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Abstract. In agent-based computational economics, many differading strate-
gies have been proposed. Given the kinds of market that sading strategies
are employed in, itis clear that the performance of theeggias depends heavily
on the behavior of other traders. However, most tradingesiies are studied in
homogeneous populations, and those tests that have be@daart on hetero-
geneous populations are limited to a small number of stiedetn this paper we
extend the range of strategies that have been exposed teariensive analysis,
measuring the performance of eight trading strategiegusirapproach based on
evolutionary game theory.

1 Introduction

An auction according to [2], is a market mechanism in which messagen fraders
include some price information — this information may be dferoto buy at a given
price, abid, or an offer to sell at a given price, @sk— and which gives priority to
higher bids and lower asks. The rules of the auction detarpoimthe basis of the offers
that have been made, the allocation of goods and money betireders. Auctions
have been widely used in solving real-world resource atlongproblems [9], and in
structuring stock or futures exchanges [2]. Auctions ardusr three reasons: (i) to
increase the speed of sale by providing a public forum whayets and sellers can
look for trading partners (ii) to reveal information abotaders’ valuations allowing
efficient transactions to take place, and (iii) to preveshdnest dealing between the
representatives of the seller and the buyer.

There are many different kinds of auction. One of the moselyidsed is thelouble
auction(bA), in which both buyers and sellers are allowed to exchanfgeso§imulta-
neously. The flexibility of double auctions means that tetidy is of great importance,
both to theoretical economists and those seeking to impiereal-world market places.
Thecontinuous double auctiofTDA) is aDA in which traders make deals continuously
throughout the auction (rather than, for example, at theddritle auction). ThecpA
is one of the most common exchange institutions, and is intffecprimary institution



for trading of equities, commaodities and derivatives in ke#s such as New York Stock
ExchangeNYsE) and Chicago Mercantile Exchange.

Models ofcDAs have been extensively studied using both human traderscand
puterized agents. Starting in 1955, Smith carried out nomeexperiments investigat-
ing the behavior of such markets, documented in papers suf2Pa23]. The experi-
ments in [22], for example, involved human traders and sldotvat even with limited
information available, and only a few participants, ttea can achieve very high ef-
ficiency, comes close to the theoretical equilibrium, arspomds rapidly to changing
market conditions. This result was in contrast to classtoabry, which suggested that
high efficiency would require a very large number of trad8rsith’s results led to the
suggestion that double auction markets are bound to ledfidieecy irrespective of the
way that traders behave. Gode and Sunder [6] tested thishwsgis, introducing two
automated trading strategies which they dubbed “zerdligg@ce”. The two strategies
Gode and Sunder studied werero intelligence without constraiiti-u) andzero in-
telligence with constrainfzi-c). zi-u traders make offers at random, while c traders
make offers at random, but are constrained so as to ensurgatars do not make a
loss (it is clear thari-u traders can make a loss, and so can easily lead to low efficienc
markets). In the experiments reported in [6], theC traders gained high efficiency and
came close enough to the performance of human traders thigt &a Sunder claimed
that trader intelligence is not necessary for the markettoexe high efficiency and
that only the constraint on not making a loss is impofant

This position was attacked by Cliff and Bruten [1], who shdwtleat if supply and
demand are asymmetric, the average transaction prices©ftraders can vary sig-
nificantly from the theoretical equilibriutnThey then introduced theero intelligence
plus (zIP) trader, which uses a simple machine learning techniquetidd what of-
fers to make based on previous offers and the trades thatthleee placezip traders
outperformzi-c traders, achieving both higher efficiency and approachiugjierium
more closely across a wider range of market conditions ¢hdti][page 60] suggests
conditions under whiclip will fail to attain equilibrium), prompting Cliff and Brute
to suggest thatip traders embodied the minimal intelligence required.

A range of other trading algorithms have been proposed —udict those that
took part in the Santa Fe double auction tournament [18fi8}einforcement learning
Roth-Erevapproach (RE) [17] and the expected-profit maximiz@jgrstad-Dickhaut
approach (GD) [5] — and the performance of these algorithawe heen evaluated un-
der various market conditions. However, many of the studfasader behavior leave
something to be desired. In particular, those describesdegghwith the honorable ex-
ception of the Santa Fe tournament [18], concentrated oefflaéency of markets as
a whole and on markets in which the population of traders veasdgeneous (in other
words they all used the same strategy for deciding what tp bid

% In fact, for the markets tested in [6], even thieu traders achieved pretty high efficiency, they
were just outperformed b -c traders in this regard.

4 The experiments in [6], while reflecting typical market citiwhs, might be considered to
represent easy conditions from which to attain equilibridmcontrast, the experiments in
[22] show convergence to equilibrium from a much wider raofmitial conditions.



Both of these aspects are unsatisfactory from the perspeatisomeone who is
interested in deciding whether to use a specific automaaeltrin a given market. If
you want to adopt a trading agent to bid on your behalf, youtdoach care about the
efficiency of the market. What you care about is the profit yailiwake, and you'll
quite happily use ai-c trader if it makes you more profit tharzee trader. Furthermore,
even if we look at profit, it is not enough to know what a givepeyof trader will do
in a homogeneous population. You're only going to want toths¢z!-c trader if you
know that it will get you a good profit across all possible camaltions of traders that
you will encounter (in a game-theoretic sense you'd likepdithy thezi-c trader to
be a dominant strategy). Tesauro and Das addressed boghgtadsems [24]. In their
paper, they examined the profit generated by a modified veficd (MGD), zI-C,
zIP, and the Kaplan strategy [19] from the Santa Fe double autdiornament in both
homogeneous populations and mixed populations. The mirgdlptions studied in
[24] were made up of two different kinds of trader, with oredter of one type, and the
remainder of the traders being of the second type

One way to consider the results of the kind of study carriedimin [24] is as
an analysis of the stability of a homogeneous populatiothdfanalysis shows that a
single trader using strategy in a population ofB traders gets a higher profit than
a homogeneous population of traders using stratégyhen there is an incentive to
introduce a singled trader into a homogeneous population, and that population is
not stable. However, this kind of analysis does not say wérdtitroducing a second
A trader, or a third, or a fourth will necessarily be approjgri@s a result, these “one-
to-many” experiments, while they will tell us something abthe relative merits of
A and B, will not give us any idea of the optimal mixture of traders, @ternatively,
what is the best strategy to adopt given the existing mix)g@bcloser to identifying
the optimal mix, Walstet al. [26] adopted techniques from evolutionary game theory,
and applied them to more complex mixtures of trading stiatethan were used in
[24], an approach that has become knowrhasristic strategy analysis$n particular,
one can compute plausible equilibria for heterogeneouslptipns, and thus identify
combinations of trading strategies that are likely to bepdeld (assuming that traders
are picked from a limited pool of possible strategies).

This paper extends the work of [24] and [26] exploring a lagg of trading strate-
gies, thus expanding our understanding of the interacteiwden trading strategies,
and giving us a more complete understanding of the possiplileria that may arise
in a continuous double auction. Such an analysis can alsaderthe groundwork for
learning new kinds of trading strategy, as illustrated i8][5as well as for evaluating
new varieties of auction such as those in [11].

2 Preliminaries

In this section we describe the precise scenario that wesaal the rest of the paper.

5 The same kind of analysis was later carried used by Vytefingtial. to evaluate their risk-
based bidding strategy [25].



2.1 The market

We are concerned with a specific kind of continuous doublé@uemarket €DA). We
have a population of traders, each of which is either a buyselier. Buyers have a
supply of money which they seek to exchange for a certain &ingbod, and sellers
have a supply of that good which they seek to exchange for yn&eeh trader has a
private valuethat specifies the value that they place on each unit of thd.gdoce the
market opens, buyers plabls, specifying to all other traders in the market the amount
of money that they are willing to exchange for a unit of thedj@ough we deal with
traders that wish to trade multiple units of the good, theyhi® sequentially). Sellers
makeasks specifying the amount of money they require in exchangafonit of the
good. We use the terntdfer andshoutto mean either a bid or an ask.

The market is controlled by an auctioneer, who notes all ffergy and, as each
offer is made (offers are made sequentially in the implewt#on we use) compares
the highest bid with the lowest ask. If the highest bid is kiglor equal to, the lowest
ask, the offers arenatchedand the auctioneer establishesade priceor sale price
The trade price is constrained to be no greater than the d pnd no less than the
ask price — the auctioneer chooses the trade price to fahisiid/ask spredd A
trader with an offer that is matched is obligated to make Kubange at the trade price.
(The existence of the auctioneer, and the obligation tcetatte offers have matched
distinguish our setup from, for example, that in the Santtoeienament where traders
identified matches for themselves, and could choose whethest to exchange when
matches occurred [18].) If a bid is higher than two or moresatike auctioneer gives
priority to the lower ask, and if an ask is made that is lowanthwo or more bids, the
auctioneer gives priority to the higher bid.

2.2 The traders

The traders we consider in this paper are all automated — @dwatomists would call
program tradersEach trader uses a specific strategy to choose what offerake. The
trading strategies we study in this paper are a mixture abdished strategies from the
literature, and some that we came up with ourselves. Thosetine literature are:

— Zero Intelligence with Constraintz(-C), as introduced by Gode and Sunder [6].
Traders employing this strategy submit offers that are gged randomly subject
to a simple constraint. This constraint states that bidsdeaen from a uniform
distribution between the buyer’s private value and a spatifower bound (typi-
cally 0) while asks are restricted to the range between sellensigrivalue and a
specified higher bound (a value higher than any trader thimkgood in question
is worth).

— Zero Intelligence Plusz({p), as introduced in [1]zIP traders use a simple heuristic
to adjust their offers. Broadly speaking, traders increhsé profit margir if re-
cent market activity suggests that doing so will still alldvem to trade, and reduce

8 Typical rules for choosing where to set the trade price asetdt in the middle of the bid/ask
spread, or to set it to the value of the earlier of the two sfferbe made.
" The profit margin for a trader is the difference between theimte value and their offer price.



their profit margin if recent market activity suggests they making offers too far
from where the market is trading. The traders employ a sirfgei@ of machine
learning to adjust their offers, smoothing out fluctuationthe market.

— Truth-Telling (rT). Traders using this strategy submit shouts equal to theiate
value for the resource being traded.is an interesting strategy to experiment with
since in strategy-proof marké&tsT will be a dominant strategy. The failure of to
dominate is thus an indication of the degree to which tratheasparticular market
can benefit by clever strategic behavior.

— Pure Simple #9), is an inadvertent copy of the strategy “Gamer” which was an
entrant in the Santa Fe tournament [19][page€ 9&hd traders usings bid a con-
stant10% below their private value. This is not a strategy that onaldexpect to
perform well — Gamer place2iith out of 30 entries in the Santa Fe tournament —
but, like TT is a useful control, and one that comfortably out-perfommsindeed,
as shown in [27], with the right choice of margirs can be very efficient.

— Roth-Erev RE), introduced in [17], is a strategy that considers the probbf what
offer to make as being a reinforcement learning problreexperiments, making
offers and recording how many times they are successfuliraakes choices based
on the expected value of each possible offer, computed tkangast probability
of success. We set the free parametemsmés described in [10].

— Gjerstad-Dickhaut@D) as introduced in [5]. AcD trader makes its decision on
what to offer based on previous offers, but unlike Gb uses offers made by all
other traders. AsD trader uses this list of past offers to estimate the likalthof
any sensible bid (that is one in the gap between the highéstrd the lowest ask
at the time the offer is made) being accepted, and uses thigpility distribution
to compute the offer with the highest expected profit.

Those we came up with are:

— Linear Gjerstad-DickhautpL). GD runs more slowly than other trading strategies
that we have been using, and it spends most of its time congptiie probabil-
ity of offers being accepted — it computes this by fitting meceffers to a cubic
equation, and then uses the cubic to define the cumulatieapiiity of a given
offer being accepted. Frustrated by the running time of erpnts that usedn,
we replaced the cubic with a piecewise linear approximatareatecbdL, which
runs considerably faster, hoping that the performance wagd not be too great.

— Estimated Equilibrium PriceggP). If all traders are rational (in other words make
profitable offers) and make offers around the theoreticailigium, then the mar-
ket will be efficient. Thus bidding at the theoretical equilum is good for the
market as a whole. We were interested to test whether bidatitige theoretical
equilibrium is also good for individual agents agéP is an attempt to evaluate
this. EEP seeks to make offers at the theoretical equilibrium, egtirgahis as the
mid-point of the highest accepted ask and the lowest acddjideso far, and so our
estimate of the equilibrium is similar to of [25].

8 A strategy proof market, such as that discussed in [8], iSondich traders cannot manipulate
results in their favor by misrepresenting the extent to Whikey value resources.
® The copy was inadvertent since we devisexin ignorance of the existence of Gamer.



This is, clearly, not an exhaustive selection — we couldijrietance, have included the
RB strategy from [25] — but is a large enough set of strategidmetgoing on with.
Note that though the many of the strategies we usadagtive in the sense that the
offers they make change over time in response to other offiegésen trader uses the
same strategy throughout a given auction. This contraskstive work of Posada [15,
16] which studies agents that are allowed to switch biddirefegy during an auction.

2.3 The simulation environment

All of the experiments reported here are based on the opercasmsA auction simu-
lator [12], devised by Steve Phelps of the University of kp@ol. The current version
of JAsA implements acDA marketplace much as described in [24] as well as all the
trading strategies described aboveJAsA the auction runs for a number days and
each day is broken up into discretaunds In each round, every trader is selected to
make an offer, and this selection takes place in a randonn.dgktithe end of every day,
every trader has its initial allocation of goods and monggterished, so that trading
on every day in a given experiment takes place under the santitions, but trading
strategies that record information will remember what tptace in previous days.

We ran every experiment described here for five trading daryd,each day con-
sisted of300 rounds. The private values of traders are drawn at the stahtedfirst
trading day of each experiment from a uniform distributi@tvzeen100 and200. Ev-
ery experiment was repeatédo times.

3 Heterogeneous trading populations

In this section we describe the first series of experimentsavaed out with mixed
populations of traders. The methodology used for this sefexperiments is that of
[24], outlined above. For the first group of experiments wed) traders,10 buyers
and10 sellers. For each of the eight trading strategies, we raraeranent in which all
but one agent used that strategy and the remaining agenaneéter strategy, carrying
out one such “one-in-many” experiment for each of the otlrateggies. In other words,
we tested every “one-in-many” combination. For all thespegiments, we measured
the average profit of traders using both the trading stresagnder test.

Tables 1 and 2 show the results of “one-in-many” tests fofitsegroup of exper-
iments, those involving0 agents. Note that the standard deviations of the payoffs are
usually high, as a result of the fact that we are picking theape value of the “one”
agent at random. As a result it is inevitable that there walltimes when the “one”
agent is an extra-marginal trad®because it has a low private value (the “one” agent
is always a buyer) and in a market of savvy traders will not enaky profit. Such oc-
currences will increase the standard deviation. Sinceititestandard deviations make
direct comparisons of the profits difficult, we carried oupbthesis tests (in particular
t-tests) to find out the confidence level for the “one” to “mapgirs of payoffs.

10 An extra-marginal trader is one with a private value to thghtriof the intersection of the
supply and demand curves for the market, and so should i ifrthe market operates at its
theoretical equilibrium.



Many EEP Many GD Many GDL Many PS Many RE Many TT Many ZIC ManyZ|

1-EEP 8.027 8.529:10.038 8.33:10.036 10.348:9.121  11.83729.3012.431: 7.584  12.383:9.483  10.216: 9.695
stdev (1.958) (12.943): (0.696) (12.514): (0.679) (11.661)882) (13.955): (0.776) (12.695): (0.78) (13.957): (0.7%42).75): (0.636)

rel - < < > > > > >

conf - 85.00% 90.00% 85.00% 95.00% 99.95% 97.50% < 75%

1-GD| 9.29:8.198 9.972 8.89:10.018 12.249:9.194  13.271:9.3083.492: 7.632  13.487:9.475 11.6: 9.637
stdev| (13.189): (1.93) (0.024) (13.229): (0.699) (15.651): 4BB(15.749): (0.806) (15.864): (0.861) (14.33): (0.7538.813): (0.685)

rel > - < > > > > >

conf 75.00% - 80.00% 95.00% 99.00% 99.95% 99.50% 90.00%
1-GDL| 9.598: 8.289 9.028: 10.02 9.96 12.501:9.177  13.449:9.2853.8717.605 13.806: 9.459  11.693: 9.646
stdev|(13.773): (1.801) (13.316): (0.704) (0.038) (15.571)887) (15.824): (0.829) (15.805): (0.859) (14.753): (0)7785.1): (0.768)

rel > < - > > > > >

conf 80.00% 75.00% - 97.50% 99.50% 99.95% 99.75% 90.00%
1-PS| 4.956:8.108 5.405:10.189  5.313:10.191 9.281 8.926:9.5 .56807.719 9.281: 9.708 7.129:9.838
stdev| (7.262): (2.005) (7.821): (0.437) (7.617):(0.421) (0B49 (9.333):(0.587) (9.039): (0.7) (8.884): (0.522) (8.088)509)

rel < < < - < > < <

conf 99.95% 99.95% 99.95% - < 75% 99.75% < 75% 99.90%

Table 1. Profits for agents using different trading strategies 20 agentcbA market. The top line of each cell gives the average value of
the profits — the value to the left of colon is the average padfihe one agent, the value to the right is the average profiiteofajority
populations. The second line gives the standard deviafitimegprofit. The third line indicates whether the “one” perfe better £) or
worse ) than the “many” on average. The fourth line gives the comfiggn this relationship.



Many EEP Many GD Many GDL Many PS Many RE Many TT Many ZIC ManyZ|
1-RE| 6.88:8.32 7.046:10.119  6.956: 10.118 9.814:9.319 9.422 .33917.69 10.236:9.664  10.454: 9.652
stdev| (9.081): (1.542) (9.555): (0.519) (9.462): (0.508) (1@R70.552) (0.237) (9.879): (0.758) (10.914): (0.585).64B): (0.651)
rel < < < > - > > >
conf 90.00% 99.90% 99.90% < 75% - 99.95% < 75% 75.00%
1-TT| 2.951:8.291 3.514:10.29 3.322:10.294 6.175: 9.364 6.95865 7.755 5.95:9.802 4.737:9.928
stdev| (4.353): (1.929) (5.189): (0.307) (4.909): (0.29) (5.820)513) (6.072): (0.463) (0.595) (5.373): (0.376) (6.8@Q.398)
rel < < < < < - < <
conf 99.95% 99.95% 99.95% 99.95% 99.95% - 99.95% 99.95%
1-ZIC| 6.864:8.485 7.657:10.059  7.585:10.065 9.282: 9.386 99437 10.503: 7.727 9.715 8.021:9.743
stdev|(10.387): (1.451) (11.024): (0.593) (10.893): (0.583).968): (0.584) (12.907): (0.711) (12.04): (0.84) (0.125) 9.485): (0.563)
rel < < < < > > - <
conf 90.00% 97.50% 97.50% < 5% < 5% 97.50% - 95.00%
1-ZIP| 8.592:8.325 9.397: 9.984 9.704:9.977 10.091:9.327 1194285 12.736:7.678  12.098: 9.554 9.712
stdev|(12.087): (1.558) (14.36): (0.753) (14.507): (0.771) (BB): (0.637) (11.449): (0.624) (12.204): (0.758) (10)166.524) (0.132)
rel > < < > > > > -
conf < 75% < 75% < 75% 75.00% 90.00% 99.95% 99.00% -

Table 2. Profits for agents using different trading strategies 20 agentcbA market. The top line of each cell gives the average value of
the profits — the value to the left of colon is the average paffihe one agent, the value to the right is the average profiteofmajority
populations. The second line gives the standard deviafitimegprofit. The third line indicates whether the “one” perfis better £) or
worse () than the “many” on average. The fourth line gives the comifigen this relationship.



These results give some suggestion of the complexitiesdafifng in continuous
double auctions. If we think of Tables 1 and 2 as payoff magrifor the game where
one player picks the strategy for the “one”, and the othekpite strategy for the
“many”, we can immediately rule outt as a choice — it is dominated. This is the
same kind of analysis that is used in [25] to argue for the esg0fRB traders. How-
ever, we also found more complex relationships than in [}, Phus, once we have
eliminatedTT from considerationpscan be eliminated as a strategy for the “one”, as it
performs worse than any of the “many” against which it mighttayed, but it works
as a “many” strategy againstc. In a similar way,zIC is not a great performer, but as
a “many” strategy will outperforn®es, and as “one” strategy will outperformRe. RE
performs poorly as a majority strategy, but can generatednigrofits tharzip, a strong
performer, when it is the “one” (though the low confidence vesenfor this results
suggests that this performance is not consistent).

Looking at the high performing strategies, if an agent witktrategy other than
GD or GDL is in an otherwise homogeneoa@s or GDL populations, that agent will do
better by switching tasD or GDL. In other wordsGD andGDL come close to being
dominant strategies for the “one”. However each preverd@other from dominating.
The performance o&DL is rather impressive — it even performs slightly better than
GD does when it's the lone strategy amongst a populatiorpRE, TT, EEP Or ZIC
strategies (in most cases both in terms of the raw averagafrnyd confidence that it
outperforms the general population). Thus, it seems tleagwhitch from cubic to linear
approximation might not only not hurt the strategy, but niig\en improve it.

When we look at slightly less well-performing strategieartteD and GDL, the
situation is less clear. Indeed from Tables 1 and 2 it is hauget a good feel for the
relative merits oRE, zIP andeEP. A loneRE trader will outperform a set ofip traders,

a lonezip trader will outperform sets afEptraders andre traders, while a loneep
trader will outperform sets ate andzip traders.

4 Evolutionary game-theoretic analysis

Since we can't easily see how some combinations of stratesjagck up against one
another using the analysis in the previous section, we tuenrhore sophisticated ap-
proach,heuristic strategy analysidHeuristic strategy analysis was first proposed by
Walsh et al. [26] precisely for the analysis of double autdicand we have used it for
this purpose in several papers [13, 14] though on a rathéeliesrsaale than here.

4.1 Heuristic strategy analysis

The idea behind the heuristic strategy analysis is as falldfwe wanted to obtain a

game theoretic solution to the continuous double auctieyweuld need to compute
a payoff matrix that gives the expected outcome for an adeittids in a particular

way. Indeed, since there is no dominant stratégye would need to compute such
a payoff matrix forall possible offers or combinations thereof (since dm offers

11 Unlike, for example, the case of the buyer’s bid double aumcf].



multiple opportunities for making offers we would need tmsidler all possible offers
that might be made at all opportunities). Clearly such a matould be extremely
large, and that is why there is no analytical solution to thetian [21]. However, we
can get around the need to consider all possible combirsatiboffers. Since there are
a number of powerful strategies for computing the best dfiemake — exactly the
ones we have been studying so far — we can reasonably assateat trader in the
auction picks one of thedeeuristic strategiesind lets that strategy pick offers. Under
such an assumption, not only does the game we are trying tgsaraecome a single
step game, but the number of possible strategies reduchsge that we know work
well.

Now, for small numbers of players and heuristic strategigscan construct a rela-
tively small normal-form payoff matrix which we can analysgng game theory. This
heuristic payoff matrixs calibrated by running many simulations of the auctionvéf
restrict the analysis to symmetric games in which each dugsnthe same set of strate-
gies and the same distribution of private valuestypesin the usual terminology of
game theory), we can reduce the size of the payoff matrixesime simply need to
specify the number of agents playing each strategy to déterthe expected payoff to
each agent. Thus for a game witlstrategies, we present entries in the heuristic payoff
matrix as vectors of the form:

p=(p1,.--Pk) (2)

wherep, specifies the number of agents who are playingithestrategy. Each entry
p € P is mapped onto an outcome vectoe () of the form:

q=(q,-qr) ()

whereg; specifies the expected payoff to thk strategy. For a game withagents, the
number of entries in the payoff matrix is given by

(n+k—1)
S o

For smalln and small this results in payoff matrices of manageable size sFer 20,
k = 3, as in the experiments we consider here, the symmetric paaifix contains
just 231 entries.

Given the payoff matrix, we have a full description of a gamenihich traders
pick between the heuristic strategies, and we can carryroatjailibrium analysis on
that game. Any equilibria that we find are only equilibria the game of choosing
between heuristic strategies, not for the game of chooséegaence of bids in a double
auction — it is possible, for example, for traders to useedédht heuristic strategies
than the ones we have analysed, in which case the equilitanatysis will not help.
However, as argued in [13], the equilibria of the heuristiategy game are useful
precisely because they only consider strategies that anenomly known and widely
used. If we consider an exhaustive set of widely used siegege can be confident
that no commonly known strategy will generate differentiligia from the ones we
find, and thus the equilibria stand some chance of persistitignew trading strategies
become established.



4.2 Evolutionary game theory

Now, even given the heuristic payoff matrix, standard gaheoty does not tell us
which of the many possible Nash equilibrium strategies ke#lult.Evolutionary game
theory[3, 20] and its variants attack this problem by positing thather than comput-
ing the Nash strategies for a game using brute-force andsiblenting one of these to
play, traders are more likely to gradually adjust theirtsigg over time in response to
to repeated observations of their own and others’ payoffe &proach to evolution-
ary game-theory uses thieplicator dynamicsequation to specify the frequency with
which different pure strategies should be played depenainthe payoffs of different
strategies:
rij = [u(ej, m) — u(m, m)]m; (4)

wherem is a mixed-strategy vectoi(m, m) is the mean payoff when all players play
m, andu(e;, m) is the average payoff to pure strategwhen all players playn, and
1 is the first derivative ofn; with respect to time. Strategies that gain above-average
payoff become more likely to be played, and this equation ef®d simple process
of learning by copying, in which agents switch to stratedlest appear to be more
successfdf. For any initial mix of strategies we can find the eventuacoute from
this co-evolutionaryprocess by solving:; = 0 for all j to find the final mixed-strategy
of the converged population. This model has the attractiepgrties that: (i) all Nash
equilibria of the game are stationary points under the capdr dynamics; and (ii) all
focal points of the replicator dynamics are Nash equilibfithe evolutionary game.
What this means is that the Nash equilibrium solutions atéaet of the stationary
points of the direction field of the dynamics specified by diued. Although not all
stationary points are Nash equilibria, we can use the dinedield to see which solu-
tions are more likely to be discovered byundedly-rationahgents. The Nash equilib-
ria at which a larger number of initial states will end up, aiilibria that are more
likely to be reached (assuming an initial distribution tisatiniform, and that the repli-
cator dynamics is an accurate reflection of the way that tsa@gjust their strategy).

4.3 Results

We applied the analysis as described so far to sets of sieateg used in the “one-to-
many” experiments, concentrating on the strategies whigfelt had the most interest-
ing interactions. Since the computational complexity dakbshing the payoff matrix
depends on not only the number of traders, but also on the euoftstrategies, we
restricted our analysis to sets of three strategies (whih makes the results easier
to visualize), and for every strategy vectgrallocated the given set of strategies ran-
domly between all traders (so that a given strategy has guahability of being used
by a buyer or a seller). Some of the results we obtained maguredfin Figures 1 and
2.

12 Though they switctbetweerauctions rather than in the middle as in [15, 16].

13 Though the Nash equilibria cannot be disputed, the route lighwthey are reached is de-
pendent upon the precise assumptions encoded in the teplégamamics, and those, like all
assumptions, are open to argument.



Figure 1 analyses the performancesafL andGb. While the “one-to-many” experi-
ments suggested that neither of these strategies domthatether, the upper replicator
dynamics plot in Figure 1 suggests that, at least in the poesefzip — which as [1]
and our own analysis suggest is a pretty good strategy aschthikely choice in trad-
ing scenarios — there is one equilibrium in which all tradedsptcpL, and there is
another in which about half of the traders @&®L, the rest adoptingb. If we switch
GD for a lesser strategy, such a&pr, as in the lower part of Figure 1, then the only
equilibrium is when all traders adopDL.

The results in Tables 1 and 2 suggest that the relationshipeleaziP and EEP
deserves a little more attention since @ePtrader out performs the average trader
when the latter are in a majority, while omer trader will outperform the majoritgep
traders. In other words, neither dominates the other. Tipewupart of Figure 2 shows
us how this relationship plays out when the other possilviesyy isTT. Herezip is
powerful enough that it is a pure strategy equilibrium, Ietre is a second equilibrium
in which roughly half of the traders ugEpPand half useip. The lower part of Figure
2 shows us that switchinggp for RE allowsEEPto become a pure strategy equilibrium
and thatrE is also a pure strategy equilibrium. Overall this suggdsts, when faced
with EEP, REis a less powerful strategy thamp.

5 Conclusions

The main point of this paper is to report on work that has edenthe analysis of
the continuous double auction, and, in particular, thetikegerformance of trading
strategies for making offers in the continuous double ancths things stand, it is not
clear whether there is a dominant strategy for the auctiowe¥er, if there is, then we
will only discover it empirically, and the best way that wer@antly have for making
this discovery is to continue to analyse the performanceftdrdnt strategies against
one another. The approach taken in this paper is one, wevbgli®mmising, way to
do this. The “one-to-many” experiments that we started witbw us to identify pairs
of strategies where one strategy does not dominate the (itraris when “one” of
both strategies outperforms the “many” of the other). Theriséic strategy analysis
experiments then home in on the relative merits of theséegiies, giving us a way to
compute equilibrium solutions for the continuous doubletaun under the assumption
that traders are restricted to pick from a fixed set of tradingtegies. The results we get
are, as one would expect from a heuristic analysis, apprf@enand not as exhaustive
as the analysis of the double auction in [27]. However, wiifose of [27], our results
are not restricted to a single trading strategy.

From this perspective, we can conclude three things. Rirstcan conclude that
our analysis has shown, once again, the value of evolutygyeme theory in analysing
complex games. Second, we can conclude that the analydiggdighted the powerful
performance of ouGDL variant of GD. Third, we can conclude th&ep, while not a
winning strategy is also not a losing strategy in every situia All of these results,
though, should be taken with a pinch of salt — all performarno¢hecDA, as we have
stressed above, are conditional on the mix of strategiesepteand as [13] shows, it
is perfectly possible to find (indeed, automatically getedra strategy that beat.



However, given the dependence of results on the mix, the @mlyse open to us is to
keep expanding the set of strategies that are analysed ipatdion to each other, and
with that aim our work is a straightforward extension of tbg24] and [26]. Of course,
we can go further in this direction, and a natural way to de thito extend the set of
strategies wittre from [25] and the meta-strategy studied in [15, 16].

Finally, we should note that the research described hdwetHiat of [24] and [26],
only views matters from the perspective of the traders. Tadyais is all couched in
terms of the profits generated by different strategies — asrd®d above, this is an
analysis that is appropriate from the perspective of selgettrader to operate on one’s
behalf. This research will not, in contrast, tell one mucbwtihe effect of the different
trading strategies on the market as a whole. For that, onétnusto work like that of

[4].
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Fig. 1. Replicator dynamics direction field for 20 traders in@aA where (top) the traders choose
between thelp, GD andGDL strategies, and (bottom) the traders choose betweenithebL
andeEPstrategies
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Fig. 2. Replicator dynamics direction field for 20 traders in@aA where (top) the traders choose
between thelp, GD andGDL strategies, and (bottom) the traders choose betweenithebL
andeEPstrategies



