Logic for Negotiation

Michael Wooldridge

and Simon Parsons

Department of Computer Science
University of Liverpool, Liverpool L69 7ZF
United Kingdom

{mj .wool dridge,

Abstract

This paper considers the use of logic-based languages fti mu
agent negotiation. We begin by motivating the use of such lan
guages, and introducing a formal model of logic-based nietimn.
Using this model, we define two important computational prob
lems: the success problem (given a particular negotiatistory,

s.d. parsons}@sc. liv.ac. uk

e Simplicity Is a chosen negotiation language likely to be us-
able in practice?

Of course, there is a tradeoff between adequacy and sittyplibe
more powerful a language is, the less tractable it becomes.

In the following section, we introduce a general formal feam
work for logic-based negotiation. In particular, we defihe ton-

has agreement been reached?) and the guaranteed sucdess procept of a negotiation history, and consider various possiefini-

lem (does a particular negotiation protocol guarantee abate-

ment will be reached?) We then consider a series of progedgsi
more complex negotiation languages, and consider the exitypl

of using these languages. We conclude with a discussionatede
work and issues for the future.

1 Introduction

Negotiation has long been recognised as a central topic iti-mu
agent systems [7, 4]. Much of this interest has arisen thrdbg
possibility of automated trading settings, in which softevagents
bargain for goods and services on behalf of some end-user [5]

One obstacle currently preventing the vision of agents lfx-e
tronic commerce from being realised is the lack of standaxdli
agent communication languages and protocols to suppoctiaeg
tion. To this end, several initiatives have begun, with thal @f de-
veloping such languages and protocols. Most activity is &nea is
currently focused on thelPA initiative [2]. TheFIPA community is
developing a range of agent-related standards, of whichehwe-
piece is an agent communication language knownaas.*. This
language includes a number of performatives explicitlgmated to
support negotiation [2, pp17-18].

Our aim in this paper is to consider the use of languages like
FIPA's AcL for negotiation. In particular, we focus on the use of
logical languages for negotiation. The use of logic for negotiation
is not an arbitrary choice. For example, logic has proveddo b
powerful tool with which to study the expressive power antheo
putational complexity of database query languages. We\eit
will have similar benefits for the analysis of negotiationdaages.

We consider two distinct aspects of logical negotiatiomglaages:

e Adequacy Which negotiation languages are appropriate for
which application domains? Is a given language sufficiently
expressive for a particular domain?

tions of what it means for negotiation to succeed on suchtarfyis
we refer to this as theuccesgproblem. In section 4, we define
protocolsfor negotiation, and consider the problem of when a par-
ticular protocol guarantees that agreement between radigotipar-
ticipants will be reached: we refer to this as thearanteed success
problem. In section 5, we consider three progressively mona-
plex languages for negotiation. We begin with propositidogic,

and show that, for this language, the guaranteed succdsiepris

in the second tier of the polynomial hierarchy (itli§-complete,
and hence unlikely to be tractable even if we were given adlera
for NP-complete problems). We then investigate how the complex-
ity of the problem varies, depending on the choice of negotia
language and the properties of the protocol.

We then present two further negotiation languages, whieh ar
more suited to electronic commerce applications; the sbafn
these is in fact closely based on the negotiation primitpes
vided in theFIPA agent communication standard [2]. We show
that the success problem for these languages is provabdygtable
(they have double exponential time lower bounds). We cateclu
by briefly discussing related work and issues for future work

2 Preliminaries

We begin by assuming a non-empty Agt= {1, ..., n} of agents
These agents are the negotiation participants, and itisressthey
are negotiating over a finite s@t= {w,w’, ...} of outcomesFor
now, we will not be concerned with the question of exactly wvha
outcomes are, or whether they have any internal structureist- |
think of outcomes as possible states of affairs.

Each agent € Agis assumed to have preferences with respect
to outcomes, given by a partial pre-order C Q x Q. Following
convention, we writey =i w’ to mean(w,w’) € >=i.

Negotiation proceeds in a series of rounds, where at eaciayou
every agent puts forward a proposal. A proposal getof out-
comesthat is, a subset @2. The intuition is that in putting forward
such a proposal, an agent is asserting that any of thesenoetcs
acceptable.

In practice, the number of possible outcomes will be praivisy
large. To see this, consider that in a domain where agentege
tiating overn attributes, each of which may take onemfvalues,

there will bem” possible outcomes. This means it will be imprac-
tical for agents to negotiate by explicitly enumeratingoomes in
the proposals they make. Instead, we assume that agentgpnoake
posals by putting forward a formula oflagical negotiation lan-
guage— a language for describing deals. In much of this paper,
we will be examining the implications of choosing differer@go-

tiation languages, and in order to compare them, we must make;

certain general assumptions. The first is that a negotidéion
guagef is associated with a setff(£) of well-formed formulae

— syntactically acceptable constructions®f Next, we assume
that L reallyis a logical language, containing the usual connectives
of classical logic: A” (and), “v” (or), “=" (not), “=" (implies),
and“‘s" (iff) [1, p32]. In addition, £ is assumed to have a Tarskian
satisfaction relationf=,", which holds between outcomés and
members ofvff(L£). We writew =, ¢ to indicate that outcome

w € Q satisfies formulap € wiff(L£). The classical connectives

of £ are assumed to have standard semantics, so that, for example

w ke pAyiffbothw =r g andw =2 ¥, If ¢ € Wif(L),
then we denote bfip] - the set of outcomes that satisfy that is,

[ple ={w|w ez ¢}

As we noted above, negotiation proceeds in a series of rounds

where at each round, every agent puts forward a formula &p-
resenting the proposal it is making. A single round is thusrab-
terised by a tupléy, . . ., ¢n), where for eacl € Ag, the formula
i € Wif(L) is agenti’s proposal. LeR be the set of all possible
rounds:

R=wff(L) x --- x wif(L)

|Ag| times

We user, r’, .. . to stand for members &, and denote ageiis
proposal in round by r(i).

A negotiation historys a finite sequence of roundls), r1, . . ., r).
LetH = R* be the set of all possible negotiation histories. We use
h,H, ... to stand for members d¢d. If u € IN, then we denote the
u'th round in historyh by h(u). Thush(0) is the first round irh,
h(1) is the second, and so on.

Complexity Concepts and Classes

Throughout the paper, we make use of the terminology and tool
of complexity theory. Although we provide a summary of main
concepts from complexity theory that we use, we emphasaeath
detailed presentation is beyond the scope of this paper. efée r
the reader to [3, 6] for details. We start from the compleglasses

P (of languages/problems that may be recognised/solvedtar-de
ministic polynomial time), andP (of languages/problems that may
be recognised/solved in non-deterministic polynomiakimif C,
andC. are complexity classes, then we denotecﬁff the class of
languages/problems that are@n assuming the availability of an
oracle for languages/problemsd@n [6, pp415-417]. Thus, for ex-

ThusX? is simply the classip, andII! is the class co¢r, while
¥ = np** andIlh) = conp™.

3 Types of Agreement

Given a particular negotiation history, an important gigesto ask
s whether or not agreement has been reached with respédusto t
history. For many negotiation scenarios, this problem iisfriam
trivial: it may well not be obvious to the negotiation paipants
that they have in fact made mutually acceptable proposals.

In fact, we can identify several different types of agreetmen
condition, which may be used in different negotiation sciesa It
is assumed that the negotiation participants will settltheragree-
ment condition to be used before the actual negotiationga®c
proper begins. The selection of an agreement conditionuis ¢h
meta-negotiationissue, which falls outside the scope of our work.

To understand what agreement means in our framework, it is
helpful to view a negotiation history as a matrix ©fformulae, as
follows.

e
@n #n

In this matrix, ' is the proposal made by agerih roundu € IN.
The simplest type of agreement is where “all deals are st
— once an agent has made a proposal, then this proposal main
valid throughout negotiation. (One important implicatiohsuch
agreement is that since all previous offers are still vatidyakes
no sense for agents to make more restrictive proposalsifatesr-
gotiation: we emphasise that our formal approach does rperae
on this assumption — other types of agreement are possibieea
demonstrate below.)

In this case, determining whether agreement has been kache
means finding at least one outcomecs 2 such that every ageint
has made a proposal" wherew =, /". In other words, agree-
ment will have been reached if every agehias made a proposal
@ suchthafpi* 2 N- - -Npr]z # 0. This will be the case if the
formulag)® A--- A pp" is satisfiable. Given a histoty, expressed
as a matrix as above, agreement has been reached iff theifajlo
formula is satisfiable:

A

i€Ag

V

U €{0,....k}

o 1)

Given a historyh € H, we denote the formula (1) fdrby ¢n. We
refer to the problem of determining whether agreement has be
reached in some histolyas thesuccess problem

Note that the success problem can clearly be reduced totthe sa
isfiability problem for the negotiation language using opblyno-

ample,NP** denotes the class of languages/problems that may be mja| time. The types of agreement we consider in this papeakr

recognised/solved in non-deterministic polynomial tim&suming
the presence of an oracle for languages/problemspin A lan-
guage that is complete forr™" would thus benP-complete even if
we had “free” answers tapP-complete problems (such as proposi-
tional logic satisfiability). We define thmolynomial hierarchywith
reference to these concepts [6, pp423—429]. First, define

Thus both} andIIf denote the classes of languages/problems
that may be recognised/solved in deterministic polynortirak.

We then inductively define the remaining tiers of the higngras
follows:

= coxP

P yph p
Yigr = NP Iy U+l

variants of satisfiability. However, it is important to umstand that
(1) isby no meanshe only type of agreement that we can define.

A different type of agreement is where prior negotiatiortdrig
is disregarded: the only proposals that matter are the reosnt.
Agreement will be reached in such a history iff the conjumttdf
proposals made on the final round of negotiation is satifidke
success condition is thus:

[h—1]
/\ @i
iEAg

A third possible definition of agreement is that agents most c
verge on “equivalent” proposals: where the proposals mgdeea

@)

on all particulars. Such agreement is captured by the fatigw
condition.

[h—1]|

[h—1]
Y1 n

(3)
4 Protocols

Multi-agent interactions do not generally take place in euvan:
they are governed kyrotocolsthat define the “rules of encounter” [7].
Put simply, a protocol specifies the proposals that eacht égaf
lowed to make, as a function of prior negotiation historyrrially,
a protocolr is a functionr : H — p(R) from histories to sets of
possible rounds. One important requirement of protocdisaisthe
number of rounds they allow on any given history should becstm
polynomial in the size of the negotiation scenario. Theititin be-
hind this requirement is that otherwise, a protocol couldvakn
exponential number of rounds — since an exponential number o
rounds could not be enumerated in practice, such protocaikl c
never be implemented in any realistic domain.

We will say a history icompatiblewith a protocol if the rounds
at each step in the history are permitted by the protocolmady,
history h is compatible withr if the following conditions hold:

1. h(0) € w(e) (wheree is the empty history); and
2. h(u) € ©((h(0),...,h(u—1)))for1 <u< |h|.

Now, what happens ifr(h) = #? In this case, protocat says
that there are no allowable rounds, and we say that negotibds
ended The end of negotiation does not imply that the process has
succeeded, but rather simply that the protocol will not peito
continue further.

Notice that negotiation histories can in principle be ulistia
cally long. To see this, suppose that the@eif outcomes is finite.
Then every agent ha®®®! possible proposals, meaning that even
if an agent never makes the same proposal twice, negotiaisen
tories can be exponentially long. We say protoeak efficientif
it guarantees that negotiation will end with a history whiesegth
is polynomial in the size of2 andAg. Efficiency seems a reason-
able requirement for protocols, as exponentially long tiagon
histories could never be practical.

When we create an agent interaction protocol, we attempt to
engineerthe protocol so that it has certain desirable properties [7,
pp20-22]. Examples of such properties include:

e Social efficiency by which we mean that any outcome is
guaranteed to be Pareto optimal.

¢ Stability: by which we mean negotiation participants have no
incentive to diverge from the protocol.

e Simplicity by which we mean that agents do not have to
work hard to determine the best strategy.

In this paper, we will be concerned with just one property rot@-
cols: whether or not theguarantee succes$Ve will say a protocol
 guarantees success if every negotiation history compatitth
ends with agreement being reached. Protocols that guarante
cess are desirable, for obvious reasons. But consider theenaf
this problem. In general, a protocol allowsanchingduring the
negotiation process. This branching arises because a#ggotpar-
ticipants are allowed to make a number of proposals at eastdro
It is easy to see that the number of negotiation historiesmgthl
compatible with a negotiation protocol with branching &adi will
beb', that is, exponential in the length of the protocol. Thuedet
mining whether or not a protocol guarantees success wiiitinely
involve solving an exponential number of individual suscpsob-
lems, which are themselves logical satisfiability problenigis

suggests that the guaranteed success problem is likely ¢orhe
putationally hard; in the next section, when we consideresoon-
crete negotiation languages, we will see just how hard ifadkyt
is.

Before proceeding, however, we need to say something about
how protocols areepresentear encoded (This is a technical mat-
ter that is important when we come to consider some decisiin p
lems later in the paper.) We will assume that (efficient) @rots
are represented as a two-tape Turing machine: the machieeda
input a representation of prior negotiation history on itstftape,
and writes as output the set of possible subsequent rountigeon
second tape. We will further assume that the Turing mactene r
quires time polynomial in the size pAg x €| in order to carry out
this computation.

5 Example Negotiation Languages

In this section, we present a series of progressively mamgtax
negotiation languages and protocols. We begin with projoosil
logic. Although this logic is not appropriate for many négtibn
domains, it is a useful starting point for our analysis, amel rte-
sults we establish for propositional logic can be regardetoaver
bounds” for other, more expressive negotiation languages.

Example 1: Classical Propositional Logic.

For the first example, we will assume that agents are negwiat
over a domain that may be characterised in terms of a finitefset
attributes, each of which may be either trde) (or false (L). An
outcome is thus an assignment of true or false to every atérib
The proposals possible in this kind of language are exauotkind

of outcomes typically considered in decision theory. Faregle,

in the classic “oil wildcatter” problem, agents might bedixed in

a negotiation about which of two oil fields to drill in, and pasals
might be of the form:

e drillFielda A —drillFields
e —drillFielda A drillFieldg

The obvious language with which to express the propertissicii
domains is classical propositional logic, which we will Ic&l.
The setwff(Lo) contains formulae constructed from a finite set
of proposition symbol® = {p, q,r, ...} combined into formulae
using the classical connectives™(not), “A” (and), “v” (or), and

so on. Itis easy to see that the success problem fdristories will

be NP-complete. More interesting is the fact that we can establis
the complexity of the guaranteed success problentfor

Theorem 1 (From [9].) The guaranteed success problem for effi-
cientLo protocols isIT5-complete.

Note thaflI}-complete problems are generally reckoned to be worse
than, say, covP-complete omp-complete problems, although the
precise status of such problems in the relation to thessedais

not currently known for sure [3]. Theorem 1 should therefoee
regarded as an extremely negative result.

An obvious question to ask is whether the complexity of the
guaranteed success problem can be reduced in some way. There
are two main factors that lead to the overall complexity & th
problem: the complexity of the underlying negotiation laage,
and the “branching factor” of the protocol. It is possibleptove
that if we chose a negotiation language whose satisfialptfibyp-
lem was inp, then the complexity of the corresponding guaranteed
success problem would be reduced one level in the polyndmiial
erarchy. To make this concrete, let us consider the sutf&epf
Lo in which formulae are restricted to be conjunctionsHirn

clauses A clause is said to be Horn if it contains at most one pos-
itive (unnegated) literal. It is well known that there is detenin-
istic polynomial time algorithm for determining the satidfility of
L4 [6, pp78—79]. We can prove the following.

Theorem 2 The guaranteed success problem for efficigift pro-
tocols isII}-complete.

Proof: We need to prove that: (i) the problem isTii§, and (ii) the
problem isIT® hard. To establish membershipldf, we define a
Y Turing machineM that accepts efficient© protocols which
guarantee success, and rejects all others. The inpMt wall be
an efficient£ protocol 7. The machineM runs the following
algorithm:

1. universally select all historigscompatible withr;

2. accept ifpn is satisfiable, otherwise reject.

Notice that the second step can be done in deterministiapotal
time. Since the algorithm requires a single, universatadteon, it
is aIl? algorithm.

To show that the problem &P -hard, we show how the problem
of deciding validity ofC, formulae can be reduced to determining
whether or not an efficien} protocol guarantees success. The
input to the propositional validity problem is a formuta and we
can assume without loss of generality tias in Conjunctive Nor-
mal Form €NF). A cNFformula has the form

CiA---ACn

where eaclC, (1 < n < m) is a disjunction of literals. The idea is
to create a protocat so that:

¢ there is an agent corresponding to each clalise

e there is a single agent for the set of literals atomic proposi
tions ®.

The protocol then works as follows:

e an agent corresponding to a cla@e= |, V- - -Vl, proposes
each of its literals it turn, and proposes ™thereafter;

¢ the agent corresponding to the set of atomic propositions
takes a single different propositigne ® on each round, and
on this round is allowed to make two proposgis= L and
-p = L. When the sef is exhausted, the agent proposes
1.

The protocol ends when both the clause agents and tigent can
make no more non- proposals.
To see how the reduction works, consider an input formula

p=(PVaA({PV-q)

N N —r

Cy Co

that we wish to test for validity. Then the protocol that weate
from this formula allows the following negotiation histesi

agent forCy : p q

agent forCs: p -
®agent: {p=L,-p=>1} {q=L1,-g= L1}

There will clearly be four histories of this protocol, eadktary

corresponding to one possible valuation that could be giwghe

primitive propositions®. The protocol will clearly guarantee suc-

cess just in case the input formula is valid. o

Protocol
Language Non-deterministic Deterministic
Lo IT5-complete NP-complete
£He 1) -complete P

Table 1: The complexity of the guaranteed success problem fo
deterministic and non-deterministic protocols, usingiams of
propositional logic.

With respect to the branching factor of the protocol, suppas
have adeterministicCo protocolm — one in which|w(h)| < 1

for all h € H. Such a protocol is guaranteed to produce a single
negotiation history. This allows us to easily establishftiilewing
result for deterministic, protocols.

Theorem 3 The guaranteed success problem for efficient deter-
ministic L, protocols isNP-complete.

Similarly, we can establish the following fa,.

Theorem 4 The guaranteed success problem for efficient deter-
ministic L5 protocols is inp.

Table 1 summarises our complexity results for protocoletam
propositional logic. We remark that determinism is a farregtric-
tive property to require of realistic protocols.

Before leaving this section, we present a simple example of a
protocol that guarantees success for agents negotiating asub-
set of propositional logic. We refer to the subset of projposal
logic in question a£;. Formulae ofL; are constrained to take the
form

loA-Alm

where eacHn, is aliteral, that is, either an element @ or the
negation of an element @. If ¢ € wif(Lg), then we denote the
set of literals inp by lit (¢).

Given two formulagp andi), we say thap is aconcessiomvith
respect toy if ¢ is “less constraining” thaw, i.e., if [)]cx C
[¢lc;. 1t should be easy to see that by this definitignis less

constraining tham if ¢ is a subformula of) andlit () C lit(¢).
So, for examplep A —q represents a concession with respect to
p A —qA —r, which in turn represents a concession with respect to
PA-QA -rAS

We now turn to the protocol in question. The protocol is synpl
the monotonic concession protocol of Rosenschein and iBlfitk
pp40-41], recast into our logical framework. This protoisotlie-
fined by the following two rules:

1. on the first round, every agent is allowed to propose any for
mula of Lg;

2. on roundu (u > 0), one agent € Agmust make a proposal
¢! such thatp! represents a concession with respegtito’;
every other agent puts forward the same proposal that it put
forward on roundi — 1.

It is not difficult to prove the following.
Theorem 5 The monotonic concession protocol #f guarantees

success. Moreover, it guarantees that agreement will behegin
O(|®|) rounds.

Note that when using this protocol, the obvious strategyafior
agent to play in order to ensure that negotiation conclugdesizkly

as possible involves conceding literals tblaishwith those of other
negotiation participants. For example, in a two agent riagoh
scenario, suppose that agdnproposedp A =g and agen® pro-
posedbAg. Then the obvious concession for ag2to make would
involve proposingp subsequently. Otherwise, successful termina-
tion would require a further negotiation round.

Example 2: A Language for Electronic Commerce.

Propositional logic is a simple and convenient languagastyse,
but is unlikely to be useful for many realistic negotiatioontains.
In this example, we focus on somewhat more realisttommerce
scenarios, in which agents negotiate to reach agreemelntrevit
spect to some financial transaction [5]. We present a ndgwtia
languagel; for use in such scenarios.

lllocution Meaning

requesti, j,) arequest fronitoj for a proposal based apn
offer(i, j, ¢) a proposal ofp fromi toj

accepfi,j,p) iaccepts proposgh made by agerit

reject(i, j, ¢) i rejects proposal op made by agerit
withdraw(i,j) i withdraws from negotiation with

Table 2: lllocutions for the negotiation language.

Example 3: A Negotiation Meta-language.

The language used in the previous example is suitable fingta
deals, and is thus sufficient for use in scenarios in whicmizsge
negotiate by just trading such deals. However, as discuagéd,
the negotiation process is more complex for many scenaaiud,

We begin by defining the outcomes that agents are negotiating 29€Nts must engage in persuasion to get the best deal. Slersua

over. The idea is that agents are trying to reach agreemetiiteon
values of a finite seV = {vi,...,vn} of negotiation issuefs,
pp181-182], where each issue has a natural number valueutAn o
comew € € for such a scenario is thus a functian: V. — IN,
which assigns a natural number to each issue.

requires more sophisticated dialogues, and, as a resfigrrne-
gotiation languages. One such language, based on the auamoti
primitives provided by th&iPA ACL [2], and related to [8], includes
the illocutions shown in Table'2 In this tablep is a formula of a
language such a8, or £;. In this sense, the language which in-

In order to represent the proposals that agents make in such acludes the illocutions is eneta-languagéor negotiation — a lan-

scenario, we use a subset of first-order logic. We begin bynagiv
some examples of formulae in this subset.

e (price = 20) A (warranty = 12)
“the price is $20 and the warranty is 12 months”

e (15 < price < 20) A (warranty = 12)
“the price is between $15 and $20 and the warranty is 12
months”

e (price + warrantyCost< 2000)
“price plus warranty is less than $2000”

e dn- warranty > 12
“the warranty is longer than 12 months”

Formally, £ is the subset of first-order logic containing: a finite
setV of variables, (with at least one variable for each negatimati
issue); a set of constants, one for each natural number; the binary
addition function “”; the equality relation £”; and the less-than
relation “<”.

There is both good news and bad news alfhutthe good news
is that it is decidable; the bad news is that ipievablyintractable.
In fact, we can prove thaf, has a double exponential time lower
bound. In what follows;TAt(n), a(n)] is used to denote the class
of problems that may be solved by an alternating Turing nreehi
using at most(n) time anda(n) alternations on inputs of length
n[3, p104].

Theorem 6 (From [9].) The success problem fdt, is complete
nK
for Uk>0TA[22 ,n).

The details of the clasBA[t(n), a(n)] are perhaps not very impor-
tant for the purposes of this example. The crucial point &t gmy
algorithm we care to write that will solve the geneftal success
problem will haveat leastdouble exponential time complexity. It
follows that such an algorithm is highly unlikely to be of gomac-
tical value. With respect to the guaranteed success prololesy ,

we note that since the success problem gives a lower bourn to t
corresponding guaranteed success problemg trguaranteed suc-

nk
cess problem will be at Ieabjk>0 TA22" , n] hard.

guage for talking about proposals. For the rest of this examye
will consider a languag€. which consists of exactly those illocu-
tions in Table 2, wherg is a formula inC;.

These illocutions work as follows. There are two ways in Wwhic
a negotiation can begin, either when one agent makesffanto
another, or when one makesequestto another. A request is a
semi-instantiated offer. For example, the following ilition

requesti, j, (price =?) A (warranty = 12))

is interpreted as “If | want a 12 month warranty, what is thieg?”.

Proposals are then traded in the usual way, with the difteren
that an agent can reply to a proposal witregect, explicitly say-
ing that a given proposal is unacceptable, rather than witbva
proposal. Negotiation ceases when one ageoeps an offer or
withdraws from negotiation. Note that this protocol assumes two
agents are engaged in the negotiation. (Many-many neigotsat
are handled in [8] by many simultaneous two-way negotiatipn

To further illustrate the use af., consider the following short
negotiation history between two agents negotiating overpthr-
chase of a used car:

requesta, b, (price < 4000) A (model=?) A (age=7?))
. offer(b, a, (price = 3500) A (model= Escor)) A (age= 8))
. reject(a, b, (price = 3500) A (model= Escorj A (age= 8))
. offer(b, a, (price = 3900) A (model= Golf) A (age= 6)
. offer(a, b, (price = 3200) A (model= Golf) A (age= 6)
. offer(b, a, (price = 3400) A (model= Golf) A (age= 6)

N~ o oA W N R

)
)
)
)
)
)

. accepfa, b, (price = 3400) A (model= Golf) A (age= 6))

Broadly speaking, the illocutions if, are syntactic sugar for the
kinds of proposal that we have discussed above: we can map the
into £; and hence into the framework introduced in section 2. To
do this we first need to extend the condition for agreementhén
case where we have two agerdgndb negotiating, the agreement
condition we use is a combination of (2) and (3):

! Note that the language proposed in [8] also includes ilioost which include
the reason for an offer. We omit discussion of this faciligrdr We also omit the
timestamp from the illocutions.

Agenti says Agenf replies

requesfi,}, #¥) ofter(], 1, o)

offer(i, J, ¢}') offer(j, i, '), oraccepf], i, '), or
reject(j, i, ¢}'), orwithdraw(j, 1)

reject(i, j,) offer(j, i, ¢}') or withdraw(j, i)

accepti, J, <pJ-‘"1) end of negotiation

withdraw(i, j) end of negotiation

Table 3: The protocot ., for £, at theuth step of the negotiation.

O " A Y R)
Thus the agents must not only make mutually satisfiable malpo
on the final round, they must make equivalent proposals. rGive
this, we can prove the following result.

Theorem 7 (From [9].) The augmented success problemAderis

K
complete fo J,. , TA2”" , .
Proof: The result follows from Theorem 6 and the fact that we can
define a polynomial time reduction betwegn and L; histories,
which preserves the conditions of success. We will in fadinde
a mapping which translates frofy illocutions to£; formulae —
the mapping can be easily be extended to histories. ThsaBo-
cutions can be re-written directly:

o offer(i,]j, ¢) becomes a proposat;

e accepti,j, p) becomes a proposal which matches the last
proposal;

e reject(i, j, p) becomes a proposalp.

These illocutions then fit precisely into the framework defimbove,
and success occurs in precisely the same situation — whes (4)
satisfiable — once the last proposal, the one which makesaf4) s
isfiable, is echoed by the second agent. The remaining tauH!
tions can be captured by:

e requesti, j,) becomes a proposalin which some attributes
are of the form(valuenin < attribute < valugnax);

e withdraw(i, j) becomes 1"

A proposal “L” immediately makes (4) unsatisfiable, and the ne-
gotiation terminates, exactly as one would expectwitadraw. A
proposal in which some attributég are of the form(valugnin <
attribute < valuenax) and othersA; have more restricted values
leads immediately to the satisfiability of (4) if the resperis a
proposal which agrees on thgand has any value for th& (since
these will agree with the intervalsaluanin, valuanay). Since the
transformation will clearly be linear in the size of the bist the
result follows. o

There is also the question of whether success can be guadante
when negotiating irC», and this, of course, depends upon the pro-
tocol used. Table 3 gives the protocol used in [8]. We will tab
TLo-
Clearly this protocol can lead to negotiations which neeer t
minate (since it is possible for agents to trade the sameopain-
acceptable offers for ever). However, it is not unreasanatblin-
sist that conditions are placed upon the protocol in ordenture
that this does not happen and that negotiations eventeathjinate.
One such condition is that agents make concessions at eyt st
that is, that each offer made by an agent is less preferaliteato

agent than any of its predecessors. Under this conditioth,agn
suming that agents withdraw ongedrops below some threshold,
we have:

Theorem 8 (From [9].) Protocolr ., guarantees success.

One simple scenario which is captured#yy, is that in which one
agent,i say, rejects every offer made by the othjeqyntil suitable
concessions have been gained. Of course, provided thanthe e
point is acceptable fgr, there is nothing wrong with this — and if
the concessiopis looking for are too severe, th¢nmvill withdraw
before making an acceptable offer.

6 Discussion

This paper has identified two important computational pptd in
the use of logic-based languages for negotiation — the proluif
determining if agreement has been reached in a negotiadiuh,
the problem of determining if a particular negotiation izl will
lead to an agreement. Both these problems are computdgional
hard, and the main contribution of this paper was to showequit
how hard they are. In particular the paper showed the exfehto
problems for some languages that could realistically bel dee
negotiations in electronic commerce. This effort is thumple-
mentary to work on defining such languages. Obvious futumesli
of work are to consider the impact of these results on thegdesi
of negotiation languages and protocols, and to extend thik t@o
cover more complex languages. In particular, we are intedes
extending the analysis to consider the use of argumentation-
gotiation [8].

Acknowledgements: This research was supported by the-
srcunder granGR/M07076.

References

[1] H. B. Enderton. A Mathematical Introduction to LogicThe
Academic Press: London, England, 1972.

(2]

FIPA. Specification part 2 — Agent communication langeag
1999. The text refers to the specification dated 16 April 1999

[3] D. S. Johnson. A catalog of complexity classes. In J. van
Leeuwen, editorHandbook of Theoretical Computer Science
Volume A: Algorithms and Complexifyages 67—161. Elsevier

Science Publishers B.V.: Amsterdam, The Netherlands,.1990

[4] S. Kraus. Negotiation and cooperation in multi-ageniem-
ments.Artificial Intelligence 94(1-2):79-98, July 1997.

P. Noriega and C. Sierra, editorg\gent Mediated Electronic
Commerce (LNAI Volume 15713pringer-Verlag: Berlin, Ger-
many, 1999.

[6] C. H. Papadimitriou. Computational Complexity Addison-
Wesley: Reading, MA, 1994.

[7] J.S. Rosenschein and G. ZlotkiRules of Encounter: Design-
ing Conventions for Automated Negotiation among Computers
The MIT Press: Cambridge, MA, 1994.

[8] Carles Sierra, Nick R. Jennings, Pablo Noriega, and SiPFar-
sons. A framework for argumentation-based negotiation. In
M. P. Singh, A. Rao, and M. J. Wooldridge, editohstelli-
gent Agents IV (LNAI Volume 136®ages 177-192. Springer-
Verlag: Berlin, Germany, 1998.

(5]

[9] M. Wooldridge and S. Parsons. Languages for negotiatinn
Proceedings of the Fourteenth European Conference on-Atrtifi

cial Intelligence (ECAI-2000)Berlin, Germany, 2000.

