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Abstract—Planning is an important activity in military coali-
tions and the support of an automated planning tool could
help military planners by reducing the cognitive burden of
their work. Current AI planning paradigms use two different
types of formalism to represent the planning problem. Each
of these formalisms entails different inference algorithms and
representation of results.

On the one hand plans in non-stochastic domains are rep-
resented using declarative logic-based formalisms, an example
of which is Hierarchical Task Networks (HTNs). In HTNs,
domains are represented in terms of task decompositions of
increased detail in relation to the actions that must be carried
out. In general, declarative formalisms are easier for humans to
understand. On the other hand, stochastic planning is often rep-
resented in terms of large probability functions that exhaustively
specify the likelihood of relevant world changes when actions are
executed, as exemplified by Markov Decision Processes (MDPs).
Stochastic domain specifications can easily become challenging
to a human designer as the problem size increases, worse still,
solver algorithms degrade quickly with increased domain size.

In order to facilitate domain modeling for planning under
uncertainty, we propose a method of deriving stochastic domain
specifications in the MDP formalism from a description using
the HTN formalism. This method can reduce the resulting MDP
state-space through an intermediate representation using Binary
Decision Diagrams (BDDs). The benefits of the approach are
twofold: (a) the reduction of the state space, and consequent re-
duction of computational burden is beneficial since it enables the
representation and solving of realistic planning problems, and (b)
starting from a declarative representation makes planning more
comprehensible to humans, while extending the representation
to stochastic domains.

I. INTRODUCTION

Contemporary military operations are “wicked” problems
[11], requiring quick response while working with limited
resources in domains that are highly dynamic, and in which
much information is uncertain [1], [14]. Planning in military
coalitions can be even more difficult because of the need
to construct plans collaboratively between members of the
coalition [2], [11]. Given the difficulty of the problem, several
authors have suggested the deployment of AI planners in
planning military operations [4], [13], with aim of augmenting,
rather than replacing, human planning, and helping to reduce
the cognitive burden on the human planners [9].

Existing approaches to planning in artificial intelligence are
essentially divided into stochastic and non-stochastic one, each
of which uses distinct formalisms to represent problems as
well as algorithms to derive solutions to these problems. Non-

stochastic planning is represented in terms of operators with
preconditions and effects, and planning consists of finding
a sequence of operator instances that leads from an initial
state to a goal state. Alternatively, stochastic planning is
often represented in terms of large probability functions that
exhaustively specify the likelihood of relevant world changes
when actions are executed, as well as a reward function
specifying a preference over certain states in the world. Thus,
stochastic planning usually consists of selecting actions that
maximize the likelihood that an agent arrives and stays at
states with the largest rewards, that is maximizing the expected
rewards given the uncertainty. Given the non-deterministic
nature of the domain, which means that actions can result
in one of a set of states, the solution to a planning problem is
not a definite sequence of actions, but rather a policy which
indicates the optimal action to take in any given world-state.

One particular formalism for domain representation in de-
terministic planning is the hierarchical task network (HTN),
which encodes not only actions with their preconditions and
effects, but also domain knowledge in the form of a hierarchy
of tasks that can be refined from a high-level objective into the
actions required in the environment. HTN planning algorithms
have been shown to be very efficient at deriving solutions [6]
to complex deterministic problems, and while some stochastic
applications of HTNs have been proposed [8], [10], they are
not generally used in stochastic domains. Conversely, one
of the most widely studied formalisms for planning under
uncertainty is the Markov decision process (MDP) [3], in
which the evolution of the environment is modelled as a
Markov chain, and the goals of the planner are implicitly
represented in a reward function that defines, for each state,
the reward of executing a certain action.

Deterministic planning domains are generally easy to vi-
sualize and understand, as the transitions between states are
clearly defined in the operators, and the resulting plans are
intuitive and easily understood. In contrast, the definitions
of stochastic planning problems problem quickly become
unwieldy as the number of states increase. As the number
of states goes up, so does the size of the transition probability
tables, and there is one such table for each action in the
domain. As a consequence, although MDPs are an elegant
mathematical formalism for representing stochastic domains,
it is not straightforward for non-specialists to model domains
using this formalism.



Our work aims to use HTN models, which are more user-
friendly, to automatically construct MDPs. In this paper we
propose a step towards this overall aim, showing how to use
HTNs to describe MDPs, thus allowing stochastic domains
to be modelled using HTNs that are then translated into
MDPs in order to be solved. A key difference between these
formalisms is that they have distinct representations of a world
state. Non-stochastic formalisms generally represent a state
as a set of first-order logic predicates representing properties
of the environment, which are individually modified through
the execution of operators, whereas stochastic formalisms
use monolithic states that are changed in their entirety upon
execution of an action. In effect, states in an MDP are much
less descriptive than those in an HTN, and represent a simpli-
fication of the state representation used in the HTN formalism.
Thus, if a domain description in the HTN formalism is to be
converted into an MDP, it is important to devise a method
of converting the HTN state-space into an efficient equivalent
MDP state-space. We propose using binary decision diagrams
(BDDs) as a means to reason about the equivalence of HTN
states in order to arrive at the minimal equivalent MDP set
of states. The benefits of the approach are twofold: (a) the
reduction of the state space, and consequent reduction of
computational burden is beneficial since it enables the rep-
resentation and solving of realistic planning problems, and (b)
starting from a declarative representation makes planning more
comprehensible to humans, while extending the representation
to stochastic domains.

This paper is organized as follows. Section II reviews the
formal background for HTNs and MDPs, and introduces an
illustrative example to be used throughout the paper. We
proceed to explaining how we establish equivalent problem
representations in these formalisms in Section III with a naı̈ve
look at the state space. Section IV elaborates on the issue
of optimizing the MDP state-space using BDDs. Finally we
conclude the paper in Section V.

II. BACKGROUND

In this section we introduce the main concepts that will
be used in the paper, and provide a formal model of these
concepts. In order to illustrate our approach in the context of
the ITA, we introduce a scenario adapted from [5], describing
it in terms of the formalisms introduced in this section, and
using it throughout the paper to gradually show how our
approach converts from HTNs to MDPs.

A. MDPs

We consider an MDP (adapted from [7]) to be a tuple
Σ = (S,A, P ) where S is a finite set of states, A is a
finite set of actions, P is a state-transition system. The state-
transition system defines a probability distribution for each
state transition. Here, given {s, s′} ∈ S and a ∈ A, Pa(s′|s)
denotes the probability of transitioning from state s to state
s′ when executing action a. The solution of an MDPs is
a policy, which indicates the best action to take in each
state. We will represent a policy as a total function mapping

states into actions, so a policy π is represented as a function
π : S → A. Goal states in MDP are generally represented
indirectly through utility functions, which typically assign a
value u(aj , si) to the choices of actions aj in states si. Such
information makes it possible to compute the value of a a given
state under a particular policy — it is the expected value of
carrying out the policy from that state:

V ∗(s) = max
a∈A(s)

[u(a, s) +
∑
s′∈S

Pr
a

(s′|s)V ∗(s′)]

The optimal policy π∗(s) is then the policy that maximises
this value:

π∗(s) = arg maxa∈A(s)[u(a, s) +
∑
s′∈S

Pr
a

(s′|s)V ∗(s′)]

and we can find such a policy by various means. One is
through value iteration, solving:

Vi+1(s) = max
a∈A(s)

[u(a, s) +
∑
s′∈S

Pr
a

(s′|s)Vi(s′)]]

and then identifying the utility maximising action at each state.

B. HTNs

We consider an HTN planning domain to be a pair D =
(A,M) where A is a finite set of actions (or operators) andM
to be a finite set of methods, while we use the HTN definition
from [8] (actually an STN from [7]) whereby an HTN is a pair
H = (T,C) where T is a finite set of tasks to be accomplished
and C is a set of partial ordering constraints on tasks in
T that, taken together make T totally ordered. The set of
tasks contains primitive and non-primitive tasks. All tasks have
preconditions, specifying a state that must be valid before the
task can be carried out, and primitive tasks (i.e. actions that are
executed in the environment) have effects, specifying changes
in the state that was valid before the action was executed.
For the purposes of this work, we consider preconditions and
effects to be propositions pi, so each task ti has a set of precon-
ditions precond(ti) = {p1, . . . , pn}, and each non-primitive
task/action has a set of effects effects(ti) = {p1, . . . , pm}.

In the planning literature effects are generally represented
as add and delete lists1, here we consider that effects are
specified as a list of positive and negated propositions, and
that if the positive version of a proposition was present in the
state prior to the execution of an action with a negated effect,
that proposition is removed from the resulting state in order to
preserve consistency, while if a negated proposition is present
in a state and its positive version is present in the effects of an
action then that proposition becomes true in the resulting state.
For example, if a state si = {p1,¬p2, p3} is valid before an
action ai with effects(ai) = {¬p1, p2} is executed, the state
resulting from the execution of ai is si+1 = {¬p1, p2, p3}.

1An add list specifies the facts that become true as a result of the action
— the things that must be added to the description of the state as a result of
the action — and the delete list represents the facts that become false as a
result of the action — the things that must be deleted from the description
of the state given that such descriptions typically only include things that are
true of the state.
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Fig. 1. The map of Party B from the Blogohar scenario.

Primitive tasks are action instances from a ∈ A, while non-
primitive tasks denote tasks that can be decomposed using
an appropriate method m ∈ M. A method describes how
a non-primitive task can be decomposed into subtasks. We
represent methods as tuples m = (s, t, T ′, C ′), where s is a
precondition, also denoted by precond(m), specifying what
must hold in the current state for a task t to be decomposed
into new tasks ti ∈ T ′ with constraints cj ∈ C ′. Constraints
specify the order in which certain tasks must be executed and
are represented by the precedes relation, where ti ≺ tj means
that task ti must be executed before tj . Conversely, the suc-
ceeds relation represents the opposite ordering, where ti � tj
means that task ti must be executed after tj . When a method
is applied to decompose a certain task tu within an HTN
H = (T,C), a new HTN H′ = (T ′′, C ′′) is generated where
T ′′ = (T −{tu})∪T ′ and C ′′ = (C−Ctu)∪(C ′tu ∪C

′). Here
Ctu is the set of constraints containing the decomposed task tu
(i.e. {c ∈ C|c = tu ≺ ti ∨ c = tu � ti}), and C ′tu is a new set
of constraints created by replicating each previously removed
constraint (i.e. the constraints of Ctu ) with each element of
T ′ replacing tu. For example if HTN H contains a task tu
and a task ti and one constraint including tu, tu ≺ ti, and a
substitution m = (>, tu, {a1, a2}, {a1 ≺ a2}) is applied, the
resulting set of constraints will be {a1 ≺ ti, a2 ≺ ti, a1 ≺ a2}.
In this initial approach, we assume that direct or indirect
recursion is not possible within the methods in M, that is,
a fully decomposed HTN should be a tree structure.

All non-primitive tasks must be fully decomposed into
primitive tasks before a full plan can be derived from the HTN,

i.e. it must contain no non-primitive tasks.

C. The Blogohar Scenario

We adapt the “Blogohar” scenario from Burnett et al.[5],
which involves planning tasks for two human players trying
to accomplish various objectives within the same region while
optimizing the usage of limited resources while avoiding neg-
ative interference between the planners. One of the planners
(party A) controls an international aid agency whose objec-
tive consists of evacuating injured civilians from the towns,
whereas the other planner is the commander of a military force
(party B) whose objective consists of neutralizing insurgent
strongholds within the regions, maximizing the number of
captured insurgents. In the original scenario, both players
collaborate and share information to decide on mutual com-
mitments in order to generate plans to deploy their resources
and accomplish their individual objectives. We however, focus
on modeling the planning activities of party B in terms of an
HTN that is to be converted into an MDP, allowing an MDP
solver to devise an optimal policy that maximizes captured
insurgents while minimizing resource usage.

The resources available to party B consists of a limited
number of combat vehicles of various types that can be
employed to attack the three insurgent strongholds in the
area, illustrated in Figure 1. Each stronghold is garrisoned
by a certain number of insurgents representing the maximum
number of prisoners that can be taken when that stronghold
is overrun as well as the minimum necessary force required
to capture the stronghold. Employing the minimum amount
of force in an attack entails capturing a minimum number of



insurgents, so that although it might be cheaper to employ
exactly the required force in any given attack, this results in
fewer captured opponents. Each vehicle type provides a certain
amount of force to an attack, so the task of a planner is to
concentrate enough force to capture each stronghold while
maximizing the overall number of captured insurgents. The
region has three towns: Haram, Surina and Tersa; as well as
three insurgent strongholds: A, B and C and are connected by
the roads shown in Figure 1. In order to reach each stronghold,
vehicles (which start at the base to the east of the map) must
be moved through the roads in the region making sure that
strongholds along the selected routes have been neutralized
before the road can be fully used.

We now proceed to encoding a subset of the domain regard-
ing party B using the HTN formalism. Following Section II-B,
we need to define actions and methods for an HTN domain
D = (A,M). In our model, party B has two available actions:
one action aa(V,T ) to attack a location T using a certain vehicle
V , and another action amv(V,F,T,R) to move a vehicle V from
a location F to a location T through road R. Thus, the set
of actions available to party B is the following:

A = {aa(V,T ), amv(V,F,T,R)}

Now, domain knowledge that helps the planner to decide the
sequence of actions to take to accomplish a goal is specified
in terms of methods, which for our domain consists of the
following set:

M = {mDI(A),mAHu(T ),mAA(T ),m
Mv(V,T )
1 ,m

Mv(V,T )
2 }

Where the meaning of each method is as follows:
• mDI(A) is the method to defeat insurgents in location A
• mAHu(T ) is the method to attack T with a Humvee
• mAA(T ) is the method to attack T with an APC
• m

Mv(V,T )
n are the various method to move a vehicle V

to T
Recall that methods are used to decompose tasks in an HTN,

so we need to specify the set of tasks within the domain.
Throughout this paper we adopt the convention that each
concrete action has a corresponding (primitive) task named tXi ,
where X specifies the action in the domain and i is a unique
identifier for the task, e.g. task that consists of executing action
aa(V,T ) is represented as t

a(V,T )
i . Moreover, non-primitive

tasks are named after the methods that can decompose them,
e.g. a task that can be decomposed using method mDI(A) is
represented as tDI(A)

i . Now, using this convention we define
the specific components of each method as follows:

• mDI(A) = (A = a, tDI(a),
{tAHu(a), tAA(a), tAHe(a)},
{tAHu(a) ≺ tAA(a), tAA(a) ≺ tAHe(a)})

• mAHu(T ) = (vehicle(humvee, V ) ∧ ¬committed(V ),
tAHu(T ),
{tMv(V,T ), ta(V,T )},
{tMv(V,T ) ≺1 ta(V,T )})

• mAA(T ) = (vehicle(apc, V ) ∧ ¬committed(V ), tAA(T ),
{tMv(V,T ), ta(V,T )},
{tMv(V,T ) ≺ ta(V,T )})

Fig. 2. A graphical representation of an MDP. The colored nodes and the
links between them represent a trajectory through the state space.

• m
Mv(V,T )
1 = (T = a, tMv(V,T ),
{tmv(V,base,tersa,nr1), tmv(V,tersa,haram,nr2),
tmv(V,haram,a,sr2)},
{tmv(V,base,tersa,nr1) ≺ tmv(V,tersa,haram,nr2),
tmv(V,tersa,haram,nr2) ≺ tmv(V,haram,a,sr2)})

• m
Mv(V,T )
2 = (T = a, tMv(V,T ),
{tmv(V,base,haram,hw), tmv(V,haram,a,sr2)},
{tmv(V,base,haram,hw1) ≺ tmv(V,tersa,haram,nr2)})

Finally, we need to define an initial HTN representing the
planning goal, which in our scenario consists of defeating the
insurgents at stronghold a, which is represented as follows:

H = (defeatInsurgents(a), ∅)

III. USING HTNS TO REPRESENT MDPS

If we have an HTN and an MDP that represent the same
domain, using the same set of actions and the same set of
states, it is clear that there must be some relationship between
them. They both, after all, capture the same information. The
MDP model of a domain can be visualised as a directed
hypergraph (see Figure 2) where the nodes are states and the
edges that connect states represent actions — where an arc
connects one state to many other states, that action can lead
to those other states. As Simari [12] points out, a trajectory
through the state-space, for example that tracing the colored
nodes in Figure 2, is the result of a single outcome of a specific
action in each state, and is close to the notion of a plan in an
HTN. This is the intuition from which we begin.

In particular, from an HTN domain D and an HTN H, it
is possible to induce a directed graph similar to the execution
structure Σπ from [8] by considering all possible decomposi-
tions of each non-primitive task, and get a structure to which
the technique similar to that of Simari [12] can be applied
to model MDP states. Here, each primitive task ti in the
HTN associated with an action a ∈ A will map to a state
representing the world state achieved immediately after the
execution of a. However, unlike the execution structure in
[8], the state transitions will be determined via the ordering
constraints in the HTN, so that there will be a non-zero
probability of transitioning from a state ti to a state tj in the
MDP if and only if it can be determined that ti immediately
precedes tj in any potential plan generated by the MDP.
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ellipses denote primitive nodes. Dashed elements are not present in the HTN
but are added for the MDP.

We represent the immediate sequential precedence relation
as ti ≺1 tj , and the complementary relation as tj �1 ti.
These immediate relations can be inferred from the arbitrary
relations imposed by the HTN methods from the previous
section. We shall use these relations in our algorithm to derive
the transition functions for each action in the MDP.

Thus, in the propositional case the MDP resulting from an
HTN H has the same number of states as non-primitive task
nodes in the fully decomposed HTN plus one state represent-
ing the initial state. In order to create a fully decomposed
HTN (containing all possible method decompositions), instead
of choosing one method to apply to each non-primitive task,
we apply all applicable methods and collect all constraints
resulting from all possible method applications. Graphically
this is equivalent to an and/or tree where non-primitive tasks
become branch nodes and primitive tasks become leaves [10].
Each method applicable to a non-primitive task becomes an or
child of the non-primitive task, whereas the tasks that would
replace the non-primitive task become and children of each
applicable method. We later extend this mapping for the first-
order case and take into consideration variable assignments
for the description of the HTN.

The collection of constraints resulting from the full decom-
position of the original HTN can then be used to construct
the transition functions for each action. We represent a fully
decomposed HTN as H∗ = (T∗, C∗), and consider that each
task ti ∈ T∗ (i.e. the set of non-primitive tasks in H∗) is
labelled with an action a ∈ A, and we also consider that we
can make “inferences” on the sequential constraints in C∗ so
that we can check if two tasks are related through ≺1.

As we have seen, each primitive task in the fully decom-
posed HTN is considered to represent the state achieved imme-
diately after executing the action associated with it. In conse-
quence, the resulting transition tables uniformly distribute the
probability of transitioning from all possible immediate pre-
ceding states into the state currently under consideration. For
example, consider an HTN H1 = ({t1, t2, t3}, {t1 ≺ t2, t2 ≺
t3}), with a domain D = ({a1, a2, a3, a4}, {m1,m2,m3}),

in which:
• m1 = (>, t1, {a1, a2}, {a1 ≺ a2})
• m2 = (>, t1, {a1, a3}, {a1 ≺ a3})
• m3 = (>, t2, {a4, a1}, {a4 ≺ a1})
• t1 and t2 are non-primitive tasks;
• t3 is a primitive task to execute a2

The full decomposition of H1 is shown in Figure 3, with
arrows denoting the transitions that are derived through the
algorithm. The resulting MDP has eight states: the seven
primitive tasks t3, t4, t5, t6, t7, t8 and t9, plus the initial state
s0. Furthermore the transition function for action a1 would
have 0.5 probability of transitioning from s0 to either t4 or
t6, and probability 1 of transitioning from t8 to t9; while a2
would have probability 1 for transitioning from t4 to t5, as
well as for t9 to t3.

Returning to the scenario introduced in Section II-C its
initial HTN H = (defeatInsurgents(a), ∅) can be fully
decomposed as H∗, shown below:
H∗ = ({

t0, t
mv(humvee1,base,tersa,nr1)
1 ,

t
mv(humvee1,tersa,haram,nr2)
2 , t

mv(humvee1,haram,a,sr2)
3 ,

t
a(humvee1,a)
4 , t

mv(humvee1,base,haram,hw)
5 ,

t
mv(humvee1,tersa,haram,nr2)
6 , t

a(humvee1,a)
7 ,

t
mv(apc1,base,tersa,nr1)
8 , t

mv(apc1,tersa,haram,nr2)
9 ,

t
mv(apc1,haram,a,sr2)
10 , t

a(apc1,a)
11

t
mv(humvee1,base,haram,hw)
12 ,

t
mv(humvee1,tersa,haram,nr2)
13 , t

a(humvee1,a)
14

},
{t0 ≺1 t1, t0 ≺1 t5,

t1 ≺1 t2, t2 ≺1 t3, t3 ≺1 t4,

t5 ≺1 t6, t6 ≺1 t7,

t4 ≺1 t8, t7 ≺1 t8,

t4 ≺1 t12, t7 ≺1 t12,

t8 ≺1 t9, t9 ≺1 t10, t10 ≺1 t11,

t12 ≺1 t13, t13 ≺1 t14,

})

Given the fully expanded state-space represented by H∗, the
technique we propose would initially generate an MDP with
15 states (t0 through to t14) and two actions. Each action in the
resulting MDP requires a distinct transition matrix, denoting
the probability of moving from one state to an adjacent one
when executing a certain action. As an example, we show the
transition matrix for action amv(V,F,T,R) in Table I, generated
from the precedence constraints C∗ of H∗.

Notice that the probability of transitioning using
amv(V,F,T,R) is zero between states that are not reachable
by move actions, for example t13 to t14. Furthermore,
transition probabilities are uniformly distributed among the
destination states when different HTN expansions create



t0 t1 t2 t3 t4 t5 t6 t7 t8 t9 t10 t11 t12 t13 t14
t0 0 0.5 0 0 0 0.5 0 0 0 0 0 0 0 0 0
t1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
t2 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
t3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
t4 0 0 0 0 0 0 0 0 0.5 0 0 0 0.5 0 0
t5 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
t6 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
t7 0 0 0 0 0 0 0 0 0.5 0 0 0 0.5 0 0
t8 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0
t9 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0
t10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
t11 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
t12 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
t13 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
t14 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

TABLE I
TRANSITION MATRIX CREATED FROM THE FULLY EXPANDED HTN H∗ FOR ACTION amv(V,F,T,R) .

multiple precedence constraints starting from the same state,
as is the case for the transitions between t4 to t8 and t4
to t12, effectively representing the choice between moving
either a Humvee or an APC out of the base soon after the
first attack on stronghold A.

IV. INCREASING EFFICIENCY

Up to this point, the mapping of HTN states to MDP states
has been pretty much equivalent to the mapping defined by
[12], with the number of MDP states being proportional to
the number of all possible primitive tasks in the HTN. This
proportion is not useful if we want the solution for the resulting
MDPs to be scalable. However, recall that each non-primitive
task has a set of preconditions and a set of effects, and the
sequential execution of primitive actions will lead to a history
of states. In the case of a fully decomposed HTN, each task in
the HTN represents a set of states that could possibly be true
given the previous history of executed primitive tasks, which is
dependent on the methods actually chosen to decompose non-
primitive tasks (or, in the case of [8], given the probabilities
of success for the primitive tasks chosen for execution).

Using a technique similar to Kuter’s [8], it is possible to
generate BDDs representing sets of fine-grained HTN states
(i.e. propositional formulae) possible at each primitive task
node in the expanded HTN, and reduce the set of coarse states
(i.e. whatever is true after an action) in the resulting MDP by
comparing the BDDs (representing what is true) at the states
to be translated into the MDP. In the worst case scenario,
the number of states that result by aggregating similar states
using the corresponding BDD comparisons will be the same
as for Simari’s approach (i.e. one per HTN primitive node),
while depending on how much overlap exists between possible
states, this number can be much reduced. As an example, the
states represented by t4 and t6 in Figure 3 are clearly equal, as
they both represent the changes that occur immediately after
executing a1 from the initial state s0. Other equivalences might
also occur, and BDDs seem to be a suitable data structure to
detect this efficiently.

In many scenarios, there can be many methods to achieve

the same effects. Correspondingly, there can be many de-
compositions to achieve the same task. While there can be
many ways to achieve the same task, their execution paths
can contain very similar segments. As we can see in the
example introduced in Section II-C, t4 and t7 correspond to
the situation such that humvee1 attacks point a, and then from
t4 and t7 on, no matter which methods the agent will take,
the two sets of possible execution paths are the same, since
all possible plans generated afterwards are equal.

After the concept of fully decomposed HTN has been
introduced above, the equivalency of states can be detected
from two points of view with respect to solving the MDP:
• Directly explore the execution structure of the resulting

MDP, and detect whether two states have the same set of
consequent execution paths

• With utility introduced, explore the execution structure
of the resulting MDP, and detect whether two states have
the same set of consequent execution paths with the same
expected discounted utilities

These two views can be used directly with appropriate data
structure and dynamic programming techniques to aggregate
the states in the resulting MDP so that we can reduce the size
of the MDP.

In addition, we can utilize the preconditions defined for
tasks and methods. Intuitively, if in a fully decomposed HTN
H∗ the refined preconditions of two primitive tasks t1 and
t2 are equivalent, and all the possible execution paths after
these two tasks are the same, then we can aggregate the two
primitive tasks into one in the resulting MDP . We can define
two states which have the same set of all the possible subse-
quent executions as equivalent. Therefore, we can investigate
how the preconditions of tasks and methods relate to above
two views of equivalent MDPs. If two states are equivalent
whenever their preconditions are equivalent, we can decide
which states to merge by detecting equivalent preconditions
of these states. With BDD representing preconditions, the
comparison can be done in constant time O(1) time. The
size of the BDDs will depend on the amount of information
embedded into the preconditions of these states. In the worst



case, we can at least have the system aggregate the states with
size of BDDs below certain level. In the general case, we can
try to associate BDDs to all the states. We are working on a
implementation that will allow us to explore the performance
of these approaches.

Another approach is to use non-primitive tasks as states in
the resulting MDP. The challenge is how to determine which
non-primitive tasks precede which other non-primitive or
primitive tasks, and how to assign the corresponding transition
probabilities and utilities. Again, we propose to explore the
execution structure in the fully decomposed HTN. From the
execution structure of the fully decomposed HTN, we will
be able obtain the marginal probabilities of all the execution
paths that can be decomposed from the non-primitive task.
In a similar way, we can also obtain the expected discounted
utilities of all the execution paths that can be decomposed
from the non-primitive task. In this way, we will be able to
obtain different MDPs for the same root task but with different
level of abstractions in tasks while all these MDPs actually
respect the same probability and utility model. Therefore, with
these MDPs we can solve the same decision theoretic problem
at any level of abstraction where the more abstract solution
requires (possibly exponentially) fewer states, state transitions
and utitilies. In combination with the precondition based HTN
state merging approach, we might be able to compute the MDP
probability associated with the non-primitive tasks without the
need to unfold all the possible sequences of primitive tasks.

V. CONCLUSIONS AND FUTURE WORK

Planning is an important activity in military coalitions and
the support of an automated planning tool could help military
planners by reducing the cognitive burden of their work.
Current approaches to AI planning use two different types
of formalism, one suitable for deterministic planning, the
other suitable for non-deterministic planning. The complexity
of military planning is best captured by non-deterministic
planning, but the available representations are cumbersome
and hard to use — adopting them may therefore increase
rather than decrease the burden on the planners. However,
as we describe here, it is possible to describe the planning
problem as if it were a deterministic problem, and then convert
the representation into a non-deterministic one. In this paper
we have shown how this conversion may be carried out,
and have discussed some approaches for dealing with the
explosion in the size of the representation created by the naive
conversion. Naive conversion has been implemented and found
to be adequate for small problems where there is not much
uncertainty in the environment.

While we focused on establishing the correspondence be-
tween the formal structures of HTNs and MDPs, the tech-
niques that perform the actual conversion between problem
specifications are initial efforts with inherent limitations. The
main limitation is that the MDP probabilities automatically
generated by our naive conversion refer mainly to the un-
certainty in the planning process. Nevertheless, uncertainty
arising from the world needs to be accounted for, and we

envision this information being supplied with the input. Sub-
jective probabilities can be annotated in the HTN methods
and then used to calculate state transition probabilities in
the resulting MDP. Our current work aims to automate the
conversion process and to investigate the effectiveness of the
state-space reduction techniques described in this paper.
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