
Logic for Negotiation

Michael Wooldridge and Simon Parsons

Department of Computer Science
University of Liverpool, Liverpool L69 7ZF

United Kingdomfm.j.wooldridge, s.d.parsonsg@csc.liv.ac.uk
Abstra
t
This paper considers the use of logic-based languages for multi-
agent negotiation. We begin by motivating the use of such lan-
guages, and introducing a formal model of logic-based negotiation.
Using this model, we define two important computational prob-
lems: the success problem (given a particular negotiation history,
has agreement been reached?) and the guaranteed success prob-
lem (does a particular negotiation protocol guarantee thatagree-
ment will be reached?) We then consider a series of progressively
more complex negotiation languages, and consider the complexity
of using these languages. We conclude with a discussion on related
work and issues for the future.1 Introdu
tion
Negotiation has long been recognised as a central topic in multi-
agent systems [7, 4]. Much of this interest has arisen through the
possibility of automated trading settings, in which software agents
bargain for goods and services on behalf of some end-user [5].

One obstacle currently preventing the vision of agents for elec-
tronic commerce from being realised is the lack of standardised
agent communication languages and protocols to support negotia-
tion. To this end, several initiatives have begun, with the goal of de-
veloping such languages and protocols. Most activity in this area is
currently focused on theFIPA initiative [2]. TheFIPA community is
developing a range of agent-related standards, of which thecentre-
piece is an agent communication language known as “ACL”. This
language includes a number of performatives explicitly intended to
support negotiation [2, pp17–18].

Our aim in this paper is to consider the use of languages like
FIPA’s ACL for negotiation. In particular, we focus on the use of
logical languages for negotiation. The use of logic for negotiation
is not an arbitrary choice. For example, logic has proved to be
powerful tool with which to study the expressive power and com-
putational complexity of database query languages. We believe it
will have similar benefits for the analysis of negotiation languages.

We consider two distinct aspects of logical negotiation languages:� Adequacy: Which negotiation languages are appropriate for
which application domains? Is a given language sufficiently
expressive for a particular domain?

� Simplicity: Is a chosen negotiation language likely to be us-
able in practice?

Of course, there is a tradeoff between adequacy and simplicity: the
more powerful a language is, the less tractable it becomes.

In the following section, we introduce a general formal frame-
work for logic-based negotiation. In particular, we define the con-
cept of a negotiation history, and consider various possible defini-
tions of what it means for negotiation to succeed on such a history:
we refer to this as thesuccessproblem. In section 4, we define
protocolsfor negotiation, and consider the problem of when a par-
ticular protocol guarantees that agreement between negotiation par-
ticipants will be reached: we refer to this as theguaranteed success
problem. In section 5, we consider three progressively morecom-
plex languages for negotiation. We begin with propositional logic,
and show that, for this language, the guaranteed success problem is
in the second tier of the polynomial hierarchy (it is�p2-complete,
and hence unlikely to be tractable even if we were given an oracle
for NP-complete problems). We then investigate how the complex-
ity of the problem varies, depending on the choice of negotiation
language and the properties of the protocol.

We then present two further negotiation languages, which are
more suited to electronic commerce applications; the second of
these is in fact closely based on the negotiation primitivespro-
vided in theFIPA agent communication standard [2]. We show
that the success problem for these languages is provably intractable
(they have double exponential time lower bounds). We conclude
by briefly discussing related work and issues for future work.2 Preliminaries
We begin by assuming a non-empty setAg= f1; : : : ; ng of agents.
These agents are the negotiation participants, and it is assumed they
are negotiating over a finite set
 = f!; !0; : : :g of outcomes. For
now, we will not be concerned with the question of exactly what
outcomes are, or whether they have any internal structure — just
think of outcomes as possible states of affairs.

Each agenti 2 Ag is assumed to have preferences with respect
to outcomes, given by a partial pre-order�i �
 �
. Following
convention, we write! �i !0 to mean(!; !0) 2 �i .

Negotiation proceeds in a series of rounds, where at each round,
every agent puts forward a proposal. A proposal is aset of out-
comes, that is, a subset of
. The intuition is that in putting forward
such a proposal, an agent is asserting that any of these outcomes is
acceptable.

In practice, the number of possible outcomes will be prohibitively
large. To see this, consider that in a domain where agents arenego-
tiating overn attributes, each of which may take one ofm values,

there will bemn possible outcomes. This means it will be imprac-
tical for agents to negotiate by explicitly enumerating outcomes in
the proposals they make. Instead, we assume that agents makepro-
posals by putting forward a formula of alogical negotiation lan-
guage— a language for describing deals. In much of this paper,
we will be examining the implications of choosing differentnego-
tiation languages, and in order to compare them, we must make
certain general assumptions. The first is that a negotiationlan-
guageL is associated with a setwff(L) of well-formed formulae
— syntactically acceptable constructions ofL. Next, we assume
thatL really is a logical language, containing the usual connectives
of classical logic: “̂ ” (and), “_” (or), “:” (not), “)” (implies),
and“,” (iff) [1, p32]. In addition,L is assumed to have a Tarskian
satisfaction relation “j=L ”, which holds between outcomes
 and
members ofwff(L). We write! j=L ' to indicate that outcome! 2
 satisfies formula' 2 wff(L). The classical connectives
of L are assumed to have standard semantics, so that, for example,! j=L ' ^ iff both ! j=L ' and! j=L . If ' 2 wff(L),
then we denote by[['℄℄L the set of outcomes that satisfy', that is,[['℄℄L = f! j ! j=L 'g.

As we noted above, negotiation proceeds in a series of rounds,
where at each round, every agent puts forward a formula ofL rep-
resenting the proposal it is making. A single round is thus charac-
terised by a tupleh'1; : : : ; 'ni, where for eachi 2 Ag, the formula'i 2 wff(L) is agenti’s proposal. LetR be the set of all possible
rounds:

R= wff(L)� � � � � wff(L)| {z }jAgj times

We user; r 0; : : : to stand for members ofR, and denote agenti’s
proposal in roundr by r(i).

A negotiation historyis a finite sequence of rounds(r0; r1; : : : ; rk).
Let H = R� be the set of all possible negotiation histories. We use
h; h0; : : : to stand for members ofH. If u 2 IN, then we denote the
u’th round in historyh by h(u). Thush(0) is the first round inh,
h(1) is the second, and so on.Complexity Con
epts and Classes
Throughout the paper, we make use of the terminology and tools
of complexity theory. Although we provide a summary of main
concepts from complexity theory that we use, we emphasise that a
detailed presentation is beyond the scope of this paper. We refer
the reader to [3, 6] for details. We start from the complexityclasses
P (of languages/problems that may be recognised/solved in deter-
ministic polynomial time), andNP (of languages/problems that may
be recognised/solved in non-deterministic polynomial time). If C1
andC2 are complexity classes, then we denote byCC21 the class of
languages/problems that are inC1 assuming the availability of an
oracle for languages/problems inC2 [6, pp415–417]. Thus, for ex-
ample,NPnp denotes the class of languages/problems that may be
recognised/solved in non-deterministic polynomial time,assuming
the presence of an oracle for languages/problems inNP. A lan-
guage that is complete forNPnp would thus beNP-complete even if
we had “free” answers toNP-complete problems (such as proposi-
tional logic satisfiability). We define thepolynomial hierarchywith
reference to these concepts [6, pp423–429]. First, define�p0 = �p0 = p
Thus both�p0 and�p0 denote the classes of languages/problems
that may be recognised/solved in deterministic polynomialtime.
We then inductively define the remaining tiers of the hierarchy, as
follows: �p

u+1 = np�p
u �p

u+1 = co-�p
u+1

Thus�p1 is simply the classNP, and�p1 is the class co-NP, while�p2 = npnp and�p2 = co-npnp.3 Types of Agreement
Given a particular negotiation history, an important question to ask
is whether or not agreement has been reached with respect to this
history. For many negotiation scenarios, this problem is far from
trivial: it may well not be obvious to the negotiation participants
that they have in fact made mutually acceptable proposals.

In fact, we can identify several different types of agreement
condition, which may be used in different negotiation scenarios. It
is assumed that the negotiation participants will settle onthe agree-
ment condition to be used before the actual negotiation process
proper begins. The selection of an agreement condition is thus a
meta-negotiationissue, which falls outside the scope of our work.

To understand what agreement means in our framework, it is
helpful to view a negotiation history as a matrix ofL-formulae, as
follows. '01 '11 � � � 'k1

...
...

. . .
...'0n '1n � � � 'k
n

In this matrix,'u
i is the proposal made by agenti in roundu 2 IN.

The simplest type of agreement is where “all deals are still valid”
— once an agent has made a proposal, then this proposal remains
valid throughout negotiation. (One important implicationof such
agreement is that since all previous offers are still valid,it makes
no sense for agents to make more restrictive proposals laterin ne-
gotiation: we emphasise that our formal approach does not depend
on this assumption — other types of agreement are possible, as we
demonstrate below.)

In this case, determining whether agreement has been reached
means finding at least one outcome! 2
 such that every agenti
has made a proposal'ui

i where! j=L 'ui
i . In other words, agree-

ment will have been reached if every agenti has made a proposal'ui
i such that[['u11 ℄℄L\� � �\[['un

n ℄℄L 6= ;. This will be the case if the
formula'u11 ^ � � � ^'un

n is satisfiable. Given a historyh, expressed
as a matrix as above, agreement has been reached iff the following
formula is satisfiable:

î2Ag

0� _
ui2f0;:::;kg'ui

i

1A (1)

Given a historyh 2 H, we denote the formula (1) forh by 'h. We
refer to the problem of determining whether agreement has been
reached in some historyh as thesuccess problem.

Note that the success problem can clearly be reduced to the sat-
isfiability problem for the negotiation language using onlypolyno-
mial time. The types of agreement we consider in this paper are all
variants of satisfiability. However, it is important to understand that
(1) isby no meansthe only type of agreement that we can define.

A different type of agreement is where prior negotiation history
is disregarded: the only proposals that matter are the most recent.
Agreement will be reached in such a history iff the conjunction of
proposals made on the final round of negotiation is satisfiable. The
success condition is thus:

î2Ag

'jh�1ji (2)

A third possible definition of agreement is that agents must con-
verge on “equivalent” proposals: where the proposals made agree

on all particulars. Such agreement is captured by the following
condition. 'jh�1j1 , � � � , 'jh�1jn (3)4 Proto
ols
Multi-agent interactions do not generally take place in a vacuum:
they are governed byprotocolsthat define the “rules of encounter” [7].
Put simply, a protocol specifies the proposals that each agent is al-
lowed to make, as a function of prior negotiation history. Formally,
a protocol� is a function� : H ! }(R) from histories to sets of
possible rounds. One important requirement of protocols isthat the
number of rounds they allow on any given history should be at most
polynomial in the size of the negotiation scenario. The intuition be-
hind this requirement is that otherwise, a protocol could allow an
exponential number of rounds — since an exponential number of
rounds could not be enumerated in practice, such protocols could
never be implemented in any realistic domain.

We will say a history iscompatiblewith a protocol if the rounds
at each step in the history are permitted by the protocol. Formally,
historyh is compatible with� if the following conditions hold:

1. h(0) 2 �(�) (where� is the empty history); and

2. h(u) 2 �((h(0); : : : ; h(u� 1))) for 1 � u< jhj.
Now, what happens if�(h) = ;? In this case, protocol� says
that there are no allowable rounds, and we say that negotiation has
ended. The end of negotiation does not imply that the process has
succeeded, but rather simply that the protocol will not permit it to
continue further.

Notice that negotiation histories can in principle be unrealisti-
cally long. To see this, suppose that the set
 of outcomes is finite.
Then every agent has2j
j possible proposals, meaning that even
if an agent never makes the same proposal twice, negotiationhis-
tories can be exponentially long. We say protocol� is efficientif
it guarantees that negotiation will end with a history whoselength
is polynomial in the size of
 andAg. Efficiency seems a reason-
able requirement for protocols, as exponentially long negotiation
histories could never be practical.

When we create an agent interaction protocol, we attempt to
engineerthe protocol so that it has certain desirable properties [7,
pp20–22]. Examples of such properties include:� Social efficiency: by which we mean that any outcome is

guaranteed to be Pareto optimal.� Stability: by which we mean negotiation participants have no
incentive to diverge from the protocol.� Simplicity: by which we mean that agents do not have to
work hard to determine the best strategy.

In this paper, we will be concerned with just one property of proto-
cols: whether or not theyguarantee success. We will say a protocol� guarantees success if every negotiation history compatible with�
ends with agreement being reached. Protocols that guarantee suc-
cess are desirable, for obvious reasons. But consider the nature of
this problem. In general, a protocol allowsbranchingduring the
negotiation process. This branching arises because negotiation par-
ticipants are allowed to make a number of proposals at each round.
It is easy to see that the number of negotiation histories of lengthl
compatible with a negotiation protocol with branching factor b will
bebl , that is, exponential in the length of the protocol. Thus deter-
mining whether or not a protocol guarantees success will intuitively
involve solving an exponential number of individual success prob-
lems, which are themselves logical satisfiability problems. This

suggests that the guaranteed success problem is likely to becom-
putationally hard; in the next section, when we consider some con-
crete negotiation languages, we will see just how hard it actually
is.

Before proceeding, however, we need to say something about
how protocols arerepresentedor encoded. (This is a technical mat-
ter that is important when we come to consider some decision prob-
lems later in the paper.) We will assume that (efficient) protocols
are represented as a two-tape Turing machine: the machine takes as
input a representation of prior negotiation history on its first tape,
and writes as output the set of possible subsequent rounds onthe
second tape. We will further assume that the Turing machine re-
quires time polynomial in the size ofjAg�
j in order to carry out
this computation.5 Example Negotiation Languages
In this section, we present a series of progressively more complex
negotiation languages and protocols. We begin with propositional
logic. Although this logic is not appropriate for many negotiation
domains, it is a useful starting point for our analysis, and the re-
sults we establish for propositional logic can be regarded as “lower
bounds” for other, more expressive negotiation languages.Example 1: Classi
al Propositional Logi
.
For the first example, we will assume that agents are negotiating
over a domain that may be characterised in terms of a finite setof
attributes, each of which may be either true (>) or false (?). An
outcome is thus an assignment of true or false to every attribute.
The proposals possible in this kind of language are exactly the kind
of outcomes typically considered in decision theory. For example,
in the classic “oil wildcatter” problem, agents might be involved in
a negotiation about which of two oil fields to drill in, and proposals
might be of the form:� drillFieldA ^ :drillFieldB� :drillFieldA ^ drillFieldB

The obvious language with which to express the properties ofsuch
domains is classical propositional logic, which we will call L0.
The setwff(L0) contains formulae constructed from a finite set
of proposition symbols� = fp; q; r; : : :g combined into formulae
using the classical connectives “:” (not), “^” (and), “_” (or), and
so on. It is easy to see that the success problem forL0 histories will
be NP-complete. More interesting is the fact that we can establish
the complexity of the guaranteed success problem forL0.
Theorem 1 (From [9].) The guaranteed success problem for effi-
cientL0 protocols is�p2-complete.

Note that�p2-complete problems are generally reckoned to be worse
than, say, co-NP-complete orNP-complete problems, although the
precise status of such problems in the relation to these classes is
not currently known for sure [3]. Theorem 1 should thereforebe
regarded as an extremely negative result.

An obvious question to ask is whether the complexity of the
guaranteed success problem can be reduced in some way. There
are two main factors that lead to the overall complexity of the
problem: the complexity of the underlying negotiation language,
and the “branching factor” of the protocol. It is possible toprove
that if we chose a negotiation language whose satisfiabilityprob-
lem was inP, then the complexity of the corresponding guaranteed
success problem would be reduced one level in the polynomialhi-
erarchy. To make this concrete, let us consider the subsetLHC0 ofL0 in which formulae are restricted to be conjunctions ofHorn

clauses. A clause is said to be Horn if it contains at most one pos-
itive (unnegated) literal. It is well known that there is a determin-
istic polynomial time algorithm for determining the satisfiability ofLHC0 [6, pp78–79]. We can prove the following.

Theorem 2 The guaranteed success problem for efficientLHC0 pro-
tocols is�p1-complete.
Proof: We need to prove that: (i) the problem is in�p1, and (ii) the
problem is�p1 hard. To establish membership of�p1, we define a�p1 Turing machineM that accepts efficientLHC0 protocols which
guarantee success, and rejects all others. The input toM will be
an efficientLHC0 protocol�. The machineM runs the following
algorithm:

1. universally select all historiesh compatible with�;

2. accept if'h is satisfiable, otherwise reject.

Notice that the second step can be done in deterministic polynomial
time. Since the algorithm requires a single, universal alternation, it
is a�p1 algorithm.

To show that the problem is�p1-hard, we show how the problem
of deciding validity ofL0 formulae can be reduced to determining
whether or not an efficientLHC0 protocol guarantees success. The
input to the propositional validity problem is a formula', and we
can assume without loss of generality that' is in Conjunctive Nor-
mal Form (CNF). A CNF formula has the form

C1 ^ � � � ^ Cm

where eachCn (1 � n� m) is a disjunction of literals. The idea is
to create a protocol� so that:� there is an agent corresponding to each clauseCn;� there is a single agent for the set of literals atomic proposi-

tions�.

The protocol then works as follows:� an agent corresponding to a clauseCm = l1_� � �_lo proposes
each of its literals it turn, and proposes “?” thereafter;� the agent corresponding to the set of atomic propositions
takes a single different propositionp 2 � on each round, and
on this round is allowed to make two proposals:p) ? and:p) ?. When the set� is exhausted, the agent proposes?.

The protocol ends when both the clause agents and the� agent can
make no more non-? proposals.

To see how the reduction works, consider an input formula' = (p_ q)| {z }
C1 ^ (p_ :q)| {z }

C2
that we wish to test for validity. Then the protocol that we create
from this formula allows the following negotiation histories:

agent forC1: p q
agent forC2: p :q� agent: fp) ?;:p) ?g fq) ?;:q) ?g

There will clearly be four histories of this protocol, each history
corresponding to one possible valuation that could be givento the
primitive propositions�. The protocol will clearly guarantee suc-
cess just in case the input formula is valid. 2

Protocol
Language Non-deterministic DeterministicL0 �p2-complete NP-completeLHC0 �p1-complete P

Table 1: The complexity of the guaranteed success problem for
deterministic and non-deterministic protocols, using variants of
propositional logic.

With respect to the branching factor of the protocol, suppose we
have adeterministicL0 protocol� — one in whichj�(h)j � 1
for all h 2 H. Such a protocol is guaranteed to produce a single
negotiation history. This allows us to easily establish thefollowing
result for deterministicL0 protocols.

Theorem 3 The guaranteed success problem for efficient deter-
ministicL0 protocols isNP-complete.

Similarly, we can establish the following forLHC0 .

Theorem 4 The guaranteed success problem for efficient deter-
ministicLHC0 protocols is inP.

Table 1 summarises our complexity results for protocols based on
propositional logic. We remark that determinism is a far toorestric-
tive property to require of realistic protocols.

Before leaving this section, we present a simple example of a
protocol that guarantees success for agents negotiating using a sub-
set of propositional logic. We refer to the subset of propositional
logic in question asL�0. Formulae ofL�0 are constrained to take the
form

l0 ^ � � � ^ lm

where eachlm is a literal, that is, either an element of� or the
negation of an element of�. If ' 2 wff(L�0), then we denote the
set of literals in' by lit (').

Given two formulae' and , we say that' is aconcessionwith
respect to if ' is “less constraining” than , i.e., if [[℄℄L�0 �[['℄℄L�0 . It should be easy to see that by this definition,' is less
constraining than if ' is a subformula of andlit (') � lit ().
So, for example,p ^ :q represents a concession with respect to
p^ :q^ :r, which in turn represents a concession with respect to
p^ :q^ :r ^ s.

We now turn to the protocol in question. The protocol is simply
the monotonic concession protocol of Rosenschein and Zlotkin [7,
pp40–41], recast into our logical framework. This protocolis de-
fined by the following two rules:

1. on the first round, every agent is allowed to propose any for-
mula ofL�0;

2. on roundu (u > 0), one agenti 2 Ag must make a proposal'u
i such that'u

i represents a concession with respect to'u�1
i ;

every other agent puts forward the same proposal that it put
forward on roundu� 1.

It is not difficult to prove the following.

Theorem 5 The monotonic concession protocol forL�0 guarantees
success. Moreover, it guarantees that agreement will be reached in
O(j�j) rounds.

Note that when using this protocol, the obvious strategy foran
agent to play in order to ensure that negotiation concludes as quickly
as possible involves conceding literals thatclashwith those of other
negotiation participants. For example, in a two agent negotiation
scenario, suppose that agent1 proposedp ^ :q and agent2 pro-
posedp^q. Then the obvious concession for agent2 to make would
involve proposingp subsequently. Otherwise, successful termina-
tion would require a further negotiation round.Example 2: A Language for Ele
troni
 Commer
e.
Propositional logic is a simple and convenient language to analyse,
but is unlikely to be useful for many realistic negotiation domains.
In this example, we focus on somewhat more realistice-commerce
scenarios, in which agents negotiate to reach agreement with re-
spect to some financial transaction [5]. We present a negotiation
languageL1 for use in such scenarios.

We begin by defining the outcomes that agents are negotiating
over. The idea is that agents are trying to reach agreement onthe
values of a finite setV = fv1; : : : ; vmg of negotiation issues[8,
pp181–182], where each issue has a natural number value. An out-
come! 2
 for such a scenario is thus a function! : V ! IN,
which assigns a natural number to each issue.

In order to represent the proposals that agents make in such a
scenario, we use a subset of first-order logic. We begin by giving
some examples of formulae in this subset.� (price= 20) ^ (warranty= 12)

“the price is $20 and the warranty is 12 months”� (15 � price� 20) ^ (warranty= 12)
“the price is between $15 and $20 and the warranty is 12
months”� (price+ warrantyCost� 2000)
“price plus warranty is less than $2000”� 9n � warranty� 12
“the warranty is longer than 12 months”

Formally,L1 is the subset of first-order logic containing: a finite
setV of variables, (with at least one variable for each negotiation
issue); a setC of constants, one for each natural number; the binary
addition function “+”; the equality relation “=”; and the less-than
relation “<”.

There is both good news and bad news aboutL1: the good news
is that it is decidable; the bad news is that it isprovablyintractable.
In fact, we can prove thatL1 has a double exponential time lower
bound. In what follows,TA[t(n); a(n)℄ is used to denote the class
of problems that may be solved by an alternating Turing machine
using at mostt(n) time anda(n) alternations on inputs of length
n [3, p104].

Theorem 6 (From [9].) The success problem forL1 is complete

for
S

k>0 TA[22nk ; n℄.
The details of the classTA[t(n); a(n)℄ are perhaps not very impor-
tant for the purposes of this example. The crucial point is that any
algorithm we care to write that will solve the generalL1 success
problem will haveat leastdouble exponential time complexity. It
follows that such an algorithm is highly unlikely to be of anyprac-
tical value. With respect to the guaranteed success problemfor L1,
we note that since the success problem gives a lower bound to the
corresponding guaranteed success problem, theL1 guaranteed suc-

cess problem will be at least
S

k>0 TA[22nk ; n℄ hard.

Illocution Meaning
request(i; j; ') a request fromi to j for a proposal based on'
offer(i; j; ') a proposal of' from i to j
accept(i; j; ') i accepts proposal' made by agentj
reject(i; j; ') i rejects proposal of' made by agentj
withdraw(i; j) i withdraws from negotiation withj

Table 2: Illocutions for the negotiation languageL2.Example 3: A Negotiation Meta-language.
The language used in the previous example is suitable for stating
deals, and is thus sufficient for use in scenarios in which agents
negotiate by just trading such deals. However, as discussedin [8],
the negotiation process is more complex for many scenarios,and
agents must engage in persuasion to get the best deal. Persuasion
requires more sophisticated dialogues, and, as a result, richer ne-
gotiation languages. One such language, based on the negotiation
primitives provided by theFIPA ACL [2], and related to [8], includes
the illocutions shown in Table 21. In this table,' is a formula of a
language such asL0 or L1. In this sense, the language which in-
cludes the illocutions is ameta-languagefor negotiation — a lan-
guage for talking about proposals. For the rest of this example, we
will consider a languageL2 which consists of exactly those illocu-
tions in Table 2, where' is a formula inL1.

These illocutions work as follows. There are two ways in which
a negotiation can begin, either when one agent makes anoffer to
another, or when one makes arequestto another. A request is a
semi-instantiated offer. For example, the following illocution

request(i; j; (price=?) ^ (warranty= 12))
is interpreted as “If I want a 12 month warranty, what is the price?”.

Proposals are then traded in the usual way, with the difference
that an agent can reply to a proposal with areject, explicitly say-
ing that a given proposal is unacceptable, rather than with anew
proposal. Negotiation ceases when one agentaccepts an offer or
withdraws from negotiation. Note that this protocol assumes two
agents are engaged in the negotiation. (Many-many negotiations
are handled in [8] by many simultaneous two-way negotiations.)

To further illustrate the use ofL2, consider the following short
negotiation history between two agents negotiating over the pur-
chase of a used car:

1. request(a; b; (price� 4000) ^ (model=?) ^ (age=?))
2. offer(b; a; (price= 3500)^ (model= Escort)^ (age= 8))
3. reject(a; b; (price= 3500)^(model= Escort)^(age= 8))
4. offer(b; a; (price= 3900) ^ (model= Golf) ^ (age= 6))
5. offer(a; b; (price= 3200) ^ (model= Golf) ^ (age= 6))
6. offer(b; a; (price= 3400) ^ (model= Golf) ^ (age= 6))
7. accept(a; b; (price= 3400)^ (model= Golf)^ (age= 6))

Broadly speaking, the illocutions inL2 are syntactic sugar for the
kinds of proposal that we have discussed above: we can map them
into L1 and hence into the framework introduced in section 2. To
do this we first need to extend the condition for agreement. Inthe
case where we have two agents,a andb negotiating, the agreement
condition we use is a combination of (2) and (3):1Note that the language proposed in [8] also includes illocutions which include
the reason for an offer. We omit discussion of this facility here. We also omit the
timestamp from the illocutions.

Agent i says Agentj replies
request(i; j; 'u

i) offer(j; i; 'u
j)

offer(i; j; 'u
i) offer(j; i; 'u

j), or accept(j; i; 'u
j), or

reject(j; i; 'u
i), or withdraw(j; i)

reject(i; j; ') offer(j; i; 'u
j) or withdraw(j; i)

accept(i; j; 'u�1
j) end of negotiation

withdraw(i; j) end of negotiation

Table 3: The protocol�L2 for L2 at theuth step of the negotiation.('jh�1ja ^ 'jh�1jb) ^ ('jh�1ja , 'jh�1jb) (4)

Thus the agents must not only make mutually satisfiable proposals
on the final round, they must make equivalent proposals. Given
this, we can prove the following result.

Theorem 7 (From [9].) The augmented success problem forL2 is

complete for
S

k>0 TA[22nk ; n℄.
Proof: The result follows from Theorem 6 and the fact that we can
define a polynomial time reduction betweenL2 andL1 histories,
which preserves the conditions of success. We will in fact define
a mapping which translates fromL2 illocutions toL1 formulae —
the mapping can be easily be extended to histories. ThreeL2 illo-
cutions can be re-written directly:� offer(i; j; ') becomes a proposal';� accept(i; j; ') becomes a proposal' which matches the last

proposal;� reject(i; j; ') becomes a proposal:'.

These illocutions then fit precisely into the framework defined above,
and success occurs in precisely the same situation — when (4)is
satisfiable — once the last proposal, the one which makes (4) sat-
isfiable, is echoed by the second agent. The remaining two illocu-
tions can be captured by:� request(i; j; ') becomes a proposal' in which some attributes

are of the form(valuemin � attribute� valuemax);� withdraw(i; j) becomes “?”.

A proposal “?” immediately makes (4) unsatisfiable, and the ne-
gotiation terminates, exactly as one would expect of awithdraw. A
proposal in which some attributesAi are of the form(valuemin �
attribute � valuemax) and othersAj have more restricted values
leads immediately to the satisfiability of (4) if the response is a
proposal which agrees on theAj and has any value for theAi (since
these will agree with the intervals[valuemin; valuemax℄). Since the
transformation will clearly be linear in the size of the history, the
result follows. 2
There is also the question of whether success can be guaranteed
when negotiating inL2, and this, of course, depends upon the pro-
tocol used. Table 3 gives the protocol used in [8]. We will call this�L2 .

Clearly this protocol can lead to negotiations which never ter-
minate (since it is possible for agents to trade the same pairof un-
acceptable offers for ever). However, it is not unreasonable to in-
sist that conditions are placed upon the protocol in order toensure
that this does not happen and that negotiations eventually terminate.
One such condition is that agents make concessions at each stage,
that is, that each offer made by an agent is less preferable tothat

agent than any of its predecessors. Under this condition, and as-
suming that agents withdraw once' drops below some threshold,
we have:

Theorem 8 (From [9].) Protocol�L2 guarantees success.

One simple scenario which is captured by�L2 is that in which one
agent,i say, rejects every offer made by the other,j, until suitable
concessions have been gained. Of course, provided that the end-
point is acceptable forj, there is nothing wrong with this — and if
the concessionj is looking for are too severe, thenj will withdraw
before making an acceptable offer.6 Dis
ussion
This paper has identified two important computational problems in
the use of logic-based languages for negotiation — the problem of
determining if agreement has been reached in a negotiation,and
the problem of determining if a particular negotiation protocol will
lead to an agreement. Both these problems are computationally
hard, and the main contribution of this paper was to show quite
how hard they are. In particular the paper showed the extent of the
problems for some languages that could realistically be used for
negotiations in electronic commerce. This effort is thus comple-
mentary to work on defining such languages. Obvious future lines
of work are to consider the impact of these results on the design
of negotiation languages and protocols, and to extend the work to
cover more complex languages. In particular, we are interested in
extending the analysis to consider the use of argumentationin ne-
gotiation [8].A
knowledgements: This research was supported by theEP-
SRCunder grantGR/M07076.Referen
es
[1] H. B. Enderton. A Mathematical Introduction to Logic. The

Academic Press: London, England, 1972.

[2] FIPA. Specification part 2 — Agent communication language,
1999. The text refers to the specification dated 16 April 1999.

[3] D. S. Johnson. A catalog of complexity classes. In J. van
Leeuwen, editor,Handbook of Theoretical Computer Science
Volume A: Algorithms and Complexity, pages 67–161. Elsevier
Science Publishers B.V.: Amsterdam, The Netherlands, 1990.

[4] S. Kraus. Negotiation and cooperation in multi-agent environ-
ments.Artificial Intelligence, 94(1-2):79–98, July 1997.

[5] P. Noriega and C. Sierra, editors.Agent Mediated Electronic
Commerce (LNAI Volume 1571). Springer-Verlag: Berlin, Ger-
many, 1999.

[6] C. H. Papadimitriou. Computational Complexity. Addison-
Wesley: Reading, MA, 1994.

[7] J. S. Rosenschein and G. Zlotkin.Rules of Encounter: Design-
ing Conventions for Automated Negotiation among Computers.
The MIT Press: Cambridge, MA, 1994.

[8] Carles Sierra, Nick R. Jennings, Pablo Noriega, and Simon Par-
sons. A framework for argumentation-based negotiation. In
M. P. Singh, A. Rao, and M. J. Wooldridge, editors,Intelli-
gent Agents IV (LNAI Volume 1365), pages 177–192. Springer-
Verlag: Berlin, Germany, 1998.

[9] M. Wooldridge and S. Parsons. Languages for negotiation. In
Proceedings of the Fourteenth European Conference on Artifi-
cial Intelligence (ECAI-2000), Berlin, Germany, 2000.

