Auctions, evolution, and multi-agent learning

Steve Phelps Kai Ca?, Peter McBurney, Jinzhong Nid, Simon Parsors>3, and
Elizabeth Sklat?

! Department of Computer Science, University of Liverpool,

Ashton Building, Ashton Street, Liverpool L69, 3BX

phel ps. sg@oogl enai | . com nthurney@ i ver pool . ac. uk

2 Department of Computer Science, Graduate Center, Cityddsity of New York,
365 5th Avenue, New York, NY 10016, USA
{kcai, j niu}@c. cuny. edu
3 Department of Computer and Information Science, Brooklpiiege,
City University of New York, 2900 Bedford Avenue, BrooklyN)Y 11210, USA

{par sons, skl ar }@ci . br ookl yn. cuny. edu

Abstract. For a number of years we have been working towards the goal of
automatically creating auction mechanisms, using a rarigeabniques from
evolutionary and multi-agent learning. This paper giveswrview of this work.

The paper presents results from several experiments thiaaveecarried out, and
tries to place these in the context of the overall task thaargesngaged in.

1 Introduction

The allocation of resources between a set of agents is aedgailg problem, and one
that has been much studied in artificial intelligence. Res®allocation problems are
especially difficult to solve efficiently in an open systenthié values that agents place
on resources, or the values of their human principals, avatprand unobservable. In
such a situation, the difficulty facing somebody wishing loate the resources to
those who value them most highly, is that participating ageannot necessarily be
relied upon to report those values truthfully — there is maghto prevent “greedy”
agents from exaggerating their resource requirements.

To overcome this problem, it has been suggested that resallocation be solved
using market mechanisms [4, 32,59] in which agents supheit value-claims with
hard cash. This has two advantages. First it punishes gragelyts by making them
pay for the resources that they have oversubscribed tcerf#tively one can think of
this as preventing agents from oversubscribing by forcivegrt to pay a higher price
than they would otherwise have to pay for the resources thyably need.) Second,
it allocates resources to the agents who pay the most, whmhla be the agents who
value the resources most highly. Auctions are a subclassaokehmechanisms that
have received particular attention. This is due to the fhat,twhen well designed,
auctions can achieve desired economic outcomes like hligtedilve efficiency.

Designing mechanisms to achieve specific economic reqeimé&nsuch high effi-
ciency or maximal social welfare, against self-interesteelligent traders, is no trivial
matter, as can be seen from accounts of the auction desigegedor the recent ra-
dio spectrum auctions in Europe [25] and the US [11, 30]. Temnemic theory of



mechanism design [20] approaches the task of designingegtficesource allocation
mechanisms by studying the formal, analytical propertiealternative mechanisms.
Mechanism design views auctions as form of game, and apjpéd#ional analytic
methods from game theory to some kinds of auctions [28], xan®le the second-
price sealed-bid auctions or Vickrey auctions [55].

The high complexity of the dynamics of some other auctioesypspeciallgouble-
sided auction§l14] or DAs, however makes it difficult to go further in this directi@¥[
49,58]. As a result, researchers turned to experimentabappes. Smith pioneered
the experimental approach [51], conducting auctions wingl human traders that re-
vealed many of the properties of double auctions. For exephid work showed that in
continuous double auctior® CDAS, even a handful of traders can lead to high overall
efficiency, and transaction prices can quickly convergdtheoretical equilibrium.
More recently has come the suggestion that economists ghake an “engineering
approach” [44, 46] to problems in microeconomics in gendnailding models of auc-
tions, testing them experimentally, and refining them t@@eobust markets. We see
our work as being part of this engineering approach to mat&sign.

One approach to the computational design of markets is tteabaiques from ma-
chine learning to explore the space of possible ways in wagdnts might act in par-
ticular markets. For example, reinforcement learning leenhused to explore bidding
patterns in auctions [34, 44] and establish the ways in wpiate-setting behavior can
affect consumer markets [54]. Our work is in this line. Hoaewe differ from much
of the existing work on machine learning in computationafkeidesign by using ma-
chine learning to design the auction rules themselveseratfan just in the service of
exploring their behavior. We refer to this line of workastomated mechanism desjgn
and the idea behind this paper is to summarize the work thdtave been doing over
the past few years on automated mechanism design. It doggoatle any new re-
sults, but instead sketches the relationship between tiessaf experiments that we
have carried out, describes the results that we have oltaame tries to explain how
all we have done fits into the overall scope of our work.

We should stress that we are not trying to evolve entire angtiechanisms. The
computational complexity of doing so places this out of aaah at the moment. In-
stead we concentrate on parts of an existing mechanismottimaous double auction,
and look to automatically tune them for specific situatiddar work is experimental,
and so comes with no formal guarantees. It thus stands ik ctatrast to the work of
Conitzer and Sandholm [9, 10], which looks to create entieemanisms subject to ab-
solute guarantees on their performance. However, our Vikekthat of Cliff and Byde
[5,57], addresses much more complex mechanisms, and wehegsas addressing
the same problem as Conitzer and Sandholm, but from the gaigp of Wellman’s
empirical game theorf23, 56].

2 Background

2.1 Auctions, briefly

To frame our work, we borrow from Friedman’s [14] attempttarglardize terminology
in which exchangeés the free reallocation of goods and money between a seddéts.
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Fig. 1. Supply and demand curves

A market institution lays down the rules under which thistextge takes place, and
an auctionis a specific kind of market institution. A given institutiatefines what
information traders can exchange, and how the reallocatiggoods and money will
occur, a process known akearingthe market. In an auction, the only information that
traders can exchange are offers to buy at a given price ddaitlis and offers to sell at
a given price, calle@dsks, and an auction gives priority to higher bids and lower asks
An auction can allow only buyers or only sellers to make affer which case it isne-
sided or it can allow both, in which case it t&/0-sided A double auction is a two-sided
auction, and from here on we will only deal with double auatioln a double auction,
the aim of the mechanism is to pair buyers and sellers, nrajgb@irs such that the
buyer is prepared to pay a higher price than the seller wavisare most interested
in two kinds of double auction. Thelearing housdgcH) auction matches traders by
collecting offers over a period and, at the end of that perigentifying the matching
pairs. Thecontinuous double auctioftDA), in contrast, constantly looks for matches,
identifying one as soon as it has some bid that is greaterghiare ask. Once matches
have been found, mansaction pricds set, somewhere in the interval between bid and
ask.

In common with most work on double auctions, we only deal i auction of a
single kind of good, and we assume that every trader lm#sate valuefor the good
— the price that the good is really worth to the agent. A ratidsuyer will not bid
above its private value, and a rational seller will not aslowehat value. If we know
the private values of a set of traders, we can construct gupul demand curves for
the market they are involved with, as in Figure 1. Here theyéae, the supply curve,
indicates that one seller has a private value of 50 — belotwiae no goods will be
sold, and once the price rises to 50 exactly one good will & Jie second trader
has a private value of 60 and at a price of 60, exactly two gadiibe sold. Similarly,
there is one buyer who is willing to pay 140, and at that price good will be bought,
but as soon as the price falls to 130, two goods will be bought.

The intersection of the supply and demand curve indicatepadint at which supply
and demand are in balance — here any price between 90 and 1G@evexactly five



goods bought and sold. Economic theory predicts thagtislibriumsituation is what
will hold if 20 traders with the indicated private values ¢egether to trade. However
the theory offers no clues as to how the traders will figurewshich of them should
trade, and at what price, and it is clear that it is not in thdérs’ interest to make offers
that are truthful and indicate their private value — a tradgclv shades their offer,
stating a lower price than their private value if they are ypdowill make a profit if that
offer is accepted.

If we know the private values of the traders, then, as desdritbhove, we can com-
pute the equilibrium. Combining information about the diguium with information
about what actually happens in the market, we can computéosidiat summarize the
performance of the market. Tlaetual overall profif pr®, of an auction is the sum of
the actual profits of buyers and sellers:

pr = pry +prg

and these are computed as:

pry = Z Vi = Pi
7

pry = ZP;‘ — vj
j

wherep; is the price of a trade made lbyyeri andv; is the private value of buyérfor
all buyers who trade ang; is the price of a trade made Isgller j andv, is the private
value of buyer; for all sellers who trade. Thieoreticalor equilibrium profit pr., is:

pre = pry +prg (1)

the sum of theequilibrium profitsof buyers and sellers, the profit that they would make
if all trades took place at thequilibrium pricep, the price predicted by theory. These
can be computed as:

pry :Zvi—po
i

pré=> po—v;
J

Theallocative efficiencyf an auction is then:

pre
€aq = c (2)
pr
which is often expressed as a percentage. Of course, tlie &ne as:

a

_ pry +pry
C g g
The allocative efficiency measures how close the marketietequilibrium that theory
predicts in terms of profit for traders. All other things bgpiequal, economists prefer



markets with high efficiency since this indicates that thekatis transferring goods
to the buyers that value them most from the sellers that vllem least. This maxi-
mizessocial welfare making the traders as happy as possible. Allocative efffigiés
maximal if just the traders to the left of the intersectiotvimen supply and demand
curves in Figure 1 end up trading. While measuring alloeaéfficiency is useful, it
says nothing about price. An auction that trades at eqiulibiwill be efficient, but
high efficiency does not indicate that the market is tradiagrrthe equilibrium price
[16]. The convergence coefficient, was introduced by Smith [51] to measure how far
an active auction is away from the equilibrium point. It me&as therms deviation of
transaction prices from the equilibrium price:

n

o= 125 (i — po)? @)

n
Po =1

These are the measures that we will make most use of in thes.pap

Our experimental work follows the usual pattern for work aricmated trading
agents. We run each auction for a number of tradiags with each day being broken
up into a series ofounds A round is an opportunity for agents to make offers, and
we distinguish different days because at the end of a daptagave their inventories
replenished. As a result, every buyer can buy goods everyatalyevery seller can
sell every day. Days are not identical because agents amne afiavhat happened the
previous day. Thus it is possible for traders to learn, okierdourse of several days,
the optimal way to trade. Following [34], we usé-aouble-auctiortransaction pricing
rule [49], in which the transaction price for each matchattdsk pair is set according
to the following function:

pt = kpa + (1 = k)po (4)

wherep, is the transaction pricey, is the ask pricep, is the bid price and: is a
parameter that can be adjusted by the auction designerisTadsscriminatorypricing
rule since the price may be different for each transactiogohtrast, ainiformpricing
rule ensures all transactions take place at the same pni¢d84] and in much of our
work, & is taken to be 0.5. To run most of the simulations describee Wwe usedAasA
[21]%, which supports a wide range of auction types and tradiradegiies, and which
matches bids and asks using the 4-heap algorithm [60].

2.2 Related work

Much of the computational work on analyzing markets has lwegrcerned with algo-
rithms that can be used to decide what price to trade at. Hnere¢onomics side, this
work has often been motivated by the lack of an adequate\ttedqrice formation —
a theory that says how individuals decide what offers to n{gkeugh as Smith [51]
demonstrated, this doesn’t stop individuals being good a&lting these decisions) —

* More accuratelyjAsA was developed as a result of the need to write software tohen t
simulations. The initial version afasA was designed and written by Steve Phelps, and more
recently has been contributed to by Jinzhong Niu and Kai Cai.



and the desire to understand what makes markets work. Frerndimputer science
side, the motivation has usually been to find algorithms ¢iaat trade profitably and
which can achieve high efficiency.

Gode and Sunder [16, 17] were among the first to address te&iqa, claiming
that no intelligence is necessary for the goal of achieviigi lefficiency — so the
outcome is due to the auction mechanism itself. They intteduwo trading strategies:
zero intelligence without constraifit1-u) andzero intelligence with constrairgzi-c),
and showed thati-u, the more naive version, which shouts an offer at a randare pr
without considering whether it is losing money or not, perie poorly. In contrast,
z1-¢, which lacks the motivation of maximizing profit just like-u but guarantees no
loss, generates high efficiency solutions [16]. These teswdre however questioned by
Cliff and Bruten [4, 7], who thought Gode and Sunder’s cosidn was not convincing
because the scenarios considered were not as comprehengivemith’s experiments,
and showed that in different scenarios thec agents performed poorly, especially in
terms of convergence to the theoretical equilibrium.

Cliff and Bruten further [4, 6] designed a simple adaptiveding strategy called
zero intelligence plusr zip, and showedIp worked better thaai-c, generating high
efficiency outcomes and converging to the equilibrium pridas led Cliff and Bruten
to suggest thatip embodied the minimum intelligence required by traders s8ghent
work has led to the development of many further trading styiats, the best known of
which include Roth and Erev’s [12, 45] reinforcement leagnstrategy, which we call
RE, Gjerstad and Dickhaut’s [15] approach, commonly refetoedsGb, which uses
the past history of accepted bids and asks to compute thetdpealue of every offer a
trader might make, and the simplificationzaP introduced by Preist and van Tol [43].

This work on trading strategies is only one facet of the netean auctions. Gode
and Sunder’s results suggest that auction mechanisms plawyortant role in deter-
mining the outcome of an auction, and this is further bornebgithe work of Tesauro
and Das [53] and Walsét al.[58]° For example, if an auction &trategy-proafthe best
strategy for a traders is not to bother to conceal their pgivalues, but to reveal them,
and in such auctions complex trading agents are not reqiWbie typical double auc-
tions are not strategy-proof, McAfee [29] has derived a fofrdouble auction that is
strategy-proof (though this strategy-proofness comdseatdst of lower efficiency).

3 Evolving the whole system

Our initial approach to automated mechanism design wasstteainiques from evolu-
tionary computing. Inspired by the biological metaphorwadlation, genetic algorithms
(GAs) [19] code aspects of a solution to a problem in an artificlatomosome” (typi-
cally a binary string) and then breed a population of chraynass using techniques like
crossover (combining bits of the strings from differentiiiduals) and mutation (flip-
ping individual bits). Genetic programming#) [26] extends this approach by evolv-
ing not a bit-string-encoded solution to a problem, but ana@rogram to solve the
problem itself. Programs are encoded as s-expressions adeled as trees (nodes are

5 This work also points out that results hinge on both auctiesigh and the mix of trading
strategies used, a point we will return to later.
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Fig. 2. Evolving traders: efficiency by generation

function names and branches arguments of those functiand)these trees are sub-
ject to crossover (swapping subtrees from different pnog)eand mutation (replacing
subtrees with random subtrees). Whichever approach is tisebest individuals, eval-
uated using ditnessfunction, are kept and “bred”; and bad individuals are rjdc
However, deciding which individuals are the best is a haab@m.

Both genetic algorithms and genetic programming perfornrearch through the
space of possible solutions with the theoretical advanthgerandom jumps around
the search space — created by crossover and mutation — camptke system from
getting stuck in local optima, unlike other machine leagtiechniques. Unfortunately,
in practice this is not always the case, at least partly exalhat constitutes the best
fithess measure can change over time. To overcome this pnpsdene researchers have
turned toco-evolution for example [1, 18, 33].

In co-evolution, simultaneously evolving populations geats interact, providing
each other with a fitness measure that changes as the agelves év successful appli-
cations, an “arms race” spiral develops where each populafiurs the other to advance
and the result is continuous learning for all populationswiver, this has been notori-
ously difficult to achieve. Often populations settle intmadiocre stable stateeaching
a local optimum and being unable to move beyond it. Consdtyyémere is a grow-
ing body of work examining the dynamics of co-evolutionaggrining environments
in an attempt to identify phenomena that contribute to ss&¢2, 8, 13]. In the context
of auction design, it is possible to look at a number of déférforms of co-evolution.
First, different traders co-evolve against one anotheh different offer-making strate-
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Fig. 3. Evolving traders and auctioneer: efficiency by generation

gies being the co-evolving populations, each attemptingaio an advantage over the
others. Since all traders are looking to maximize their pgpfhey are to some extent
in competition, although it is possible for a number of ssstel traders to coexist.
Second, traders co-evolve against the auction mecharssifi-t the auctioneer if you
will — as the co-evolving populations. The traders’ aim iswthieve high profits while
the auction(eer)’s aim is to provide an efficient market. MWlithese aims need not be
mutually exclusive, they may also be in conflict.

In [38], we explored a simple approach to co-evolving medras, attempting to
evolve the rules by which traders decided how to make ofard,the rules by which
the auctioneer decides to set trade prices based upon tfiese When evolving rules
for the traders alone, setting prices using a standard weegbtained the results in
Figure 2. When we simultaneously evolved rules for tradadsrales for the auction-
eer, we obtained the results in Figure 3. While the efficienicthe whole system is
not particularly high when we only evolve trad&rsshen we evolve both traders and
auctioneer, we obtain quite respectable efficiencies afred®@5%.

There is a problem with these results, however. The probdetimat it appears that
the systems that we managed to evolve were systems thatlfedifeao the trap of a
mediocre stable state. If we look at the kinds of rule thattthders were learning to
use in these experiments, they are of the form:

8 An average efficiency of around 75% compares poorly withéiselts reported in the literature
for automated trading strategies, and with our own work [3].



i f(not(QuoteBidPrice < (PrivateValue » 0.081675285))
{

Pri vat eVal ue

el se

{
}

whereQuot eBi dPri ce is the highest unmatched bid (this is a rule for a buyer). In
other words, the traders were learning to make a constarkupabut nothing more
sophisticated than that. While such a strategy can be quigessful when competing
against traders doing the same — as discussed by [61] — we kmawt does not
compete well with more sophisticated strategies [3/ 4Zyen more worrying, the auc-
tioneer was clearly not learning meaningful strategies -ypécal evolved pricing rule
was:

PrivateVal ue » 0.081675285

Bi dPrice - constant

which, once again, is not a terribly sophisticated strgtagg one that it is possible to
imagine traders, more sophisticated than the ones we wérdmbo-evolve, learning
to exploit.

4 Evolving traders

One of the problems we identified with our attempt to evolvihibi@ders and auctioneer
from scratch was that this approach makes it too hard to leaphisticated strategies
for making offers. Starting, as is standard in genetic paogning, from random strate-
gie$ means that the traders have to make huge strides to reachheveame level of
sophistication as, for exampleip. Since traders can achieve reasonable levels of profit
with the fixed margin rules we were discovering, there iklévolutionary pressure for
them to continue to evolve, and lots of competitive straedo drown out any muta-
tions that aren’t immediately successful. These obsamatied us to try to learn new
trading strategies by starting from existing strategies.

As described in [37], we adopted tieuristic strategy analysief Walsh et al.
[58]. In its original form, the aim of this approach was to lieasto compute plausible
equilibria of the double auction. While performing a gameadtetic analysis of the
auction is infeasible (as discussed above) because of tmberof players and the
large number of possible actions at each of the many stagiespassible to analyze
double auctions at higher level of abstraction. The idea isetluce the game to that
of picking the best trading strategy from the literatureughif you are interested in
auctions with 10 participants, you pick a range of stratefpe those participants, run

” The fixed margin strategy “Gamer” was not competitive in thetd Fe tournament [47], and
the fixed-markup strategysis one of the weakest strategies of those analyzed in [3].

8 That is strategies composed of randomly selected functimtsstrategies that bid at random
— the latter perform surprisingly well [16].
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Fig. 4. The replicator dynamics direction field for a 12-agent dleghouse with trading strate-
giesRE, TT andGD, (a) with the payoffs obtained in experiments and (b) witfo+payoffs to
RE.

a number of iterations of the auction, and that allows yoistatdish certain properties
of the auction.

Now, it is clear that such a static analysis will not tell usanwabout the auction.
Why should the participants in the auction pick the stratedhat you choose, partic-
ularly if those strategies aren't very successful? To deti this problem, Walslet
al. usedevolutionary game theorp2] to compute Nash equilibrium. The idea can be
glossed as follows — rather than always selecting one glyatiaders are more likely
to gradually adjust their strategy over time in responsetepeated observations of
their own and others’ payoffs. The adjustment can be modedied) the followingepli-
cator dynamicgquation to specify the frequency with which different trapstrategies
should be used depending on our opponent’s strategy:

m; = [u(ej, m) —u(m, m)| m; (5)

wherem is a mixed-strategy vectai(m, m) is the mean payoff when all players play
m, andu(e;, m) is the average payoff to pure strategwhen all players playn,
andri; is the first derivative ofn; with respect to time. Strategies that gain above-
average payoff become more likely to be played, and this teuanodels a simple
co-evolutionarnyprocess of mimicry learning, in which agents switch to siés that
appear to be more successful.

Now, for any initial mixed-strategy we can find the eventuatcome of this co-
evolutionary process by solving; = 0 for all j. This tells us the points at which the
mixed strategy no longer changes — the stationary pointheféplicator dynamics
— and allows us to discover the final mixed-strategy thatesponds to the mixed
strategy we started with. Repeating this for a range ofdhitiixed strategies allows us
to discover all the stationary points that might developisThodel has the attractive
properties that:

1. all Nash equilibria of the game are stationary points utftereplicator dynamics;
and



2. all focal points of the replicator dynamics are Nash elqud of the evolutionary
game.

Thus the Nash equilibrium solutions are embedded in thestaty points of the direc-
tion field of the dynamics specified by equation 5, and theicafdr dynamics allows
us to identify the Nash equilibria. Although not all statop points are Nash equi-
libria, by overlaying a dynamic model of learning on the difpuia we can see which
solutions are more likely to be discovered lhyundedly-rationahgents. Those Nash
equilibria that are stationary points at which a larger mafjinitial states will end up,
are equilibria that are more likely to be reached (assuminigiéial distribution that is
uniform).

Figure 4 (a) gives the direction field for a 12-agent cleatiogise with traders al-
lowed to pick between thRg, TT andGD strategies. This is a standard 2-simplex where
the coordinates of any point represent a mixture of tradirajegies. Each vertex de-
notes a situation in which all traders use a single tradirajesgy. Any point on an edge
of the simplex denotes a situation in which all traders useadrthe two strategies de-
noted by the vertices joined by the side. Thus every poinherbbttom of the simplex
in Figure 4 (a) denotes a mixture of strategies such that scaders usaT and some
useGD.

We can see that in Figure 4 (@p is a best-response to itself, and hence is a pure-
strategy equilibrium. We also see it has a very labgsin of attraction— for any
randomly-sampled initial configuration of the populatiomyst of the flows end up in
the bottom-right-hand-corner. Additionally, there is as®d mixed-strategy equilibria
at the coordinatef).88,0.12,0) in the field, corresponding to an 88% mix of and
a 12% mix ofRE, however the attractor for this equilibrium is much smattean the
pure-strategysD equilibrium; only 6% of random starts terminate here asregj&i4%
for pureGD. Hence, according to this analysis, we would expect mostepbpulation
of traders to adopt theD strategy.

From the point of view of evolving new trading strategies thteresting thing
is thatGD is not as dominant as it might appear from Figure 4 (a). If wdgom a
sensitivity analysis to assess the robustnessdf performance, by removing 2.5% of
its payoffs and assigning them &g, along with 2.5% of the payoffs fromr, then we
get the direction field in Figure 4 (b). This second direcfieid gives us a qualitatively
different set of equilibria — th&Ee strategy becomes a best-response to itself with a
large basin of attraction (61%) — and allows us to conclude #slightly improved
version ofRE can compete well againsD.

To test this conclusion, as described in [37], we used a gealgforithm to search
for such an improved version &, searching through parameter settings for a combi-
nation of four strategies — the original versionrs, a variation orre introduced in
[34], stateless Q-learning, and a strategy that randontégtseoffers — evaluating the
evolved strategies by the size of the basin of attractiop #t&in under the replicator
dynamics. TheA converged on a version of stateless Q-learning, and Figsho®s
how this optimized strategys performs againstT, GD, and the original version a{E.

Our conclusion is that it is possible to evolve trading smés to compete with the best
hand-coded strategies provided that one has the hand-strdézhies to evolve against.
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Fig. 5. Replicator dynamics direction field for a 12-agent cleaifiogise auction showing inter-
action between theA optimized strategypsand (a)TT andGDb, and (b)TT andRE.

5 Evolving mechanisms

One lesson to draw from Sections 3 and 4 is that one can evelterlraders if that
evolution takes place in a more structured way. Rather thalviag the os strategy

from scratch, we structured it as a search through the paeasnef a set of existing
trading strategies, and rather than evolving the auctidsing rule at the same time,
we fixed the pricing rule to one that is commonly adopted. Bhigtion describes two
experiments that we carried out to explore if it possible totlte reverse — evolve
aspects of the auction mechanism given traders using a ktrading strategy.

5.1 Evolving a pricing rule

The first experiment that we carried out in evolving parts mfaaction mechanism
separately from the traders is described in detail in [38¢l eonsidered the evolution
of the rule for setting trade prices given the prices bid bydvsp, and asked by sellers
ps. This work used a continuous double auction with 30 buyedsZhsellers, all of
them using th&Ee strategy to pick offers. To evaluate the rules we evolved,sexl the

measure-’: -
€aq mpp + Mmps
F=—+——— 6
5 T 1 (6)
wheree,, is as defined in (2), anabp, andmp, measure the market power of the buyers
and sellers respectively, that is the extent to which thditsrmmade by those groups

differ from what they would be at theoretical equilibrium:

pry — pry

mpy = ——.
pry

prs — pT§

mps = —————

e
prs



Difference in transaction price between evolved and k=0.5

BIDPRICE ASKPRICE BIDPRICE ASKPRICE

(@) (b)

Fig. 6. The results of evolving a pricing rule, (a) the rule itselfi) (he difference between the rule
and thek = 0.5 rule.

andmp;, andmp, are normalized versions of these measures:

_ 1

mp, = ————
P 1+ mpy

_ 1

mps = 1 T+ mps

We used genetic programming to evolve the rules. The funstibat could be used in
the genetic program consisted of the terminatsK PRICE andBIDPRICE, rep-
resentingp, andp, respectively, together with the standard set of arithnfetictions
{+, —, x,+}, and a function representing a random constant in the r@ingé Thus
all we assumed about the pricing function is that it was ahietic function of the bid
and ask prices.

As mentioned above, pricing rules were evaluated using tesorel’ from (6) —
we used each rule to run a series of auctions, and used thethaltF' reported for the
auctions as the fithess of the rule. The following:

((0.6250385( 0. 93977016( ASKPRI CE+0. 76238054) ) )
+ (((((-0.19079465)/ ( ASKPRI CE- (( (Bl DPRI CE +BI DPRI CE)/
(((( (ASKPRI CE- 1) +1. 6088724) / ((( 1- ASKPRI CE) - ( ASKPRI CE/
ASKPRI CE) ) +( 2. 5486426+( Bl DPRI CE + 0. 000012302072))))
+( (Bl DPRI CE/ ASKPRI CE) +( ( Bl DPRI CE+BI DPRI CE) +( 1. 430315) /
(BI DPRI CE . ASKPRI CE))))) ASKPRI CE))

are the first few terms of a pricing rule that was evolved &tegenerations. It has been
algebraically simplified, but as can be seenitis still fanfrstraightforward, something

thatis not surprising given the way that standard genetigi@mming approaches han-
dle the evolution of a program. Plotting the surface of thesaction price as a function
of p, andp,, given in Figure 6 (a), and comparing it with the surface for:

0.5pa + 0.5pp



shows — the difference between the two rules is given in Eigufb) — that these two
functions are approximately equal apart from a slight wemmwhen the ask price is
very small or when the ask price is equal to the bid price. Tthesexperiment effec-
tively evolved a pricing rule for a discriminatory-priéedouble auction withk = 0.5
from the space of all arithmetic functions of ask and bid @ri©ur main conclusion
from this is that our approach is able to evolve an eminerghsible rule, since the
rule it came up with is virtually indistinguishable from otieat has been widely used
in practicé.

5.2 Minimizing price fluctuation

The work described in the previous section looked at optirgibne very specific part
of the continuous double auction, the rule for setting trpadees, with respect to one
specific measure, that in (6). We can apply the same kind afigztion to different
aspects of the auction mechanism, and with different measormind. [35] describes
some experiments with some alternatives.

In particular, [35] is concerned with minimizing Smith’s emurea (3), and thus
fluctuations in the transaction price of the auction. Tha@ht® minimizea was partly
in order to see if it was possible to minimize this metric whikeeping the efficiency
of the auction high — testing the extent to which performaoicéhe auction could be
optimized — but one can imagine that this is also an attradthature of an auction.
If the auction has a low, then transactions are, by definition, close to the themakti
equilibrium point. If this can be achieved for a range of ingdstrategies, then there is
some guarantee that, no matter how a trader bids, the patéréder pays will be in
some sense fair, saving the trader the burden of needing eierly.

To minimizea, we looked at learning a new pricing rule, a rule betweendftan
used in a continuous double auction — where the price is tamge of the bid and the
ask — and the usual rule for a clearing house auction — wherpribe is the price that
clears the markét. In essence, this new rule looks at thenost recent matching bid/ask
pairs, and averages over them to obtain the transactioa.tigure 7 (a) compares the
value ofa for a continuous double auction with 10 buyers and 10 sedérsf which
trade using the-c strategy and thé = 0.5 pricing rule with that of the value af for
the same auction that sets prices using the average of thenaatched sets of bid and
ask. We only considered auctions involviag-c traders in order to make the problem
of minimizing price fluctuation as hard as possiblez—c, making offers randomly,
typically gives high values ot compared with other trading strategies.

Clearly the moving average rule is effective in reducindput the value it attains is
still high compared with the levels attained using différeading strategies. Auctions

? It is also possible to argue in the other direction — thateine came up with thé = 0.5
rule, the rule makes sense for scenarios like the one thatese westigating.

0 The price that would be the theoretical equilibrium if thdsand asks were truthful.

1 Note that the rule usest mostfour sets of matched bids and asks. Since the auction iseenti
ous, the price of the trade between the first matched paifefois exactly that of thé = 0.5
rule since there is only one matched bid and ask pair to usgrtbe of the second trade is the
average of the first two matched bids and the first two matckksl @and the price of the third
trade is the average of the first three matched sets.
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Fig. 7. The value ofa for a double auctions witlai-c traders (a) comparing the standard con-
tinuous double auction price rule with the sliding-windovicpg rule, and (b) comparing for
different versions of the shout improvement rule. The giagd denote one standard deviation
above and below the average value over 400 iterations.

with traders that only useD attain« values of around 4. To try to reduce fluctuation
even more, we examined another aspect of the auction, teethhalauctioneer uses
for accepting shouts as being valid. The idea is to generafiz “New York Stock
Exchange{YsE) rule”, the rule used in that market, among others, whicistaghat
successive bids and asks for the same good improve on eaeh lwttother words,
successive bids must increase, and successive asks musagkecThe generalization
we adopted makes a running estimate of the equilibrium gocéhe market, and the
shout acceptance rule (which we call the “shout improvehreitd) requires that bids
are above this estimate and asks are below it. Note that t&jrunlike thenysE rule,
continues to apply after an individual good has been tradeiddeed, as Figure 7 (b)
shows, the effect of the rule animproves over time.

In fact, it turns out that there is one last tweak to the shoydrovement rule that
it behooves us to add. If the rule is applied strictly as dbsd, the estimate of the
equilibrium price can get badly thrown off by errant offet$ree start of the auction (and
errant offers are common with -C traders). To ameliorate this situation, we introduce
a parameted, an increment that is applied to the estimated equilibrivivepto relax
the improvement rule — bids above the estimate mihaad asks below the estimate
plusé are considered valid. Figure 7 (b) shows the effect of diffievalues ob.

Overall, the combination of these measures can reduf@ all-zi-c markets to
a value around with little or no loss of efficiency. Indeed, for some valuésipthe
efficiency of the allzi-c market is greater than that of an all-c market under the
usualcbA mechanism. In addition, it seems that these new market dale@®t hurt the
performance of markets consisting of more sophisticatadetrs. We tested the same
market rules when the traders all used, and found that, if anything, the new rules
reducedy and increased efficiency.



6 Evaluating mechanisms

The work on mechanisms that we have described so far hasddokeptimize one
specific aspect of an auction, and has shown that this is\adile However, the kind
of evaluation of auctions that we have used in this work, $irogion a single measure
when agents are all of the same type — in the sense of whichingiddrategy they
used — seems a bit narrow, and so we have experimented watmative forms of
evaluating of mechanisms.

6.1 Comparing markets

In [40] we experimented with using heuristic strategy as@lyo compute metrics for
different types of auction. The motivation for doing thisisfollows. Most of the prop-
erties that we might use to rate auctions, whether efficigdyith’sa, or metrics like
price dispersion [16], differ for the same auction as thedra use different trading
strategies. They are not properties of the traders, sircsdine traders generate differ-
ent efficienciesqs and price dispersions in different auctions, but they ateentirely
properties of the auctions either. Thus it is difficult to seith authority that a given
auction has a given property. What we can do, however, isacauseuristic strategy
analysis to establish what mixtures of trading strategidishwld at equilibrium, and
use this to compute an estimate of the properties that wengeested in.

Figure 8 shows the results of a heuristic strategy analgsitheé continuous double
auction and the clearing house auction with different nuisibétraders. For all of these
analyses we used three trading strategies, truth tetlimthe Roth-Erev strategye that
we used in the first pricing rule experiment, and the modificadf ziP proposed by
Preist and van TolRVT) [43]. Our choice of strategies was intended to examine the
relative performance of the human-like strategy? and the simple “program trader”
provided bypvT, with the performance of T measuring how far the markets are from
being strategy-proof (in a strategy-proof market thereisdvantage to not telling the
truth about one’s valuation for a good).

There are a number of conclusions that one can draw from tts il Figure 8.
First, there is a significant difference between the dioecfields of the continuous
double auction and the clearing house auction for any numbgaders. While each
strategy is a pure strategy equilibrium, the basins of eitra are rather different as
are the locations, along the edges and in the middle of tleetitin field, of the mixed
equilibria. Second, the difference becomes more markeldtyer the number of agents
— the basin of attraction of T shrinks as theDA includes more traders, and grows as
the cH includes more traders. The latter is in accordance withretesal results [48]
which predict that the disadvantages of truth-telling ohechs the number of traders
grows. Third, truth telling is not dominant in any of the metk so none of them are
strategy proof.

12 Roth and Erev originally introduced their approach as a Waglicating human behavior in
games [45].

13 Note that we have not indicated the direction of the field @npitots in the interests of read-
ability — the direction of flow is from the middle of the simpléowards the edges.
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Equilibrium|cH probability|payofficDA probability|payoff
r 0.38 1.00 0.05 0.86
RE 0.11 0.99 0.70 0.97
PuT 0.51 0.99 0.25 0.94

Table 1. Probabilities of equilibria for 10 agent markets

Itis also possible to draw more quantitative conclusioa&ifig 1000 random start-
ing points within the direction fields for each of the 10 ageaaring house and contin-
uous double auctions, we established which of the puresglyatquilibria these start-
ing points led to. Assuming that the starting points, eacthith represents a mix of
trading strategies, are equally likely, we could then cotajthe relative frequency of
occurrence of the pure strategies — these are given in TablewW, since we can eas-
ily establish whatever metrics we want for the equilibriuaints (again these are given
in Table 1), we can use the probabilities of reaching thesdliega to determine the
expected value of the metrics. For example for the 10 traderwe can compute the
expected efficiency as:

0.05 x 0.86 + 0.70 x 0.97 + 0.25 x 0.94 = 0.96
compared with
0.38 x 1.00 + 0.11 x 0.99 + 0.51 x 0.99 = 0.99

for the 10 tradecH.

Note that the assumption of equally likely start points i$ the only assumption
involved in this computation. Since the probability of aimg at a particular equilib-
rium is a function of the replicator dynamics, we are alsaasrg that the replicator
dynamics is an accurate description of trader behavior. €@mneargue this either way
— the only guarantee that the replicator dynamics give istti@stationary points in
the field are Nash equilibria.

6.2 Direct competition between markets

The comparison between markets described above is usafuhdirect. It compares
markets while still thinking of the markets as operatingsiolation — it tells us nothing
about how the markets would fare if they were in running ireial, as markets often
do in the real worl&. In [36], we looked at the relative performance of market@wh
they are in competition with one another for traders.

To this end, we ran a series of experiménighere traders were offered a choice of
markets at the start of every trading day, making this chogieg simple reinforcement

4 For example, Shah and Thomas [50] describe the competititween India’s National Stock
Exchange and the established Bombay Stock Exchange fa imatie stock of Indian com-
panies when the National Stock Exchange opened.

15 These experiments were run usingaT [22], an extension ofasa [21] that allows multiple
markets and provides both a mechanism for markets to chaders, and for traders to decide
which market provides them with the best profit.
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Fig. 9. Four markets that compete for traders.

learning based on the profit that they made in the marketnffe@awhich markets were
profitable over time). The profit that a given trader makesiimaaket is the profit from
trade — the difference between the trade price and the privaue of the trader —
minus any charges imposed by the markets. We allowed méatkeksarge because this
is a feature of real markets, and because the profit made getsas a natural basis of
comparison.

Figure 9 shows some typical results from [36]. Figure 9 (d)iclv gives the num-
ber of traders in each market at the start of every tradingsteyws how, as the agents
learn, the markets stratify by charges. As one might exjpleetlowest charging mar-
ket attracts the largest number of traders and the highesgiciy market attracts the
smallest number of traders. Note that even the highest tltangarket continues to at-
tract some traders — those that make a good profit even witbhtheges. Figure 9 (b),
which gives the cumulative profit of each market on each dagws how the lowest
charging market catches the higher charging markets aver. ffhese results are for
markets with a simple, fixed, policy for charging. [36] alsmsiders adaptive charging
policies — one that undercuts all other markets, one thatpttes until it has a large
market share and then increases prices, and one that whekaifi — showing that
the relationship between such policies has some of the @xitplof the relationship
between trading strategies.

7 Conclusion

Auctions are a powerful mechanism for resource allocatiomulti-agent systems and
elsewhere, and there are many situations in which one migkemse of them. How-

ever, it is not advisable to employ auctions “off-the-peg’as-some expensive failures
have demonstrated [31] — instead, it is necessary to cayédilbr auction mechanisms
for the particular niche that they are required to fill. Ourkvis intended to automate
this tailoring process. Using a combination of evolutignewsmputation, reinforcement
learning, and evolutionary game theory, we have succdgsailored variants of the



double auction for different purposes, and traders to dpénsthese auctions, and our
future work aims to extend the scope of this automated géoardn particular, we
can easily imagine combining the techniques we have destribre into a high-level
process for co-evolving markets and traders. For a fixed arésim we could evolve
traders, as in Section 4, and then fix the equilibrium setaifdrs and evolve parts of
the mechanism as in Section 5, evaluating evolved mecharjishas we did in Sec-
tion 6.1. Repeating this process will then allow us to creéedders that can operate
in the new mechanism. Demonstrating this co-evolutionaisakis the focus of our
current work.

We should note that while this high-level co-evolution is thng term goal of our
work on applying machine learning to mechanism designethes plenty of other areas
in which we can profitably use machine learning in the desfgauation mechanisms.
Two areas, in particular, intrigue us greatly. One is thejdetroduced by Posada [41,
42], that it is possible for traders to employ a “meta-stggten which their task is to
learn which of the standard trading strategies is best adopind to do this learning
during the course of an auction. While this approach is sintd the evolutionary game
theoretic analysis we discussed in Section 4, it differdat traders switch strategies
during the course of an auction rather than between auctigasre interested to exam-
ine the equilibria that emerge from this kind of behavioro#frer interesting idea, also
related to the analysis in Section 4, is that of [24], in wHi€luristic search is employed
to find equilibrium points. Adopting such an approach shaidphificantly reduce the
computation required to find equilibria when compared with current, exhaustive,
search.
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