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Abstract—Analysis of communications in human teams sug-
gests that an important form of communication between team
members is an “information providing” dialogue, in which team
members update their fellows with information that they regard
as important to the task at hand. In this paper we introduce and
analyse a formal model of such a form of dialogue, seeing this
as a necessary first step in providing software support for this
kind of communication.

I. I NTRODUCTION

This paper deals with managing collaboration in a team.
In particular, we are interested in teams engaged in military
missions, and teams in which members may come from
different parts of an international coalition. In such situations,
effective coordination can be problematic, with units unable to
communicate easily, and handicapped by having been trained
to operate under rather different doctrines. It is our contention
that, with careful design, software agents can support effec-
tive collaboration in teams, and can overcome some of the
problems with coalition forces [1]. Extrapolating from existing
applications of software agents:

• Agents can filter messages, preventing unnecessary mes-
sages from reaching specific human team members, and
protecting them from distraction or information overload.
[13]

• Agents can coordinate the activities of human team
members [4], again reducing the cognitive burden on
human operatives.

• Agents can ensure that relevant information is passed be-
tween human team members, facilitating timely delivery
of crucial data. [20]

• Agents can help to enforce the correct protocol for team
behavior, ensuring that human team members follow
guidelines [8], [9].

For agents to be used in this way, they need to be pro-
grammed with some notion of what dialogues between human
team members are to be expected, required, and allowed.
A promising approach to specifying dialogues is the use of
formal dialogue games [14], [19], and a number of authors
have developed such systems [7], [16], [17], [18]. Particularly
influential in this area is the work of Walton and Krabbe [24],

who discuss six different types of dialogue that fit within the
dialogue game framework:

1) Information-Seeking DialoguesOne participant seeks
the answer to some question(s) from another participant,
who is believed by the first to know the answer(s);

2) Inquiry Dialogues Participants collaborate to answer
some question or questions whose answers are not
known to any one participant;

3) Persuasion DialoguesOne party seeks to persuade
another party to adopt a belief or point-of-view he or
she does not currently hold. Persuasion dialogues begin
with one party supporting a particular statement which
the other party to the dialogue does not, and the first
seeks to convince the second to adopt the proposition.
The second party may not share this objective.

4) Negotiation DialoguesThe participants bargain over the
division of some scarce resource in a way acceptable to
all, with each individual party aiming to maximize his
or her share. The goal of the dialogue may be in conflict
with the individual goals of each of the participants.1

5) Deliberation DialoguesParticipants collaborate to de-
cide what course of action to take in some situation.
Participants share a responsibility to decide the course
of action, and either share a common set of intentions
or a willingness to discuss rationally whether they have
shared intentions.

6) Eristic Dialogues Participants quarrel verbally as a
substitute for physical fighting, with each aiming to win
the exchange.

Walton and Krabbe allow for dialogues to be combinations
of these different types, and they make no claims that this
classification is complete. Girle, for example, discusses com-
mand dialogues [10] while Coganet al. [6] describe a series
of question-led dialogues that are distinct from Walton and
Krabbe’s information-seeking dialogue.

1Note that this definition of negotiation is that of Walton andKrabbe.
Arguably negotiation dialogues may involve other issues besides the division
of scarce resources.



In this paper, we formalise a new kind of dialogue that
we have identified in the conversations of human members
of teams that are engaged in military operations. This “infor-
mation providing” dialogue type was identified following the
analysis of transcripts from experiments conducted with hu-
man teams operating in simulated tactical military operations
[23]. The form that this type of dialogue takes is one in which
members update the rest of the team with new information that
comes to light. Clearly, the mechanism of the dialogue itself is
not complex — it just involves uttering the new information —
but the important aspect is identifying when it is appropriate
to make the utterances.

To reason about this, and to do it in a way that will be able
to deal with teams operating in the real world, we have to go
far beyond the kind of simple propositional language that was
used in dialogue systems such as that of [16]. Instead we need
the ability to reason about non-deterministic events, and the
way that those events unfold over time. Borrowing from the
language of AI planning systems, we start our formal system
with a model of states and the transitions between states.

II. T HE STATE TRANSITION MODEL

We use a state-space model, popular in the field of non-
deterministic planning [12], as a basis for our formalisation.
Statesare objects that capture some aspect of a system, andac-
tionsare transitions between states. States and actions together
define astate-space. When actions are non-deterministic [2]
then what one seeks for any state-space is apolicy; i.e.
a specification of which action one should take in every
state. We define a non-deterministic domain to be a tuple
M = 〈P ,S,A,R〉 where

• P = PS ∪ PA is a finite set of propositions;
• S ⊆ 2PS is the set of all possible states;
• A ⊆ 2PA is the finite set of actions; and
• R ⊆ S ×A× S is the state-transition relation.

A propositional languageL can be defined by allowing stan-
dard connectives∧,∨,→,¬ over the propositions inP . A state
s = {p1, p2, . . . , pk}, s ⊆ PS , means that the propositions
p1, p2, . . . , pk are true in states and all other propositions in
PS are false — we therefore assume some form of closed-
world. In other words, each states is encoded by a formula

γ =
∧

pi∈s

pi ∧
∧

pj 6∈s ands∈PS

¬pj

We denote that a formulaγ is true ins by s |= γ. The set of
states that satisfies formulaγ ∈ L is denoted bySγ , where
Sγ = {s|s |= γ}.2 Actions are encoded in a similar way
to states. Actiona = {p1, p2, . . . , pl}, a ⊆ PA means that
propositionsp1, . . . , pl are true and all other formula inPA

are false. We denote that a formulaα is true ina by a |= α.
With states and actions defined, the state-transition re-

lationship can then be specified by a setSR of triples:

2Note thatSp1∧p2∧...∧pk
6= {s} where s = {p1, p2, . . . , pk} because

Sγ doesn’t make the closed world assumption; that is, we assumethat the
unspecified propositions are false.

SR = {〈γ, α, γ′〉} whereγ, γ′ ∈ S and a ∈ A. Each triple
〈γ, α, γ′〉 corresponds to a transition segmentR〈γ,a,γ′〉 =
{〈s, a, s′〉|s |= γ, a |= α, s′ |= γ}, and together:

RSR =
⋃

〈γ,α,γ′〉∈SR

R〈γ,α,γ′〉

We take apolicy to be a set of state-action pairs,

π = {〈s, a〉|s ∈ S anda ∈ A(s)}

where
A(s) = {a|∃〈s, a, s′〉 ∈ R}

is the set of actions that are applicable ins. A policy can be
specified by a set of pairs composed of a formula,γ ∈ L, and
an action,a ∈ A: SA = {〈γ, a〉}. Each pair〈γ, a〉 corresponds
to a policy segment:π〈γ,a〉 = {〈s, a〉|s |= γ}, and together

πSA =
⋃

〈γ,a〉∈SA

π〈γ,a〉

The space of all policies is denoted byΠ. The set of states
in a policy π is Sπ = {s|〈s, a〉 ∈ π}. An execution structure
induced by the policyπ is a directed graphΣπ = (Vπ, Eπ)
where

Vπ = Sπ ∪ {s|〈sp, a, s〉 ∈ R, sp ∈ Vπ and 〈sp, a〉 ∈ π}

is the set of nodes ofΣπ , which represent all possible states
in M that can be generated by executing the actions inπ.
Typically this is a strict subset of the full state space.

Eπ = {〈s, s′〉|〈s, a, s′〉 ∈ R and 〈s, a〉 ∈ π}

is the set of arcs between the nodes ofΣπ which represent
possible transitions caused by the actions inπ.

To describe the behavior of a team, we need to prescribe
more structure over the actions. We assume that there is
a set of n individuals labeled byT = {T1, T2, . . . , Tn}
in the system. We will call these individualsagents, not
distinguishing whether these are software agents or humans.
We call the actions in the setA joint actionsof these agents.
Each actiona ∈ A is a tuple of actions of individual agents,
so a = [a1, . . . , an]. That is each actiona ∈ A can be further
decomposed inton actionsai ∈ Ai of individual agentsTi.
EachAi is defined to be a subset of the propositions inPA.
By overloading the notion, we also denotea |= ai if agent
Ti’s action isai in a joint actiona. In total, we have:

A =
∏

i

Ai

In addition to this notion of joint action, there is a joint ac-
tion version of each individual agent’s state transition relation
and policy. Thus, agentTi, with state transition relationship
Ri, has a corresponding joint action state transition relation:

R∗
i = {〈s, a, s′〉|〈s, ai, s

′〉 ∈ Ri anda |= ai〉}

The joint action policy for agentTi is defined as:

π∗
i = {〈s, a〉|〈s, ai〉 ∈ π anda |= ai〉}



The induced joint state transition relationship is then:

R =
⋂

i

R∗
i

And the induced joint policy is:

π =
⋂

i

π∗
i

An additional formulaβ ∈ L can be introduced to constrain
possible combinations so thatA(β) = {a ∈ A|a |= β}. For
example,

β =

n
∧

i=1

∧

j 6=i

ai → τj

whereτj is a special symbol for an empty action. This means
that no concurrent actions are allowed, so that all the agents
have to take actions in turn. The corresponding constrained
joint state transition relationship is:

R∗
i (β) = {〈s, a, s′〉|〈s, a,s

′〉 ∈ Ri anda |= β〉}

and the corresponding constrained joint policy is:

π∗
i (β) = {〈s, a, s′〉|〈s, a,s

′〉 ∈ πi anda |= β〉}

We will use the above state-transition model to represent both
the dialogue mechanism and the topics of the dialogue. At
the level of the topic of a dialogue, the state transition model
encodes the agents’ information about the external world and
what they want to do in the external world (that is what
policy they have). At the level of the dialogue model, the state
transition model encodes the dialogue mechanism that these
agents are using, and so regulates the dialogue.

To distinguish the two state transition models, we will
denote these two models and their elements with subscripts.
We write |D to denote elements of the dialogue model, for
example,M|D denotes the state transition model for a dialogue
andS|D denotes the states of a dialogue. We write|W to denote
elements of the world model, for example,M|W denotes
the external world model andS|W the external world states.
However, when the state transition model is obvious from the
context, we will omit the subscripts.

The use of state transition systems to model both the
dialogue mechanism and the external dynamics is intended
to utilize recent advances in the area of AI planning.
These advances, especially in hierarchical task network non-
deterministic planning (for example [12]), will aid in the
development of systems that can handle complex dialogue
behavior and help in the definition of broad solution concepts
for dialogue. For example, the concept of a strong solution
can be borrowed to identify when a dialogue mechanism will
guarantee success, and the concept of a weak solution can
be borrowed to identify when a dialogue mechanism will
guarantee that success is possible. We will discuss this more
below.

III. A DIALOGUE MODEL

Having established a language that is sufficiently rich to
describe agent plans and actions, we can construct a dialogue
model that uses this language.

A. The general model

As before, we assume that, in the dialogue, there is a set
of n agents labeledT1, T2, . . . , Tn where each agentTi has a
model of the worldMi|W = 〈Pi|W ,Si|W ,Ai|W ,Ri|W 〉 and
for which it has a policyπi|W = {〈si, ai〉}.

Given this, a dialogue model is then a state transition
systemM|D = 〈P|D,S|D,A|D,R|D〉 for which there is a
policy for conducting dialoguesπ|D. The dialogue language
P|D contains elements from languagePi|W that individual
agents use to describe the world, along with auxiliary language
elements such as a proposition to mark the differences between
two world states. The dialogue information is induced from
PD. The set of dialogue actsA|D are those available to the
agents. How these dialogues change the information state will
be specified by the dialogue state transition relationship of
these dialogue acts:R|D ⊆ S|D × A|D × S|D. Depending
on the specific dialogue, we may distinguish a set of initial
dialogue statesI|D ⊆ S|D and a set of goal dialogue states
G|D ⊆ S|D (see [21] for an example).

As is usual for state-transition models [2], a policy for a
dialogueπ|D = {〈s|D, a|D〉} specifies what dialogue action
should be taken in any given dialogue state to reach the goal
statesG|D from the initial statesI|D at the least expected cost.
To distinguish such policies from the policies that govern an
agent’s actions in the world, we call the policies that govern
an agent’s actions in a dialogue aconversation policy. The
effects of conversation policies on a dialogue modelM|D can
be summarized by the triple〈I|D, π|D, G|D〉 that states which
initial and goal states are related by the policy.

Two conversation policies can be combined together to
specify more complicated dialogues addressing different set
of goals. There are two ways to combine two conversation
policiesπ1 andπ2:

• Union. The union ofπ1 andπ2:

π1 ∪ π2 = {〈s, a〉|〈s, a〉 ∈ π1 or 〈s, a〉 ∈ π2}

extends the allowed behaviors ofπ1 to include the be-
haviors ofπ2. The corresponding effect of such a policy
is 〈I1|D ∪ I2|D, π1 ∪ π2, G1|D ∪ G2|D〉

• Join. The production, or join, ofπ1 andπ2

π1 ∩ π2 = {〈s, a〉|〈s, a〉 ∈ π1 and 〈s, a〉 ∈ π2}

constrains the allowed behaviors ofπ1 to only contain the
behaviors ofπ2. Here the corresponding effect is〈I1|D ∩
I2|D, π1 ∩ π2, G1|D ∩ G2|D〉

With this general model of dialogue in mind, we can specify
information providing dialogues.

B. Information-providing dialogues

An information-providing dialogue is a dialogue in which
one agent pushes (in the same sense aspush technology
[11]) information to its teammates because it believes that
the information being pushed is helpful to its teammates in
executing their policies.



We assume that, as in the general model, there is a set ofn

agentsT = {T1, T2, . . . , Tn}, and each agentTi has a world
modelMi|W = 〈Pi|W ,Si|W ,Ai|W ,Ri|W 〉 and a policy over
that world modelπi|W = {〈si, ai〉}. As shown in Section
II, the corresponding induced joint state transition modelis
M|W = 〈P|W ,S|W ,A|W ,R∗

|W 〉 where

R∗
|W =

⋂

i

R∗
i|W

The induced policy over this joint state model is

π|w =
⋂

i

π∗
i|W

The agents can use these models to reason about the behaviors
of one another in the real world.

In addition, we assume that each agentTi holds a belief state
si|D = 〈si|W , s′

i|W 〉 which is composed of its perception of
the previous world statesi|W and the current world states′i|W .
The agent’s belief model includes the relationship betweenall
feasible states of the world, along with a suitable measure of
belief in the transition. In other words, for every pair of states
si|W ands′

i|W between which the agent can move there is an
Ri|W (si|W , ai, s

′
i|W ) for someai ∈ Ai.

Finally, we assume that the set of policies{πi|W } is known
to every agent — so that every agent knows every policy
of every agent — or equivalently we assume that there is a
dialogue mechanism which can be used by an agent to retrieve
the policies of any other agent efficiently. This may be an
information-seeking dialogue, in the terminology of Walton
and Krabbe [24] if agents can compute policies on their own,
or a deliberation dialogue if the agents must collaborate to
come up with the policies.

Under these assumptions, we can define the dialogue mech-
anism formally below by specifying the set of dialogue states,
the set of dialogue actions, the basic dialogue model as a state
transition relationship, and the application dependent dialogue
model as a set of individual dialogue policies over the dialogue
state transition model. We start with the model of dialogue
state and action:

Definition 1 (Dialogue state):A dialogue information state
of an agentTi is composed of the belief of previous world
states|W and the current world states′|W , togethersi|D =

〈si|W , s′
i|W 〉. The joint dialogue state iss|D = [si|D]i=1,...,n.

The corresponding set of propositions for the dialogue is
P|D = P|W ∪P ′

|W whereP ′
|W is a set of propositions copying

P|W with the same meaning but with different symbols so that
the same logical structures are defined over the previous states
and the current states.

Definition 2 (Dialogue action):A dialogue action is of the
form telli→j(p) wherep ∈ P and Ti and Tj are two agents
participating in the dialogue. The meaning oftelli→j(p) is
that agentTi tells Tj that a propositionp ∈ S|W is true in its
current belief states′|W , namelys′|W |= p. The set of actions
available to agentTi is Ai = {telli→j(p)|p ∈ P andj =

1, . . . , n} ∪ {τ} where τ is an idle action. The set of joint
dialogue actions isA =

∏

i

Ai.

The restriction of the content oftell to be a propositionp can
be relaxed so that it is a sentence inL without affecting any
of the definitions here, but we restrain from doing so to keep
the model simple for the purposes of this paper.

We are developing this dialogue system as a step towards
implementing a machine dialogue that improves the collabora-
tion of a human team, and so we assume that it takes negligible
time to execute a dialogue action since carrying out such an
action takes much less time than executing a real world action
(usually carried out by a human). If the execution time of the
dialogue actions does matter, we can use a concurrent state
transition model which combines the dialogue state transition
model and external world state transition model; examining
models that can handle the dialogue and the external world
actions simultaneously is part of our future research.

We can also study a simpler version of the current model
where we restrict the participants of a dialogue to take turns;
i.e. in a joint action, exactly one agent is allowed to perform
a tell action, and all other agents can only perform the
idle action τ . As shown in Section II, this can be done by
introducing the following constraint whereτj is a special
symbol for the idle action, or noop, for agentj.

β =
n
∧

i=1

∧

j 6=i

ai → τj

We take the state transition model of the whole dialogue
to be the product of the state transition models of individual
agents, and we compose these models to get a joint model of
the dialogue:

Definition 3 (Individual dialogue state transition):There
are twoinformation state transitionsat the level of individual
agents associated with the utteranceai = telli→j(p) by agent
Ti: the transitions for agentsj (the hearer) andi (the speaker)
respectively.

∃r ∈ Rj s.t. r
.
= 〈〈s, s′〉, telli→j(p), 〈ss, ss′〉〉 ∈ Rj|D

∃rr ∈ Ri s.t. rr
.
= 〈〈s, s′〉, telli→j(p), 〈s, s′〉〉 ∈ Ri|D

wheress = s andss′ = s′ ∪ {p}.
In the above definition,r ∈ Rj specifies that the belief of agent
Tj, the listener, is updated by adding the propositionp into
its current set of beliefs about the world. Similarlyrr ∈ Ri

specifies that the belief ofTi, the speaker, is not changed
by the dialogue act. These updates are the equivalent of the
commitment store updates in [16], [17].

Definition 4 (Dialogue joint state transition):The joint di-
alogue state transition relationshipR associated withai =
telli→j(p) is defined as follows

R =
⋂

Ti∈T

R∗
i

This is equivalent to

R = {〈s, a, s′〉|s |= si, s
′ |= s′i, a |= ai such that

〈si, ai, s
′
i〉 ∈ Ri for all i = 1, 2, . . . , n}



This characterizes how a dialogue action, or utterance, leads to
an update in belief of all the agents in the system, and how the
effect is composed from individual views of the changes. After
defining the dialogue model, we need to specify the initial
state of the dialogue. We assume that at the beginning of a
dialogue the belief states of all the agents are empty. There
is a bootstrap mechanism modeled in these agents’ external
world state transitions at the beginning.

Definition 5 (Dialogue initial state):The initial state of a
dialogue isI = [〈si, s

′
i〉]i=1,...,n with 〈si, s

′
i〉 = 〈∅, ∅〉 for

every agentTi.
The goal of an information providing dialogue is to push the
information about the state of world which will affect the
other agents’ execution of their policies. There can be many
concepts of what information will affect the other agents, or
what information is relevant to others. For example, one might
be information that distinguishes two states inSπ (an agent’s
policy states) affecting that agent’s choice of actions. Another
example might be the information defining a state inSπ whose
effect is to cause a specific action to be taken. For this paper,
we focus on the relevance of information to the policies of
other agents.

Definition 6: The goal state of the dialogue isG =
{[〈si, s

′
i〉]i=1,...,n} where every〈si, s

′
i〉 satisfies that, for every

agentTi with an external policyπi|W , si |= p whenever

• there is an agentTj with s′j |= p andsj 6|= p, and
• p satisfies the criterion of being relevant toTi’s policy

execution. As an example, we will employ the following:
p is relevant toTi’s policy execution if there exists some
(si, ai) ∈ πi|W such thats ⊢ p.

The above definition says that the agent should be able to have
the belief thatp is true in the state whenever (i) some other
agent observesp to be true in the previous world state, and
(ii) the truth of p will affect the agent’s policy execution. In
the example below, it is knowingp that will help agentTi fire
an actiona.

Now we are ready to specify the information providing
dialogue — a dialogue that specializes in pushing information.

Definition 7 (Information providing dialogue):An
information providing dialogueis a mechanism in which
each agentTi is equipped with a conversation policy
πi|D = {〈si|D, ai|D〉} where

• si|D = 〈si|W , s′
i|W 〉 where si|W denotes the previous

world state ands′i|W denotes the current world state
• ai ∈ telli→j(p) whenever

– p 6∈ si|W but p ∈ s′
i|W ,

– there is some〈sj|W , aj|W 〉 ∈ πj|W such thatp ∈
sj|W

The above dialogue mechanism is just a straight forward
translation of the goal into a dialogue policy — more com-
plex conversation policies can also be defined. For ease of
explanation, we just use this simple policy in this paper.

We can view the policy of the whole dialogue as a joint
policy induced from the individual agents’ policies.

Definition 8: The joint dialogue policyfor a set of agents
Ti is

π|D =
{

〈[si|D]i=1,...n, [ai|D]i=1,...n〉 |

〈si|D, ai|D〉 ∈ πi|D, i = 1, . . . , n
}

With these definitions, we can easily show some basic prop-
erties of our dialogue model.

Proposition 1: The information-providing dialogue will
end with the dialogue in the goal state.

Proof: Trivial — it follows because the dialogue policy
is just a straightforward translation of the dialogue goal.

Proposition 2: The execution complexity of a step for the
dialogue policyπi|D is 2N + NM whereN = |P| andM =
|πj|W |.

Proof: M is the size of the equivalent formula pair
representation if the representation introduced in Section II
is employed. The test of whetherp ∈ ξ(s′

i|W ) but not
p ∈ ξ(si|W ) can be done in at most2N steps by scanning
two list of propositions, and the test of whethers ∈ Sπj|W

can be done in at mostN ·M . The total execution time, then
is 2N + NM .
If the state representations are encoded as binary decision
diagrams [3], it should be possible to find a more efficient
decision procedure.

IV. EXAMPLE DIALOGUES

To demonstrate how these information-providing dialogues
work, we will give two examples:

1) An information providing dialogue that makes use of
information about locations; and

2) An information providing dialogue that includes location
and time information.

These examples also demonstrate how the state transition
modeling dialogues can be incrementally detailed to fit an
application.

A. A location-based dialogue

In our first example, we abstract away the details of the
external world by keeping only location information in the
in state space and leave the other aspects of the state, world
actions, and state transitions unspecified. There are two types
of symbols inP|W , they areel andti,l meaning, respectively,
that an enemy is in locationl and agentTi is in locationl. We
assume that once an enemy has been discovered in a particular
location it will never move.3 We also assume that there is an
external system (for example, an perception system) that will
update information about the locations of agents in the world
as they move (i.e. deleteti,l and addti,l′ if agent Ti moves
from location l to location l′) and the locations of enemies
when they are discovered (i.e. add facts such ase7). The goal
of the dialogue is that if an agent finds that an enemy appears
in a location where there is some other agent that has a policy

3Clearly unrealistic, and easy enough to overcome, this allows us to write
down examples that are suitably short for this paper.
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Fig. 1. The external world for the example

to pass through that location, then the first agent will notify
his teammate of the presence of the enemy.

Definition 9: A location-based information providing dia-
logueis a mechanism in which each agentTi is equipped with
a conversation policyπi|D = {〈si|D, ai|D〉}.

• si|D = 〈si|W , s′
i|W 〉 where si|W denotes the previous

world state ands′i|W denotes the current world state.
• ai ∈ telli→j(p) whenever

– el 6∈ si|W but el ∈ s′
i|W ,

– there is a〈sj|W , aj|W 〉 ∈ πj|W such thatel ∈ sj|W

Example 1:Consider the following, very simple, example.
The world is modeled as a4 by 4 grid as in Figure 1.T1’s
initial position is16, andT2’s initial position is13. T1’s goal
position is1 andT2’s goal state is2. At any point in time an
agent has two choices of action:

1) It can make amove in a direction that isup, down, left

or right, this has the effect of moving the agent into
the relevant location if it is vacant. If an enemy is in the
relevant location, attempting tomove into it will cause
damage to the agent, and the agent will not move, but
the agent will learn the location of the enemy.

2) It can make adefenceMove in any of the four directions.
This represents a deployment in a defensive formation,
which is costlier than amove but makes it possible
to move into the relevant location even if an enemy is
deployed there, and prevents that enemy from doing any
damage.

Agents can only detect the presence of an enemy in a particular
location if they attempt to move into the same location, and
we know that at the start of the scenario, there are no enemies
in squares13 and16.

Clearly an agent should move towards its goal, using
defenceMove if it finds that a location it wants to move
through is the location of an enemy. Two possible policies
for T1 andT2 are presented in Figures 2 and 3 respectively.

These two policies are both complete if the effects of the
agents’ actions are deterministic, and both are partial if the
actions are non-deterministic. For simplicity of explanation,
we assume the world to be deterministic for the moment.

SA1|W =
{

〈t1,16 ∧ ¬e12,move(up)〉
〈t1,16 ∧ e12, defenceMove(up)〉
〈t1,12 ∧ ¬e11,move(left)〉
〈t1,12 ∧ e11, defenceMove(left)〉
〈t1,11 ∧ ¬e10,move(left)〉
〈t1,11 ∧ e10, defenceMove(left)〉
〈t1,10 ∧ ¬e9,move(left)〉
〈t1,10 ∧ e9, defenceMove(left)〉
〈t1,5 ∧ ¬e5,move(up)〉
〈t1,5 ∧ e5, defenceMove(up)〉

}

Fig. 2. Example policies forT1

SA2|W =
{

〈t2,9 ∧ ¬e9,move(up)〉
〈t2,9 ∧ e9, defenceMove(up)〉
〈t2,10 ∧ ¬e10,move(right))〉
〈t2,10 ∧ e10, defenceMove(right)〉
〈t2,6 ∧ ¬e6,move(up)〉
〈t2,6 ∧ e6, defenceMove(up)〉

}

Fig. 3. Example policies forT2

Using the location-based information-providing dialogue
policy above, if agentT1 encounters enemies at location9
or 10, then it will tell agentT2 so that the latter changes
the actions it will take when moving into these two locations
from move to defenceMove , reducing the cost to the team of
completing achieving their goals.

B. A time-sensitive location-based dialogue

We can extend the above example to take account of
information about time. To capture this temporal information,
we extend the setP|W of propositional symbols in the previous
dialogue with an additional type of symbol that represents the
timing information corresponding to the location information
of the other agents on the team and the enemies. These
extended symbols are of the formω = [ω1, ω2, ω3, ω4] is a
vector of boolean propositions encoding the number from1
to 16 to represent a discrete time frame. Each propositionti,l
is associated with a timing vectorωi,l, and each proposition
el is associated with a timing vectorωl to represent the time
when the truth of the proposition is discovered.

The goal of the dialogue is that if an agent finds that enemy
appears in a location where there is some other agent with an
acting policy to pass through this location in the future, then
the agent should notify its teammate.

Definition 10: A timed location-based information provid-
ing dialogue is a mechanism in which each agentTi is
equipped with a conversation policyπi|D = {〈si|D, ai|D〉}
where

• si|D = 〈si|W , s′
i|W 〉 where si|W denotes the previous

world state ands′
i|W denotes the current world state.

• ai ∈ telli→j(p) whenever

– el 6∈ si|W but el ∈ s′
i|W ,



– there is a〈sj|W , aj|W 〉 ∈ πj|W such thatsj|W |=
el ∧ tj,l and ωl − ωj,l ≤ c where c is a constant
representing time sensitive range.

Thus it is easy to specify what information about enemy
location should be passed, and, clearly this form of dialogue
will never pass more information than the purely location-
based dialogue. For example, ifT1 encounters an enemy at
location 10, the purely location-based approach would pass
this information to T2, unnecessarily, since, if the agents
move at the same speed,T2 would have already passed this
point. However, the time-sensitive dialogue will not pass the
information. Of course, for this to be correct, and saveT2 from
unnecessary damage, the temporal information must be correct
— it must take into account thatT2 may have encountered an
enemy at location9 and so still be on its way to10.

In the above, the computation ofωl − ωi,l ≤ c can be
substituted by any boolean functions over the propositions
which computed the less-than-or-equal-to relationship over the
integer encoding is being used.

The goal state of the dialogue is then thatG =
{[〈si, s

′
i〉]i=1,...,n} satisfies that for every agentTi with a

policy πi|W

if s′j |= ti,l ∧ ωi,l and (si, ai) ∈ πi|W then si |= el ∧ ωl

whereωl − ωi,l ≤ c.

In other words, every agent knows the information needed for
its policy if the information is available from any other agent.

V. CONCLUSIONS ANDFUTURE WORK

This paper has made two main contributions. The first is to
formalise dialogue mechanisms using a general state-transition
model. State-models of dialogue protocols are not new, but
we are the first to have used such a rich representation, both
to describe the dialogue itself, and to describe the subject
matter of the dialogue (which is typically taken to be a simple
propositional language). This rich representation not only
extends the subject matter of dialogues to include the kindsof
objects that will need to be manipulated by agents supporting
coalition teams, but also points to an implementation, as
described below.

The second contribution of the paper is to provide a for-
malisation of some simple information-providing dialogues, a
form of dialogue that is both new to work in formal dialogue
models, and, from the analysis of the conversation of human
teams, seems likely to be useful in practice.

Our future work is to move towards a practical implementa-
tion of this work. The conversation policy for information pro-
viding dialogues is a modular policy in the framework of [22],
and the other policies outlined in [22] can be described in the
same state-transition formalism that was introduced here.Once
we have such descriptions for a set of conversation policies
— and this formalisation is what we are working on now —
we can move to an implementation that uses the same model-
checking mechanisms that are used in modern AI planners
(which, as discussed above, use the same representation that
we have adopted here).

The key to using a state transition model for planning in a
non-deterministic domain is to encode sets of states, sets of
state transitions, sets of state-action pairs and the operations
on these sets compactly with Quantified Boolean Formulae
(QBF), and use binary decision diagrams [3] to represent and
manipulate the QBF formulae efficiently. In this way, we can
represent and manipulate sets of states, sets of state transitions
and policies simultaneously instead of explicitly enumerating
all the states and state transitions involved. Cimatti et. al. [5]
provides a excellent description of using BDDs for planning
in a non-deterministic domain and the corresponding solution
concepts. Kuter and colleagues [12] combine the BDD ap-
proach with their own hierarchical planning network approach
[15] to give a more natural way to characterize state transition
models. Exactly the same techniques will provide us with
the means to handle more complex dialogues than the one
presented here, while also (in the other state-transition model)
provide us with the ability to handle complex dialogue topics.
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