ π such
that〈s, a, s′〉 ∈ R, thens′ ∈ Vπ anda : 〈s, s′〉 ∈ Eπ where
the actiona is the label of the edge.

Definition 2. An execution pathof a policyπ from a set of states
I is a possibly infinite sequences0, s1, s2, . . . of states in the exe-
cution structureΣπ(I) = 〈Vπ,Eπ〉 such that for all statessi in the
sequence:

• eithersi is the last state of the sequence, in which casesi is a
terminal stateof Σπ(I), or

• 〈si , si+1〉 ∈ Eπ.

A states′ is said to bereachablefrom s in the execution structure
Σπ if there is a path froms to s′ in Σπ. Σπ is anacyclic execution
iff all its execution paths are finite.

These ideas then give us a way to classify policies:

Definition 3. Given a set of initial statesI and a set of goal states
G for a nondeterministic domainM = 〈P ,S ,A,R〉, let π be a
policy forM with execution structureΣπ(I), then

• π is aweak solutionto achieveG iff for any states0 ∈ I there
is some terminal states′ of Σπ(I) such thats′ ∈ G and it is
reachable froms0;

• π is a strong solutionto achieveG iff Σπ(I) is acyclic and
all terminal states ofΣπ(I) are also inG;

• π is astrong cyclic solutionto achieveG iff from any state
s0 in Σπ(I) some terminal states is reachable and all the
terminate states ofΣπ(I) are inG.

With a weak solution policy, we have a path to the goal in a fi-
nite number of steps, but no guarantee that in a non-deterministic
world the goal will be achieved; with a strong solution policy, we
have a guarantee that the goal can be achieved in a finite number
of steps despite actions being non-deterministic if the state space is
acyclic; and with a strong cyclic solution, we are guaranteed that
the goal will be achieved even in the face of non-determinismand
cycles in the state-space so long as the cycle can be broken non-
deterministically.

4. JOINT POLICIES
To describe the behavior of a team, we need to prescribe more

structure over the actions available to an agent. We assume that
there is a set ofn agents labeled byT = {T1,T2, . . . ,Tn} in the
system. We call the actions in the setA joint actionsof these
agents. Each actiona ∈ A is a tuple of actions of individual agents,

RepresentationMeaning
joint(ai) {a ∈ A|a |= ai}
joint(~a)

T

ak∈a joint(ak)

joint(si) {s∈ S|s |= si}
joint(~s)

T

sk∈~s joint(sk)

joint(Ri) {〈s, a, s′〉 | 〈si , ai , s′i 〉 ∈ Ri , ands ∈
joint(si), a ∈ joint(ai), s′ ∈ joint(s′i )〉}

joint(πi) {〈s, a〉 | 〈si , ai〉 ∈ πi , ands ∈ joint(si), a ∈
joint(ai)〉}

joint(Si)
S

si∈Si
joint(si)

joint({〈si , s′i 〉}) {〈joint(si), joint(s′i )〉}
joint(Σπi ) 〈joint(Vπi ), joint(Eπi )〉

joint({Ri})
\

i

joint(Ri)

joint({πi})
\

i

joint(πi)

Table 2: Joint operations

RepresentationMeaning
proji(a) {ai ∈ Ai |a |= ai}
proji(s) {si ∈ Si |s |= si}
proji(R) {〈si , ai , s′i 〉 | 〈s, a, s′〉 ∈ R, andsi ∈

proji(s), ai ∈ proji(a), s′ ∈ proji(s′)〉}
proji(π) {〈si , ai〉 | 〈s, a〉 ∈ π, andsi ∈ proji(s), ai ∈

proji(a)〉}
proji(S)

S

sk∈S proji(sk)

proji({〈s, s′〉})
S

sk∈S{〈proji(s), proji(s′)〉}
proji(Σπi ) 〈proji(Vπi ), proji(Eπi )〉

Table 3: Projection operations

soa = [a1, . . . , an]. That is each actiona ∈ A can be further de-
composed inton actionsai ∈ Ai of individual agentsTi. EachAi

is defined to be a subsetPAi of the propositions inPA. By over-
loading the notion, we also denotea |= ai if agentTi ’s action isai

in a joint actiona. In total, we have:

A =
Y

i

Ai

Similarly, each states ∈ S is a tuple of states combined from the
perception of individual agents, sos = [s1, . . . , sn]. That is each
states ∈ S can be further decomposed inton statessi ∈ Si of
individual agentsTi. EachSi is defined to be a subsetPSi of the
propositions inPS . By overloading this notion, we also denote
s |= si if agentTi ’s perception of a (joint) states is si in.

Overall, we have:

S =
Y

i

Si

Given these ideas, we can generate the set of join(t) and projection
operations on an agentTi ’s actions, states and state transitions as
shown in Tables 2 and 3 respectively. Joint operations combina-
tions the states and actions that concern individual agentsinto the
states and actions that concern a set of agents, while projection op-
erations extract states and actions of individual agents from those
of a set of agents.

An additional formulaβ ∈ L can be introduced to constrain
possible combinations so thatA(β) = {a ∈ A|a |= β}. For



example, this constraint:

β =

n̂

i=1

^

j 6=i

ai → τj

whereτj is a special symbol for an empty action, captures a sit-
uation in which agents are not allowed to carry out actions con-
currently. The corresponding constrained joint state transition rela-
tionship is:

joint({Ri}, β) = {〈s, a, s′〉 | 〈s, a, s′〉 ∈ joint({Ri}),
anda |= β, s |= β〉}

and the corresponding constrained joint policy is:

joint({πi}, β) = {〈s, a, s′〉|〈s, a〉 ∈ joint({πi}),
anda |= β, s |= β〉}

It is should be noted that in practice we need to be careful exactly
how we specify formulae like the constraintβ since they can ad-
versely affect the complexity of reducing the the formulae into a
form in which they can be fed into the BDD implementation. We
will discuss this briefly in Section 8.

5. POLICY AND COMMUNICATION
At this point we have a language that is sufficiently rich to con-

struct plans that just involve the physical actions that agents carry
out. However, we want to create plans that include communications
that permit the necessary sharing of information, so we needto add
a dialogue model to the model we already have. As the basis of the
dialogue model, we will use the same kind of state space modelas
we use for the world model. To distinguish the two state transition
models, we will denote these two models and their elements with
subscripts. We write|D to denote elements of the dialogue model,
for example,M|D denotes the state transition model for a dialogue
andS|D denotes the states of a dialogue. We write|W to denote el-
ements of the world model, for example,M|W denotes the external
world model andS|W the states of the world. However, when the
state transition model is obvious from the context, we will omit the
subscripts.

As before, we assume that, in the dialogue, there is a set ofn
agents labeledT1,T2, . . . ,Tn where each agentTi has a model of
the worldMi|W = 〈Pi|W,Si|W,Ai|W,Ri|W〉 and for which it has a
policyπi|W = {〈si , ai〉}. Given this, a dialogue model is then a state
transition systemM|D = 〈P|D,S|D,A|D,R|D〉 for which there is
a policy for conducting dialoguesπ|D. The dialogue languageP|D

contains elements from languagePi|W that individual agents use to
describe the world, along with auxiliary language elementssuch
as a proposition to mark the differences between two world states.
The dialogue information is induced fromPD. The set of dialogue
actsA|D are those available to the agents. How these dialogues
change the information state will be specified by the dialogue state
transition relationship of these dialogue acts:R|D ⊆ S|D ×A|D ×
S|D. Depending on the specific dialogue, we may distinguish a set
of initial dialogue statesI|D ⊆ S|D and a set of goal dialogue states
G|D ⊆ S|D (see [14] for an example).

Definition 4. Agent Ti ’s behavior model is a joint model of its
external world〈Mi|W, πi|W〉 and its dialogue model〈Mi , πi〉 =
〈Mi|D, πi|D〉 defined as:

〈Mi , πi〉 = 〈joint(Mi|W,Mi|D), joint(πi|W, πi|D)〉.

The whole system behavior model isjoint{Ti}({〈Mi , πi〉}).
As before, a policy for a dialogue,π|D = {〈s|D, a|D〉}, speci-

fies what dialogue action should be taken in a given dialogue state

EXEC(s,a) = {s′|〈s, a, s′〉 ∈ R}

StatesOf(π) = {s|〈s, a〉 ∈ π}

GetAction(s, π) = {a|〈s, a〉 ∈ π}

ComputeWeakPreImage(S) = {〈s, a〉|Exec(s, a) ∧ S 6= ∅}

ComputeStrongPreImage(S) = {〈s, a〉|∅ 6= Exec(s, a) ⊆ S}

ComputeNextImage(S) = {s′|Exec(s, a) ∧ S}

PrunStates(π,S) = {〈s, a〉 ∈ π|s 6∈ S}

Figure 1: Operations on transition relations and policies

Set representation QBF implementation
EXEC(s,a) ξ(s) ∧ ξ(a) ∧ ξ(R)[~x′/~x]
StatesOf(π) ∃~aξ(π)
GetAction(s, π) ξ(s) ∧ ξ(π)
ComputeWeakPreImage(S) ∃~x′ξ(S)[~x/~x′] ∧ ξ(R)
ComputeStrongPreImage(S) ∀~x′(ξ(R) → ξ(S)[~x/~x′]) ∧

∃~x′ξ(R)
ComputeNextImage(S) ∃~xξ(S) ∧ ξ(R)
PrunStates(π,S) ξ(π) ∧ ¬ξ(S)

Table 4: The mapping between set representation and QBF im-
plementation of some transition relation and policy functions

to reach the goal statesG|D from the initial statesI|D at the least
expected cost. To distinguish such policies from the policies that
govern an agent’s actions in the world, we call the policies that
govern an agent’s actions in a dialogue aconversation policyand a
policy that governs an agent’s actions in the world aworld policy.

Before we go on to give the description of the algorithm for ex-
ecuting world and conversation policies, we need to take a look at
some properties that capture the interaction between the execution
of actions in the world and communication between team members.

Definition 5.

• A state-action pair〈s, a〉 ∈ π|W is calledtotally autonomous,
if for every agentTi there is no other〈s′i , a

′
i 〉 ∈ proji(π|W)

such that〈si , ai〉 ∈ proji(〈s, a〉), andsi = s′i but ai 6= a′
i .

In other words, action-state pairs are totally autonomous if
for every agent involved there is no confusion about which
action it should take. A team policyπ|W is called totally
autonomous if all its constituent joint state-action pairsare
totally autonomous. In this case, an individual agent can
choose what it should do based only on local information
about the world.

• A state-action pair〈s, a〉 ∈ π|W is calledstate communica-
tion sufficient, if there is no other state-action pair〈s′, a′〉 ∈
π|W such thats = s′ buta 6= a′. A team policyπ|W is called a
state communication sufficientif all its joint state-action pairs
are state communication sufficient (making it equivalent toa
deterministic joint policy). In this case, each individualagent
can choose correctly what it should do based only on knowl-
edge of the global state.

• A state-action pair〈s, a〉 ∈ π|W is called astate and action
communication sufficient, if there is another〈s′, a′〉 ∈ π|W

such that〈s′, a′〉 ∈ π|W such thats = s′ but a 6= a′. A team
policy π|W is calledstate and action communication suffi-
cient if some of its joint state-action pairs are state and ac-
tion communication sufficient (making it equivalent to a non-



Algorithm 5.1 Execution of world and conversation policies

1: procedureExecPolicy(M|W, π|W,M|D, π|D) {
(1)M|W: Joint external world model ,
(2) π|W: Joint external world policy ,
(3)M|D: Joint dialogue model ,
(4) π|D: Joint dialogue policy }

2: Mi|W ← proji(M|W)

3: πi|W ← proji(π|W)

4: Mi|D ← proji(M|D)

5: πi|D ← proji(π|D)

6: si|W ← SenseCurrentState()

7: si|D ← ReceiveCommunication() ∧ ComputeDialState(si|W ∧ πi|W)

8: while si|W ∈ StatesOf(πi|W) ∨ si|D ∈ StatesOf(πi|D) do
9: if |joint(GetAction(si|W , πi|W))| > 1 then

10: WorldSA← ComputeJointSA(si|D)

11: if |WorldSA| = 1 then
12: ai|W ← proji(GetAction(WorldSA))
13: Execute(ai|W)

14: else
15: ai|D ← GetAction(si|D , πi|D)

16: if ai|D 6= ∅ then
17: Execute(ai|D) {Communicate to resolve the ambiguity

about which action to select}
18: else
19: WorldSA← RetrieveExternalDecision(WolrdSA) {Com-

munication cannot help, ask for external decision}
20: si|D ← ComputeDialState(WorldSA){Update the external

decision into the information state}
21: end if
22: end if
23: else
24: ai|W← GetAction(si|W, πi|W)

25: Execute(ai|W)

26: end if
27: si|W← SenseCurrentState()

28: si|D ← ReceiveCommunication()∧ComputeDialState(si|W∧πi|W)

29: end while
30: end procedure

deterministic joint policy). In this case, individual agents
need to decide what to do during policy execution by picking
among the set of all possible actions given by the joint pol-
icy, and need to communicate with one another to come to a
decision.

• A policy π is called aout of usagein a states if there is no
〈s, a〉 ∈ π. In this case, agents need to replan.

A procedure to execute a combined world policy and conver-
sation policy is given in Algorithm 5.1. It is adapted from the
corresponding procedure in [6] and with the addition of steps to
execute the conversation policy. It uses the transition operations
defined in Figure 1 and assumes that the these operators, as well
as thejoint andproji operations, operate on the world and the dia-
logue transition model according to the symbols|W and|D respec-
tively. ComputeDialState, ComputeJointSAand RetrieveExternal
Decisionare application dependent, and define how the dialogue is
related to the external world model, as in Section 6. In essence the
procedure steps through the world policy, executing the steps of a
communication policy when communication is required.

6. GENERATING POLICIES
Given the general model of dialogue defined in Section 5, we

can define a specific conversation policy which will ensure that the
correct information is exchanged during world policy execution. In

this section we describe an algorithm for generating policies that
combine world policies and conversation policies.

We start by assuming that each agentTi maintains a model of the
external worldMi|W and its finite propositional languagePi|W will
depend on the application.Ti ’s dialogue modelMi|D is based on a
propositional language

Pi,S|D = PS|W ∪ PA|W ∪ PAL ∪ PCM

wherePAL contains a boolean variable for every variable inPS|W∪
PA|W to indicate its validity in dialogue state,PCM contains a bool-
ean variable for every variable inPSi |W ∪ PAi |W of the agentTi ’s
(the informationTi can effectively known) to indicate whether its
value has been communicated in dialogue state,j = 1 . . .N andN
is the number of agents in the system, and

Pi,A|D = {tell(i, j, xk, v)}

wherej = 1 . . .N, xk ∈ Pi|W andv = {0, 1}. tell(i, j, xk, v) means
that Ti tells Tj that the boolean variablexk representing some bit
of the state and action information is in the valuev. We denote
variables inPSi |D by xi,j,k, lxi,j,k and cxi,j,k for Ti ’s information
aboutTj on state variablek, about its validity and whether it has
been communicated toTj, and those inPAi |D by yi,j,l , lyi,j,l and
cyi,j,l for Ti ’s information aboutTj on action variablel, its validity
and whether it has been communicated toTj wherej = 1, . . . ,N,
k = 1 . . .K = |PSj | and l = 1 . . . L = |PAj |. In total, we have
3N ∗ N ∗ (K + L) variables for the dialogue system of the whole
team2.

The mapping between agentTi ’s current state and its information
state in the dialogue can be described by aβ (connection) condi-
tions. For example,

β(si|W, si|D) =
N̂

j=1

K̂

k=1

[vxi,j,k → (xi,j,k ↔ x′i,j,k)]

wherexi,i,k ∈ PSi |W andx′i,i,k ∈ Pi|D. More complex mappings
can be defined using representation languages such as a restricted
linear time logic or a computation tree logic, representations that
are used in the symbolic model checking literature [4].

Similarly, there is a mapping between agentTi ’s next action de-
cision and its information state in the dialogue. This mapping can
be described by theβ condition, for example,

β(ai|W, si|D) =
N̂

j=1

L̂

l=1

[vxi,j,l → (yi,j,l ↔ y′i,j,l)]

whereyi,i,l ∈ PAi |W andy′i,i,l ∈ Pi|D. Please notice that the above
two β conditions depends on the validity variables in the dialogue
information states. These validity variables will be initialized by

ν0(si|D) =

K̂

k=1

[vxi,i,k] ∧
L̂

l=1

[vyi,i,l ].

As shown in the dialogue state transitions below, the value of these
validity variables will also been changed by the dialogue acts.

Using the mappings of states and actions, we can compute a set
of initial dialogue states — those that exist before taking into ac-
count the effects of any communication — from the fragments of
world policy that individual agents possess:

ComputeDialState(WorldSA) = ∃~x∈P|W
[WorldSA∧

VN
i [β(si|w, si,d) ∧ β(ai|w, si|D) ∧ ν0(si|D)]

˜

,
2This can be improved by encoding the indices ofxi,j,k andyi,j,l with logN+ logN+
logK + logL boolean variables, and maintain the information using a relation to map
these indices to the values they correspond to.



Algorithm 6.1 Dialogue goal computation

1: function ComputeDialGoal(NewWorldSA) {
(1) NewWorldSA: A new external policy segment,
(2) IJMAP: The global variable holding the dialogue states to world
joint states mapping
}

2: SetComputeNextImageto useRD
3: NewDialS← ComputeDialState(NewWorldSA)
4: repeat
5: DialS← NewDialS
6: NewDialS← ComputeNextImage(DialS)
7: DJMAP← ComputeDJMAP(NewDialS, NewWorldSA)
8: until DialS = NewDialS∨ GoodExe(DJMAP)
9: return NewDialS

10: end function

We can also compute a mapping, denoted byDJMAP, between the
dialogue states and the corresponding fragments of world policy:

ComputeDJMAP(DialS,NewWorldSA) =
ˆ

DialS∧ NewWorldSA∧
VN

i [β(si|w, si,d) ∧ β(ai|w, si|D)]
˜

and conversely we ca compute a joint external world state andits
policy action out of a dialogue state using theDJMAPmapping:

ComputeJointSA(si|D) = ∃~x∈P|D∪
S

j Pj 6=i|W

ˆ

si|D ∧ DJMAP
˜

The set of dialogue state transitions associated withAi|D is:

Ri|D = {〈xi,i,k = v∧ cxi,j,k = 0, tell(i, j, xk, v),
xj,i,k = v∧ cxi,j,k = 1 ∧ vxi,j,k = 1〉,

〈yi,i,l = v∧ cyi,j,l = 0, tell(i, j, yl , v),
yj,i,k = v∧ cyi,j,k = 1 ∧ vyi,j,k = 1〉}

For now, we assume that the execution of communication actions
will be much faster than that of actions in the external world—
for example assuming that communication is carried out on a high
speed network while external actions are carried out under the usual
limitations of the physical world. This assumptions enables us to be
sure that agents can always carry out the necessary communication
before performing the external world actions that requiredthe com-
munication. This assumption can be relaxed, however, by adding
variables that capture temporal information. This consideration is
a topic for our future research.

By adding communication conditions to the nondeterministic pl-
anning algorithms proposed in [6], we obtain the communication-
aware policy planning algorithm of Algorithm 6.2. In the algo-
rithm, I will be set to the initial states which the team of agents
will start with, andG will be set to the goal states which the team
is intended to end up with, andComputePreImagecan be either
ComputeWeakPreImageorComputeStrongPreImagedefined in Fig-
ure 1 in Section 2, corresponding to the weak and strong solution
concepts respectively. Strong acyclic solutions can be similarly
constructed following the approaches used in [6] but omitted here
for lack of space.

As for dialogue policy synthesis, the set of initial dialogue states
can be computed usingComputeDialStatefrom the set of the new
world policy segments,NewSA, and the set of dialogue goal states
can be computed using the functionComputeDialGoalare defined
in Algorithm 6.1 where the function good for execution is defined
as:

GoodExec(DJMAP) = [IJMAP∧ IJMAP[~x,~y/~x′,~y′]∧
VN

i

h

(¬
V

xi∈P|W
(xi ↔ x′i )) ∧ (

V

yi∈P|D
(yi ↔ y′i ))

ii

↔ FALSE

which means that theDJMAPhas evolved into a mapping table in

Algorithm 6.2 World policy generation

1: function ComputeWorldPolicy(I ,G,ComputePreImage) {
(1) I : Initial states,
(2) G: Goal states,
(3) ComputePreImage: A pre-image function }

2: DJMAP← ∅
3: OldSA← Fail
4: SA← ∅
5: SAD ← ∅
6: while OldSA 6= SA∧ I 6⊆ (G∪ StatesOf(SA)) do
7: PreImage← ComputePreImage(G ∪ StatesOf(SA))
8: NewSA← PruneStates(PreImage, G∪ StatesOf(SA))
9: if ∃i|joint(GetAction(proji (NewSA)))| > 1 then

10: ID ← ComputeDialState(NewSA)
11: GD ← ComputeDialGoal(NewSA)
12: NewSAD ← ComputePolicy(ID , GD,RD, ComputePreImage)
13: if NewSAD = ∅ then
14: return Fail
15: end if
16: SAD ← SAD ∪ NewSAD
17: end if
18: OldSA← SA∪ NewSA
19: end while
20: if I ⊆ (G∪ StatesOf(SA)) then
21: return 〈SA, SAD〉
22: else
23: return Fail
24: end if
25: end function

Algorithm 6.3 General policy generation

1: function ComputePolicy(I ,G,ComputePreImage) { (1) I : Ini-
tial states,
(2) G: Goal states,
(3) ComputePreImage: A pre-image function }

2: OldSA← Fail
3: SA← ∅
4: while OldSA 6= SA∧ I 6⊆ (G∪ StatesOf(SA)) do
5: PreImage← ComputePreImage(G ∪ StatesOf(SA))
6: SA← PruneStates(PreImage, G∪ StatesOf(SA))
7: OldSA← SA∪ SA
8: end while
9: if I ⊆ (G∪ StatesOf(SA)) then

10: return SA
11: else
12: return Fail
13: end if
14: end function

which different joint world policy items won’t be mapped into one
dialogue state. TheDJMAPtable with thisGoodExecproperty can
be used by every agent withComputeJointSAto obtain an unique
external state-action pair. However,ComputeDialGoalmay return
a goal dialogue state without satisfyingGoodExecproperty. This
means that the external policy is non-deterministic, and need an
external decision maker to choose an action.

PROPOSITION1 (CORRECTNESS). If Algorithm 6.2 returns
a policy π, thenπ is a weak or a strong solution to achieve the
goals G from initial states I. If the algorithm returns FAIL,then
there is no weak or strong solution.

PROOF. The algorithm does a backward breadth first search from
the goal states with respect to theComputePreImagebeing set to
weak pre-image or strong pre-image function. There is an addi-
tional step of computing dialogue policy to combine information
from different agents to determine the current state and additional
action decision so that every agent can determine the next action
uniquely. The correctness of the policy computation can be found
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Figure 2: An NGO team task

in work on non-deterministic planning [6]. If the procedurefailed,
either there is no weak or strong solution to the joint transition
model or the dialogue policy synthesis failed. The dialoguepol-
icy synthesis is guaranteed to succeed, because in worst case the
joint state and additional decision of joint action is fullycommuni-
cated, and the application ofPruneStatesin Algorithm 6.2 and the
way in which the dialogue states andDJMAPare constructed in Al-
gorithm 6.1 guarantees that no two dialogue states will be the same
in the dialogue policy so we avoid conflicting dialogue action pre-
scriptions. Therefore if the procedure to construct a solution fails,
it is because there is no weak or strong solution.

7. AN EXAMPLE
Consider the following example, based on the example in [5].

Two agents, one representing an NGO (N) and one representing
a peace keeping force (F), are working in a conflict zone. The
agents (and the organizations they represent) work independently
and have different agenda.N is based atA in Figure 2.F is based
at pointH. N’s goal is to reachD to help the villagers there.F’s
goal is keeping the peace in general in the area, but it also has
to protectN while N is carrying out its work. At any time, with
some probability, some disruption may flare up atW. If it happens,
only F has the surveillence data to know this is happening, and
F must go toW to suppress the disturbance. The routes between
different points are shown as arcs in Figure 2.N cannot traverse
the routes(J,W), (W,C), (W,B), when there is a disturbance at
W, and it is only able to traverse(C,D) and(B,D) without harm
when it is accompanied byF. N can traverse the rest of the routes
independently andF can traverse any route. The goal of the agents
is to haveN reachD and to haveF put down the conflict inW if it
happens.

We can formalise this asPSN = {lN,L} ∪ {health}, PSF =
{lF,L} ∪ {war}, PAN = {stayN,move(N, L′, L′′)}, andPAF =
{move(F, L1, L2) whereL, L′, L′′ ∈ {A,H, J,W,B,C,D}, conflict
means that there is a disturbance in pointW, andhealthmeans that
N is not harmed.

Initially, I = lN,A ∧ lF,H ∧ health∧ (conflict∨ ¬conflict). The
goalG = lN,D ∧ ¬conflict∧ health. The joint transition modelR
for the scenarios is as follows

Rmove

= 〈lF,x ∧ lN,y,move(F, x, x′) ∧ move(N, y, y′), l′F,x′ ∧ l′N,y′〉

Rstay

= 〈TRUE, stayN, TRUE〉}

Rhealth

= 〈TRUE,¬[move(F,B,D)] ∧ move(N,B,D),¬health〉,

〈TRUE,¬[move(F,C,D)] ∧ move(N,C,D),¬health〉,

We have additional conditionsβw andβagent,route:

βw = lF,W → ¬conflict

βF,route =
^

(x,x′)∈Route

[lF,x ∧ l′F,x′ ]

βN,route =
^

(x,x′)∈Route\{(J,W),(W,C),(W,B)}

[lN,x ∧ l′N,x′ ]

whereRouteis the directed graph of the routes showed in Figure 2.
Overall,

R = Raction∧Rstay∧Rhealth∧ βw ∧ βF,route ∧ βN,route.

Algorithm 6.2 will generate the necessary individual worldand
dialogue policies. Started backward from the setG of goal states,
althoughG does specify onlyF’s location, but the system only al-
lows N to travel to the destinationD if it is accompanied byF, and
no route is available fromD back toW. This indicates that, at the
end,F must also be inD. Therefore from the desired goal states,
the backward chaining search will trace back to the state where ei-
ther bothF andN are inC or both are inB. Rolling back from
these two joint states, if there is conflict inW, F must come from
W where it can resolve the conflict; otherwise,F can come from
eitherW or J. As for N, no matter whether it is inC or B, it must
come fromJ. Therefore if there is no conflict atW, the algorithm
will force F come directly fromJ (becausePruneStateswill prune
the longer paths). However, whenF andN are in both atJ (with a
conflict atW), the algorithm will produce two valid joint actions:
either both going toC or both going toB. Here let’s assume one of
them, for exampleF, seeks an external decision to decide the next
step, say the result is going toB, then it must communicate the de-
cision withN, so that they can both go toB to guarantee a chance
of success. If there is conflict inW, F will go to W to resolve it,
while N will reach B. As N andF don’t know each other’s posi-
tions, although they have a valid joint plan, they must communicate
with each other so thatN knows it will need to stay inB and wait
for F to come, andF will know it will need to go toB instead ofC.
The same kind of communication about positions will be needed
for all other locations except atA andB where they can decide by
themselves to go toJ without needing to communicate with each
other.

8. THE BDD IMPLEMENTATION
In the above, we have showed the natural connections between

set paradigm on state transitions and its implicit representation us-
ing QBF formulae. There is a data structure called a Binary Deci-
sion Diagram (BDD) [3] that represents QBF formulae and makes
it possible to perform efficient operations over them. A BDD is a
rooted directed acyclic graph used to encode the set of truthassign-
ments to a QBF. BDDs guarantee that the basic boolean operations
on QBFs can be computed in quadratic time [3, 9] as summarized
in in Table 5. The intuition behind this efficiency is that BDDrep-
resentation is actually a form of minimal description of theinfor-
mation encoded — the BDD for a QBF is actually the minimum
automaton that accepts the corresponding set of truth assignments
with respect to a specific variable ordering [4], and this minimality
can be preserved across the basic boolean operations.

9. CONCLUSIONS
This paper has presented a model of individual and joint action,

suitable for describing the behavior of a multiagent team, includ-
ing communication actions. The model is symbolic, and capable
of handling non-deterministic actions. In addition to the model, we



QBF/Set operator BDD operator Complexity
¬ξ ¬G(ξ) O(||ξ||)
∃xi(ξ) G(ξxi=0) ∨ G(ξxi=1) O(||ξ||2)
∀xi(ξ) G(ξxi=0) ∧ G(ξxi=1) O(||ξ||2)
ξ1 ∧ ξ2 G(ξ1) ∧ G(ξ2) O(||ξ1|| · ||ξ2||)
ξ1 ∨ ξ2 G(ξ1) ∨ G(ξ2) O(||ξ1|| · ||ξ2||)
ξ1 → ξ2 G(ξ1) → G(ξ2) O(||ξ1|| · ||ξ2||)
|X| = 1 Sat-one(G(ξ(X))) O(|~x|)

Table 5: The mapping between QBF operators and BDD op-
erators. ξ, ξ1, ξ2 are formulae in QBF; G(ξ),G(ξ1),G(ξ2) are
BDD representations for these formulae;|| · || is the number of
nodes used in the BDDs.

have provided procedures for creating joint plans, plans that include
the communication necessary for plan execution — that is thede-
tection and communication of information relevant to the execution
of the plan. We believe this is the first time that this kind of plan-
ning model, drawn from the literature of non-deterministicplan-
ning, has been combined with a communication model and then
applied to multiagent teams.

As discussed by [16], teamwork requires requires the establish-
ment of joint intentions and the determination of which goals to
achieve, the creation of a plan, the sharing of knowledge about the
environment in which the team is operating, and the ability to mon-
itor plan execution. While we do not claim that what we have de-
scribed in this paper is a comprehensive model of teamwork — it
is much less powerful and comprehensive than Teamcore [17] or
Retsina [15], for example — it marks a useful step towards our
overall goal of constructing a model of argumentation-based dia-
logue that can support many of the important aspects of teamwork.
In particular, it deals with planning, albeit in a centralised way, the
sharing of information,and a limited form of plan monitoring.

One obvious area of future work is moving from a centralised
planning process, which just hands every agent a policy thatwill
help the team achieve its goals, to a decentralised process in which
agents can engage in a discussion of the best plan. For that weplan
to combine our prior work on argumentation-based planning [18],
which assumes a simple, deteministic model of actions, withthe
work we have described here. Another area of future work, which
addresses the main area in which our model falls short of a model
of teamwork, is to consider the formation of joint intentions. Here
there is a rich vein of work to draw on, for instance [7, 11], and we
will seek to incorporate this into our model.
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