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Abstract. In agent-based computational economics, many different trading strate-
gies have been proposed. Given the kinds of market that such trading strategies
are employed in, it is clear that the performance of the strategies depends heavily
on the behavior of other traders. However, most trading strategies are studied in
homogeneous populations, and those tests that have been carried out on hetero-
geneous populations are limited to a small number of strategies. In this paper we
extend the range of strategies that have been exposed to a more extensive analysis,
measuring the performance of eight trading strategies using an approach based on
evolutionary game theory.

1 Introduction

An auction, according to [2], is a market mechanism in which messages from traders
include some price information — this information may be an offer to buy at a given
price, abid, or an offer to sell at a given price, anask— and which gives priority to
higher bids and lower asks. The rules of the auction determine, on the basis of the offers
that have been made, the allocation of goods and money between traders. Auctions
have been widely used in solving real-world resource allocation problems [9], and in
structuring stock or futures exchanges [2]. Auctions are used for three reasons: (i) to
increase the speed of sale by providing a public forum where buyers and sellers can
look for trading partners (ii) to reveal information about traders’ valuations allowing
efficient transactions to take place, and (iii) to prevent dishonest dealing between the
representatives of the seller and the buyer.

There are many different kinds of auction. One of the most widely used is thedouble
auction(DA), in which both buyers and sellers are allowed to exchange offers simulta-
neously. The flexibility of double auctions means that theirstudy is of great importance,
both to theoretical economists and those seeking to implement real-world market places.
Thecontinuous double auction(CDA) is aDA in which traders make deals continuously
throughout the auction (rather than, for example, at the endof the auction). TheCDA
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for trading of equities, commodities and derivatives in markets such as New York Stock
Exchange (NYSE) and Chicago Mercantile Exchange.

Models ofCDAs have been extensively studied using both human traders andcom-
puterized agents. Starting in 1955, Smith carried out numerous experiments investigat-
ing the behavior of such markets, documented in papers such as [22, 23]. The experi-
ments in [22], for example, involved human traders and showed that even with limited
information available, and only a few participants, theCDA can achieve very high ef-
ficiency, comes close to the theoretical equilibrium, and responds rapidly to changing
market conditions. This result was in contrast to classicaltheory, which suggested that
high efficiency would require a very large number of traders.Smith’s results led to the
suggestion that double auction markets are bound to lead to efficiency irrespective of the
way that traders behave. Gode and Sunder [6] tested this hypothesis, introducing two
automated trading strategies which they dubbed “zero-intelligence”. The two strategies
Gode and Sunder studied werezero intelligence without constraint(ZI-U) andzero in-
telligence with constraint(ZI-C). ZI-U traders make offers at random, whileZI-C traders
make offers at random, but are constrained so as to ensure that traders do not make a
loss (it is clear thatZI-U traders can make a loss, and so can easily lead to low efficiency
markets). In the experiments reported in [6], theZI-C traders gained high efficiency and
came close enough to the performance of human traders that Gode and Sunder claimed
that trader intelligence is not necessary for the market to achieve high efficiency and
that only the constraint on not making a loss is important3.

This position was attacked by Cliff and Bruten [1], who showed that if supply and
demand are asymmetric, the average transaction prices ofZI-C traders can vary sig-
nificantly from the theoretical equilibrium4. They then introduced thezero intelligence
plus (ZIP) trader, which uses a simple machine learning technique to decide what of-
fers to make based on previous offers and the trades that havetaken place.ZIP traders
outperformZI-C traders, achieving both higher efficiency and approaching equilibrium
more closely across a wider range of market conditions (though [1][page 60] suggests
conditions under whichZIP will fail to attain equilibrium), prompting Cliff and Bruten
to suggest thatZIP traders embodied the minimal intelligence required.

A range of other trading algorithms have been proposed — including those that
took part in the Santa Fe double auction tournament [18, 19],the reinforcement learning
Roth-Erevapproach (RE) [17] and the expected-profit maximizingGjerstad-Dickhaut
approach (GD) [5] — and the performance of these algorithms have been evaluated un-
der various market conditions. However, many of the studiesof trader behavior leave
something to be desired. In particular, those described above, with the honorable ex-
ception of the Santa Fe tournament [18], concentrated on theefficiency of markets as
a whole and on markets in which the population of traders was homogeneous (in other
words they all used the same strategy for deciding what to bid).

3 In fact, for the markets tested in [6], even theZI-U traders achieved pretty high efficiency, they
were just outperformed byZI-C traders in this regard.

4 The experiments in [6], while reflecting typical market conditions, might be considered to
represent easy conditions from which to attain equilibrium. In contrast, the experiments in
[22] show convergence to equilibrium from a much wider rangeof initial conditions.



Both of these aspects are unsatisfactory from the perspective of someone who is
interested in deciding whether to use a specific automated trader in a given market. If
you want to adopt a trading agent to bid on your behalf, you don’t much care about the
efficiency of the market. What you care about is the profit you will make, and you’ll
quite happily use aZI-C trader if it makes you more profit than aZIP trader. Furthermore,
even if we look at profit, it is not enough to know what a given type of trader will do
in a homogeneous population. You’re only going to want to usethatZI-C trader if you
know that it will get you a good profit across all possible combinations of traders that
you will encounter (in a game-theoretic sense you’d like adopting theZI-C trader to
be a dominant strategy). Tesauro and Das addressed both these problems [24]. In their
paper, they examined the profit generated by a modified version of GD (MGD), ZI-C,
ZIP, and the Kaplan strategy [19] from the Santa Fe double auction tournament in both
homogeneous populations and mixed populations. The mixed populations studied in
[24] were made up of two different kinds of trader, with one trader of one type, and the
remainder of the traders being of the second type5.

One way to consider the results of the kind of study carried out in in [24] is as
an analysis of the stability of a homogeneous population. Ifthe analysis shows that a
single trader using strategyA in a population ofB traders gets a higher profit than
a homogeneous population of traders using strategyB, then there is an incentive to
introduce a singleA trader into a homogeneousB population, and that population is
not stable. However, this kind of analysis does not say whether introducing a second
A trader, or a third, or a fourth will necessarily be appropriate. As a result, these “one-
to-many” experiments, while they will tell us something about the relative merits of
A andB, will not give us any idea of the optimal mixture of traders (or, alternatively,
what is the best strategy to adopt given the existing mix). Toget closer to identifying
the optimal mix, Walshet al. [26] adopted techniques from evolutionary game theory,
and applied them to more complex mixtures of trading strategies than were used in
[24], an approach that has become known asheuristic strategy analysis. In particular,
one can compute plausible equilibria for heterogeneous populations, and thus identify
combinations of trading strategies that are likely to be adopted (assuming that traders
are picked from a limited pool of possible strategies).

This paper extends the work of [24] and [26] exploring a larger set of trading strate-
gies, thus expanding our understanding of the interaction between trading strategies,
and giving us a more complete understanding of the possible equilibria that may arise
in a continuous double auction. Such an analysis can also provide the groundwork for
learning new kinds of trading strategy, as illustrated in [13], as well as for evaluating
new varieties of auction such as those in [11].

2 Preliminaries

In this section we describe the precise scenario that we analyse in the rest of the paper.

5 The same kind of analysis was later carried used by Vytelingum et al. to evaluate their risk-
based bidding strategy [25].



2.1 The market

We are concerned with a specific kind of continuous double auction market (CDA). We
have a population of traders, each of which is either a buyer or seller. Buyers have a
supply of money which they seek to exchange for a certain kindof good, and sellers
have a supply of that good which they seek to exchange for money. Each trader has a
private valuethat specifies the value that they place on each unit of the good. Once the
market opens, buyers placebids, specifying to all other traders in the market the amount
of money that they are willing to exchange for a unit of the good (though we deal with
traders that wish to trade multiple units of the good, they dothis sequentially). Sellers
makeasks, specifying the amount of money they require in exchange fora unit of the
good. We use the termsoffer andshoutto mean either a bid or an ask.

The market is controlled by an auctioneer, who notes all the offers, and, as each
offer is made (offers are made sequentially in the implementation we use) compares
the highest bid with the lowest ask. If the highest bid is higher, or equal to, the lowest
ask, the offers arematched, and the auctioneer establishes atrade priceor sale price.
The trade price is constrained to be no greater than the bid price and no less than the
ask price — the auctioneer chooses the trade price to fall in this bid/ask spread6. A
trader with an offer that is matched is obligated to make the exchange at the trade price.
(The existence of the auctioneer, and the obligation to trade once offers have matched
distinguish our setup from, for example, that in the Santa Fetournament where traders
identified matches for themselves, and could choose whetheror not to exchange when
matches occurred [18].) If a bid is higher than two or more asks, the auctioneer gives
priority to the lower ask, and if an ask is made that is lower than two or more bids, the
auctioneer gives priority to the higher bid.

2.2 The traders

The traders we consider in this paper are all automated — whateconomists would call
program traders. Each trader uses a specific strategy to choose what offers tomake. The
trading strategies we study in this paper are a mixture of established strategies from the
literature, and some that we came up with ourselves. Those from the literature are:

– Zero Intelligence with Constraint (ZI-C), as introduced by Gode and Sunder [6].
Traders employing this strategy submit offers that are generated randomly subject
to a simple constraint. This constraint states that bids aredrawn from a uniform
distribution between the buyer’s private value and a specified lower bound (typi-
cally 0) while asks are restricted to the range between seller’s private value and a
specified higher bound (a value higher than any trader thinksthe good in question
is worth).

– Zero Intelligence Plus (ZIP), as introduced in [1].ZIP traders use a simple heuristic
to adjust their offers. Broadly speaking, traders increasetheir profit margin7 if re-
cent market activity suggests that doing so will still allowthem to trade, and reduce

6 Typical rules for choosing where to set the trade price are toset it in the middle of the bid/ask
spread, or to set it to the value of the earlier of the two offers to be made.

7 The profit margin for a trader is the difference between theirprivate value and their offer price.



their profit margin if recent market activity suggests they are making offers too far
from where the market is trading. The traders employ a simpleform of machine
learning to adjust their offers, smoothing out fluctuationsin the market.

– Truth-Telling (TT). Traders using this strategy submit shouts equal to their private
value for the resource being traded.TT is an interesting strategy to experiment with
since in strategy-proof markets8 TT will be a dominant strategy. The failure ofTT to
dominate is thus an indication of the degree to which tradersin a particular market
can benefit by clever strategic behavior.

– Pure Simple (PS), is an inadvertent copy of the strategy “Gamer” which was an
entrant in the Santa Fe tournament [19][page 90]9, and traders usingPSbid a con-
stant10% below their private value. This is not a strategy that one would expect to
perform well — Gamer placed24th out of30 entries in the Santa Fe tournament —
but, like TT is a useful control, and one that comfortably out-performsTT. Indeed,
as shown in [27], with the right choice of margin,PScan be very efficient.

– Roth-Erev (RE), introduced in [17], is a strategy that considers the problem of what
offer to make as being a reinforcement learning problem.RE experiments, making
offers and recording how many times they are successful, andmakes choices based
on the expected value of each possible offer, computed usingthe past probability
of success. We set the free parameters ofRE as described in [10].

– Gjerstad-Dickhaut (GD) as introduced in [5]. AGD trader makes its decision on
what to offer based on previous offers, but unlikeRE, GD uses offers made by all
other traders. AGD trader uses this list of past offers to estimate the likelihood of
any sensible bid (that is one in the gap between the highest bid and the lowest ask
at the time the offer is made) being accepted, and uses this probability distribution
to compute the offer with the highest expected profit.

Those we came up with are:

– Linear Gjerstad-Dickhaut (GDL). GD runs more slowly than other trading strategies
that we have been using, and it spends most of its time computing the probabil-
ity of offers being accepted — it computes this by fitting recent offers to a cubic
equation, and then uses the cubic to define the cumulative probability of a given
offer being accepted. Frustrated by the running time of experiments that usedGD,
we replaced the cubic with a piecewise linear approximationto createGDL, which
runs considerably faster, hoping that the performance dropwould not be too great.

– Estimated Equilibrium Price (EEP). If all traders are rational (in other words make
profitable offers) and make offers around the theoretical equilibrium, then the mar-
ket will be efficient. Thus bidding at the theoretical equilibrium is good for the
market as a whole. We were interested to test whether biddingat the theoretical
equilibrium is also good for individual agents andEEP is an attempt to evaluate
this. EEPseeks to make offers at the theoretical equilibrium, estimating this as the
mid-point of the highest accepted ask and the lowest accepted bid so far, and so our
estimate of the equilibrium is similar to of [25].

8 A strategy proof market, such as that discussed in [8], is onein which traders cannot manipulate
results in their favor by misrepresenting the extent to which they value resources.

9 The copy was inadvertent since we devisedPS in ignorance of the existence of Gamer.



This is, clearly, not an exhaustive selection — we could, forinstance, have included the
RB strategy from [25] — but is a large enough set of strategies tobe going on with.

Note that though the many of the strategies we use areadaptive, in the sense that the
offers they make change over time in response to other offers, a given trader uses the
same strategy throughout a given auction. This contrasts with the work of Posada [15,
16] which studies agents that are allowed to switch bidding strategy during an auction.

2.3 The simulation environment

All of the experiments reported here are based on the open-sourceJASA auction simu-
lator [12], devised by Steve Phelps of the University of Liverpool. The current version
of JASA implements aCDA marketplace much as described in [24] as well as all the
trading strategies described above. InJASA the auction runs for a number ofdays, and
each day is broken up into discreterounds. In each round, every trader is selected to
make an offer, and this selection takes place in a random order. At the end of every day,
every trader has its initial allocation of goods and money replenished, so that trading
on every day in a given experiment takes place under the same conditions, but trading
strategies that record information will remember what tookplace in previous days.

We ran every experiment described here for five trading days,and each day con-
sisted of300 rounds. The private values of traders are drawn at the start of the first
trading day of each experiment from a uniform distribution between100 and200. Ev-
ery experiment was repeated100 times.

3 Heterogeneous trading populations

In this section we describe the first series of experiments wecarried out with mixed
populations of traders. The methodology used for this series of experiments is that of
[24], outlined above. For the first group of experiments we used20 traders,10 buyers
and10 sellers. For each of the eight trading strategies, we ran an experiment in which all
but one agent used that strategy and the remaining agent usedanother strategy, carrying
out one such “one-in-many” experiment for each of the other strategies. In other words,
we tested every “one-in-many” combination. For all these experiments, we measured
the average profit of traders using both the trading strategies under test.

Tables 1 and 2 show the results of “one-in-many” tests for thefirst group of exper-
iments, those involving20 agents. Note that the standard deviations of the payoffs are
usually high, as a result of the fact that we are picking the private value of the “one”
agent at random. As a result it is inevitable that there will be times when the “one”
agent is an extra-marginal trader10 because it has a low private value (the “one” agent
is always a buyer) and in a market of savvy traders will not make any profit. Such oc-
currences will increase the standard deviation. Since the high standard deviations make
direct comparisons of the profits difficult, we carried out hypothesis tests (in particular
t-tests) to find out the confidence level for the “one” to “many” pairs of payoffs.

10 An extra-marginal trader is one with a private value to the right of the intersection of the
supply and demand curves for the market, and so should not trade if the market operates at its
theoretical equilibrium.



Many EEP Many GD Many GDL Many PS Many RE Many TT Many ZIC Many ZIP
1-EEP 8.027 8.529: 10.038 8.33: 10.036 10.348: 9.121 11.837: 9.302 12.431: 7.584 12.383: 9.483 10.216: 9.695
stdev (1.958) (12.943): (0.696) (12.514): (0.679) (11.661): (0.852) (13.955): (0.776) (12.695): (0.78) (13.957): (0.722)(11.75): (0.636)
rel - < < > > > > >

conf - 85.00% 90.00% 85.00% 95.00% 99.95% 97.50% < 75%

1-GD 9.29: 8.198 9.972 8.89: 10.018 12.249: 9.194 13.271: 9.308 13.492: 7.632 13.487: 9.475 11.6: 9.637
stdev (13.189): (1.93) (0.024) (13.229): (0.699) (15.651): (0.845) (15.749): (0.806) (15.864): (0.861) (14.33): (0.755) (13.313): (0.685)
rel > - < > > > > >

conf 75.00% - 80.00% 95.00% 99.00% 99.95% 99.50% 90.00%

1-GDL 9.598: 8.289 9.028: 10.02 9.96 12.501: 9.177 13.449: 9.285 13.87: 7.605 13.806: 9.459 11.693: 9.646
stdev (13.773): (1.801) (13.316): (0.704) (0.038) (15.571): (0.837) (15.824): (0.829) (15.805): (0.859) (14.753): (0.775) (15.1): (0.768)
rel > < - > > > > >

conf 80.00% 75.00% - 97.50% 99.50% 99.95% 99.75% 90.00%

1-PS 4.956: 8.108 5.405: 10.189 5.313: 10.191 9.281 8.926: 9.5 10.566: 7.719 9.281: 9.708 7.129: 9.838
stdev (7.262): (2.005) (7.821): (0.437) (7.617): (0.421) (0.349) (9.333): (0.587) (9.039): (0.7) (8.884): (0.522) (8.088): (0.509)
rel < < < - < > < <

conf 99.95% 99.95% 99.95% - < 75% 99.75% < 75% 99.90%

Table 1.Profits for agents using different trading strategies in a20 agentCDA market. The top line of each cell gives the average value of
the profits — the value to the left of colon is the average profitof the one agent, the value to the right is the average profit ofthe majority
populations. The second line gives the standard deviation of the profit. The third line indicates whether the “one” performs better (>) or
worse (<) than the “many” on average. The fourth line gives the confidence in this relationship.



Many EEP Many GD Many GDL Many PS Many RE Many TT Many ZIC Many ZIP

1-RE 6.88: 8.32 7.046: 10.119 6.956: 10.118 9.814: 9.319 9.422 11.339: 7.69 10.236: 9.664 10.454: 9.652
stdev (9.081): (1.542) (9.555): (0.519) (9.462): (0.508) (10.278): (0.552) (0.237) (9.879): (0.758) (10.914): (0.585) (11.549): (0.651)
rel < < < > - > > >

conf 90.00% 99.90% 99.90% < 75% - 99.95% < 75% 75.00%

1-TT 2.951: 8.291 3.514: 10.29 3.322: 10.294 6.175: 9.364 6.011:9.565 7.755 5.95: 9.802 4.737: 9.928
stdev (4.353): (1.929) (5.189): (0.307) (4.909): (0.29) (5.827): (0.513) (6.072): (0.463) (0.595) (5.373): (0.376) (6.301): (0.398)
rel < < < < < - < <

conf 99.95% 99.95% 99.95% 99.95% 99.95% - 99.95% 99.95%

1-ZIC 6.864: 8.485 7.657: 10.059 7.585: 10.065 9.282: 9.386 9.795: 9.437 10.503: 7.727 9.715 8.021: 9.743
stdev (10.387): (1.451) (11.024): (0.593) (10.893): (0.583) (11.969): (0.584) (12.907): (0.711) (12.04): (0.84) (0.125) (9.485): (0.563)
rel < < < < > > - <

conf 90.00% 97.50% 97.50% < 75% < 75% 97.50% - 95.00%

1-ZIP 8.592: 8.325 9.397: 9.984 9.704: 9.977 10.091: 9.327 11.128: 9.385 12.736: 7.678 12.098: 9.554 9.712
stdev (12.087): (1.558) (14.36): (0.753) (14.507): (0.771) (11.059): (0.637) (11.449): (0.624) (12.204): (0.758) (10.166): (0.524) (0.132)
rel > < < > > > > -

conf < 75% < 75% < 75% 75.00% 90.00% 99.95% 99.00% -

Table 2.Profits for agents using different trading strategies in a20 agentCDA market. The top line of each cell gives the average value of
the profits — the value to the left of colon is the average profitof the one agent, the value to the right is the average profit ofthe majority
populations. The second line gives the standard deviation of the profit. The third line indicates whether the “one” performs better (>) or
worse (<) than the “many” on average. The fourth line gives the confidence in this relationship.



These results give some suggestion of the complexities of bidding in continuous
double auctions. If we think of Tables 1 and 2 as payoff matrices for the game where
one player picks the strategy for the “one”, and the other picks the strategy for the
“many”, we can immediately rule outTT as a choice — it is dominated. This is the
same kind of analysis that is used in [25] to argue for the success ofRB traders. How-
ever, we also found more complex relationships than in [24, 25]. Thus, once we have
eliminatedTT from consideration,PScan be eliminated as a strategy for the “one”, as it
performs worse than any of the “many” against which it might be played, but it works
as a “many” strategy againstZIC. In a similar way,ZIC is not a great performer, but as
a “many” strategy will outperformPS, and as “one” strategy will outperformRE. RE

performs poorly as a majority strategy, but can generate higher profits thanZIP, a strong
performer, when it is the “one” (though the low confidence we have for this results
suggests that this performance is not consistent).

Looking at the high performing strategies, if an agent with astrategy other than
GD or GDL is in an otherwise homogeneousGD or GDL populations, that agent will do
better by switching toGD or GDL. In other words,GD andGDL come close to being
dominant strategies for the “one”. However each prevents the other from dominating.
The performance ofGDL is rather impressive — it even performs slightly better than
GD does when it’s the lone strategy amongst a population ofPS, RE, TT, EEP or ZIC

strategies (in most cases both in terms of the raw average payoff and confidence that it
outperforms the general population). Thus, it seems that the switch from cubic to linear
approximation might not only not hurt the strategy, but might even improve it.

When we look at slightly less well-performing strategies than GD and GDL, the
situation is less clear. Indeed from Tables 1 and 2 it is hard to get a good feel for the
relative merits ofRE, ZIP andEEP. A loneRE trader will outperform a set ofZIP traders,
a loneZIP trader will outperform sets ofEEP traders andRE traders, while a loneEEP

trader will outperform sets ofRE andZIP traders.

4 Evolutionary game-theoretic analysis

Since we can’t easily see how some combinations of strategies stack up against one
another using the analysis in the previous section, we turn to a more sophisticated ap-
proach,heuristic strategy analysis. Heuristic strategy analysis was first proposed by
Walsh et al. [26] precisely for the analysis of double auctions, and we have used it for
this purpose in several papers [13, 14] though on a rather smaller scale than here.

4.1 Heuristic strategy analysis

The idea behind the heuristic strategy analysis is as follows. If we wanted to obtain a
game theoretic solution to the continuous double auction, we would need to compute
a payoff matrix that gives the expected outcome for an agent that bids in a particular
way. Indeed, since there is no dominant strategy11 we would need to compute such
a payoff matrix forall possible offers or combinations thereof (since theCDA offers

11 Unlike, for example, the case of the buyer’s bid double auction [7].



multiple opportunities for making offers we would need to consider all possible offers
that might be made at all opportunities). Clearly such a matrix would be extremely
large, and that is why there is no analytical solution to the auction [21]. However, we
can get around the need to consider all possible combinations of offers. Since there are
a number of powerful strategies for computing the best offerto make — exactly the
ones we have been studying so far — we can reasonably assume that each trader in the
auction picks one of theseheuristic strategiesand lets that strategy pick offers. Under
such an assumption, not only does the game we are trying to analyse become a single
step game, but the number of possible strategies reduces to those that we know work
well.

Now, for small numbers of players and heuristic strategies,we can construct a rela-
tively small normal-form payoff matrix which we can analyseusing game theory. This
heuristic payoff matrixis calibrated by running many simulations of the auction. Ifwe
restrict the analysis to symmetric games in which each agenthas the same set of strate-
gies and the same distribution of private values (ortypesin the usual terminology of
game theory), we can reduce the size of the payoff matrix, since we simply need to
specify the number of agents playing each strategy to determine the expected payoff to
each agent. Thus for a game withk strategies, we present entries in the heuristic payoff
matrix as vectors of the form:

p = (p1, ...pk) (1)

wherepi specifies the number of agents who are playing theith strategy. Each entry
p ∈ P is mapped onto an outcome vectorq ∈ Q of the form:

q = (q1, ...qk) (2)

whereqi specifies the expected payoff to theith strategy. For a game withn agents, the
number of entries in the payoff matrix is given by

s =
(n + k − 1)!

n!(k − 1)!
(3)

For smalln and smallk this results in payoff matrices of manageable size. Forn = 20,
k = 3, as in the experiments we consider here, the symmetric payoff matrix contains
just 231 entries.

Given the payoff matrix, we have a full description of a game in which traders
pick between the heuristic strategies, and we can carry out an equilibrium analysis on
that game. Any equilibria that we find are only equilibria forthe game of choosing
between heuristic strategies, not for the game of choosing asequence of bids in a double
auction — it is possible, for example, for traders to use different heuristic strategies
than the ones we have analysed, in which case the equilibriumanalysis will not help.
However, as argued in [13], the equilibria of the heuristic strategy game are useful
precisely because they only consider strategies that are commonly known and widely
used. If we consider an exhaustive set of widely used strategies, we can be confident
that no commonly known strategy will generate different equilibria from the ones we
find, and thus the equilibria stand some chance of persistinguntil new trading strategies
become established.



4.2 Evolutionary game theory

Now, even given the heuristic payoff matrix, standard game theory does not tell us
which of the many possible Nash equilibrium strategies willresult.Evolutionary game
theory[3, 20] and its variants attack this problem by positing that, rather than comput-
ing the Nash strategies for a game using brute-force and thenselecting one of these to
play, traders are more likely to gradually adjust their strategy over time in response to
to repeated observations of their own and others’ payoffs. One approach to evolution-
ary game-theory uses thereplicator dynamicsequation to specify the frequency with
which different pure strategies should be played dependingon the payoffs of different
strategies:

ṁj = [u(ej , m) − u(m, m)] mj (4)

wherem is a mixed-strategy vector,u(m, m) is the mean payoff when all players play
m, andu(ej , m) is the average payoff to pure strategyj when all players playm, and
ṁj is the first derivative ofmj with respect to time. Strategies that gain above-average
payoff become more likely to be played, and this equation models a simple process
of learning by copying, in which agents switch to strategiesthat appear to be more
successful12. For any initial mix of strategies we can find the eventual outcome from
thisco-evolutionaryprocess by solvinġmj = 0 for all j to find the final mixed-strategy
of the converged population. This model has the attractive properties that: (i) all Nash
equilibria of the game are stationary points under the replicator dynamics; and (ii) all
focal points of the replicator dynamics are Nash equilibriaof the evolutionary game.

What this means is that the Nash equilibrium solutions are a subset of the stationary
points of the direction field of the dynamics specified by equation 4. Although not all
stationary points are Nash equilibria, we can use the direction field to see which solu-
tions are more likely to be discovered byboundedly-rationalagents. The Nash equilib-
ria at which a larger number of initial states will end up, areequilibria that are more
likely to be reached (assuming an initial distribution thatis uniform, and that the repli-
cator dynamics is an accurate reflection of the way that traders adjust their strategy13).

4.3 Results

We applied the analysis as described so far to sets of strategies we used in the “one-to-
many” experiments, concentrating on the strategies which we felt had the most interest-
ing interactions. Since the computational complexity of establishing the payoff matrix
depends on not only the number of traders, but also on the number of strategies, we
restricted our analysis to sets of three strategies (which also makes the results easier
to visualize), and for every strategy vectorp, allocated the given set of strategies ran-
domly between all traders (so that a given strategy has equalprobability of being used
by a buyer or a seller). Some of the results we obtained may be found in Figures 1 and
2.

12 Though they switchbetweenauctions rather than in the middle as in [15, 16].
13 Though the Nash equilibria cannot be disputed, the route by which they are reached is de-

pendent upon the precise assumptions encoded in the replicator dynamics, and those, like all
assumptions, are open to argument.



Figure 1 analyses the performance ofGDL andGD. While the “one-to-many” experi-
ments suggested that neither of these strategies dominatesthe other, the upper replicator
dynamics plot in Figure 1 suggests that, at least in the presence ofZIP — which as [1]
and our own analysis suggest is a pretty good strategy and thus a likely choice in trad-
ing scenarios — there is one equilibrium in which all tradersadoptGDL, and there is
another in which about half of the traders useGDL, the rest adoptingGD. If we switch
GD for a lesser strategy, such asEEP, as in the lower part of Figure 1, then the only
equilibrium is when all traders adoptGDL.

The results in Tables 1 and 2 suggest that the relationship betweenZIP and EEP

deserves a little more attention since oneEEPtrader out performs the averageZIP trader
when the latter are in a majority, while oneZIP trader will outperform the majorityEEP

traders. In other words, neither dominates the other. The upper part of Figure 2 shows
us how this relationship plays out when the other possible strategy isTT. HereZIP is
powerful enough that it is a pure strategy equilibrium, but there is a second equilibrium
in which roughly half of the traders useEEPand half useZIP. The lower part of Figure
2 shows us that switchingZIP for RE allowsEEP to become a pure strategy equilibrium
and thatRE is also a pure strategy equilibrium. Overall this suggests that, when faced
with EEP, RE is a less powerful strategy thanZIP.

5 Conclusions

The main point of this paper is to report on work that has extended the analysis of
the continuous double auction, and, in particular, the relative performance of trading
strategies for making offers in the continuous double auction. As things stand, it is not
clear whether there is a dominant strategy for the auction. However, if there is, then we
will only discover it empirically, and the best way that we currently have for making
this discovery is to continue to analyse the performance of different strategies against
one another. The approach taken in this paper is one, we believe promising, way to
do this. The “one-to-many” experiments that we started withallow us to identify pairs
of strategies where one strategy does not dominate the other(that is when “one” of
both strategies outperforms the “many” of the other). The heuristic strategy analysis
experiments then home in on the relative merits of these strategies, giving us a way to
compute equilibrium solutions for the continuous double auction under the assumption
that traders are restricted to pick from a fixed set of tradingstrategies. The results we get
are, as one would expect from a heuristic analysis, approximate, and not as exhaustive
as the analysis of the double auction in [27]. However, unlike those of [27], our results
are not restricted to a single trading strategy.

From this perspective, we can conclude three things. First,we can conclude that
our analysis has shown, once again, the value of evolutionary game theory in analysing
complex games. Second, we can conclude that the analysis hashighlighted the powerful
performance of ourGDL variant ofGD. Third, we can conclude thatEEP, while not a
winning strategy is also not a losing strategy in every situation. All of these results,
though, should be taken with a pinch of salt — all performances in theCDA, as we have
stressed above, are conditional on the mix of strategies present, and as [13] shows, it
is perfectly possible to find (indeed, automatically generate) a strategy that beatsGD.



However, given the dependence of results on the mix, the onlycourse open to us is to
keep expanding the set of strategies that are analysed in competition to each other, and
with that aim our work is a straightforward extension of thatof [24] and [26]. Of course,
we can go further in this direction, and a natural way to do this is to extend the set of
strategies withRB from [25] and the meta-strategy studied in [15, 16].

Finally, we should note that the research described here, like that of [24] and [26],
only views matters from the perspective of the traders. The analysis is all couched in
terms of the profits generated by different strategies — as described above, this is an
analysis that is appropriate from the perspective of selecting a trader to operate on one’s
behalf. This research will not, in contrast, tell one much about the effect of the different
trading strategies on the market as a whole. For that, one must turn to work like that of
[4].
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Fig. 1.Replicator dynamics direction field for 20 traders in aCDA where (top) the traders choose
between theZIP, GD andGDL strategies, and (bottom) the traders choose between theZIP, GDL

andEEPstrategies



Fig. 2.Replicator dynamics direction field for 20 traders in aCDA where (top) the traders choose
between theZIP, GD andGDL strategies, and (bottom) the traders choose between theZIP, GDL

andEEPstrategies


