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Abstract. Auctions can be thought of as a method for resource allo-
cation. The economic theory behind such systems is mechanism design.
Traditionally, economists have approached design problems by studying
the analytic or experimental properties of different mechanisms. An al-
ternative is to view a mechanism as the outcome of some evolutionary
process involving buyers, sellers and an auctioneer, and so automatically
generate not just strategies for trading, but also strategies for auctioneer-
ing. As a first step in this alternative direction, we have applied genetic
programming to the development of an auction pricing rule for double
auctions in a wholesale electricity marketplace.

1 Introduction

Much recent work in the field of Multi-Agent Systems (mas) has focused on
resource allocation problems, for example [8, 15]. These problems are especially
difficult to solve efficiently in an open system if the values which agents place
on resources, or the values of their human principals, are private and unobserv-
able. In such a situation, the difficulty facing somebody wishing to allocate the
resources to those who value them most highly is that participating agents can-
not necessarily be relied upon to report their private values truthfully; there
is nothing to prevent “greedy” agents from exaggerating their resource require-
ments. Auction mechanisms attempt to overcome this difficulty by having agents
support their value-claims with hard cash. This has two advantages. First it
punishes greedy agents by making them pay for the resources that they have
oversubscribed to (alternatively one can think of this as preventing agents from



oversubscribing by forcing them to pay a higher price than they would have to
pay for the resources they actually need). Second, it allocates resources to the
agents who pay the most, which should be the agents who value the resources
most highly.

Designing mechanisms to achieve specific economic requirements, such as
achieving market efficiency or maximising social welfare, against self-interested
intelligent traders, is no trivial matter as can be seen from accounts of the auc-
tion design process for the recent radio spectrum auctions in the UK [16] and
the US [7, 18]. The economic theory of mechanism design approaches the task of
designing efficient resource allocation mechanisms by studying the formal, ana-
lytical properties of alternative mechanisms [14, 28]. However, for some kinds of
mechanisms, including continuous double auctions [10], the mechanisms are too
complex to admit analytical solutions. Because of these complexities, economists
are increasingly turning to computational methods in an attempt to take what
has been called an “engineering approach” [25, 27] to problems in microeco-
nomics. We follow the computational approach in this paper. However, we also
take what we believe is a step beyond existing work by using computational
methods to design the auction rules themselves, rather than just explore their
behaviour.

2 Co-evolution

One approach to computational microeconomic design is to use techniques from
machine learning to explore the space of possible ways in which agents might
act in particular markets. For example, reinforcement learning has been used
to explore bidding patterns in auctions [22, 25] and establish the ways in which
price-setting behaviour can affect consumer markets [30]. Another approach is
to use techniques from evolutionary computing, that is from genetic algorithms
[13] and genetic programming [17].

Inspired by the biological metaphor of evolution, genetic algorithms code
aspects of a solution to a problem in an artificial “chromosome” (typically a bi-
nary string) and then breed a population of chromosomes using techniques like
crossover (combining bits of the strings from different individuals) and mutation
(flipping individual bits). Genetic programming extends this approach by evolv-
ing not a bit-string-encoded solution to a problem, but an actual program to
solve the problem itself. Programs are encoded as s-expressions and modelled as
trees (nodes are function names and branches arguments of those functions); and
these trees are subject to crossover (swapping subtrees from different programs)
and mutation (replacing subtrees with random subtrees). Whichever approach
is used, the best individuals, evaluated using a fitness function, are kept and
“bred”; and bad individuals are rejected. However, deciding which individuals
are the best is a hard problem.

Evolutionary approaches perform a search through a space of solutions with
the theoretical advantage that random jumps around the search space—created
by crossover and mutation—can prevent the system from getting stuck in local



optima, unlike other machine learning techniques. Unfortunately, in practice this
is not always the case at least partly because what constitutes the best fitness
measure can change over time. To overcome this problem, some researchers have
turned to co-evolution [1, 12, 20], and the aim of our work is to apply co-evolution
to economic mechanism design.

In co-evolution, simultaneously evolving populations of agents interact, pro-
viding each other with a fitness measure that changes as the agents evolve. In
successful applications, an “arms race” spiral develops wherein each population
spurs the other(s) to advance and the result is continuous learning for all popula-
tions. However, this has been notoriously difficult to achieve. Often populations
settle into a mediocre stable state, reaching a local optimum and being unable
to move beyond it. Consequently, there is a growing body of work examining
the dynamics of co-evolutionary learning environments in an attempt to iden-
tify phenomena that contribute to success [2, 6, 9, 23]. The following aspects are
of particular importance (some of which are relevant for both evolutionary and
co-evolutionary techniques):

1. choice of representation for individuals within each population;
2. definition of a fitness function for determining which individuals in a popu-

lation will reproduce;
3. choice of operators and proportion of population(s) to be used for reproduc-

tion;
4. selection of learning experiences for individuals (i.e., who interacts with

whom, how many times and how frequently);
5. size of population and number of populations;
6. avoidance of collusion wherein members of different populations can work

together to make non-optimal moves that may produce better short-term
results for each but may cause the populations as a whole to get stuck in
local optima; and

7. a clearly defined vision of the fitness landscape and how to measure progress
so that one can even recognize if a local (or indeed global) optimum has been
reached.

Note that the notion of collusion in co-evolution is not necessarily the same as
the notion of collusion in auction theory (although the concepts are related).
Collusion in co-evolution is where members of the co-evolving populations help
each other to score high fitness, the by-product being that the populations as a
whole settle into a local optimum. Collusion in auction theory is where several
bidders work together to ensure that they trade at a higher profit than they
would otherwise have obtained were they not working together. For example, a
group of buyers might band together to purchase goods for less than they would
otherwise pay [19].

We see efficient mechanisms evolving through repeated interactions between
participants who may also be evolving individually—thus we believe that the
co-evolutionary methodology is highly appropriate for our problem. Thus it is
our long term aim to understand the above aspects for the evolution of trading
strategies and auction rules.



In our work, we are using genetic programming (gp) [17] to represent indi-
viduals with different roles in an auction: the auctioneer, and the two types of
traders (buyers and sellers). Through the interactions of the traders, individual
and group trading strategies evolve, as well as auction mechanisms themselves.
We view the mechanisms as “hosts” and the trading strategies as “parasites”.
If greedy, non-truthful strategies were to emerge, then we would hope that the
auctioneer population would adapt defenses, and that strategy-proof, incentive-
compatible mechanisms would evolve. Investigation of such an approach is the
long-term aim of our research, and to our knowledge we are the first to apply ge-
netic programming and co-evolution to mechanism design (though [4] describes
similar work—this is discussed in more detail in Section 5).

Here, we report our initial work towards this aim. In Section 3, we describe
the scenario we are studying. Section 4 then describes our use of genetic pro-
gramming to co-evolve trading strategies for buyers and sellers in these auctions,
and some of our preliminary results in using genetic programming to evolve auc-
tion pricing rules. Section 5 discusses how these results fit into our overall plan
of work, and describes some future directions. Finally, Section 6 concludes with
a brief summary.

3 The Experimental Scenario

To provide a multi-agent test-bed for such an approach we have adopted the
wholesale electricity market auction simulation model of Nicolaisen et al. [22].
In this section, we provide a detailed description of the market model used in
[22] as a preliminary to understanding both the application of our approach and
the results we have obtained.

In the scenario explored in [22], a number of traders buy and sell electricity
in a discriminatory-price1 continuous double auction. Every trader has a private

value for the electricity that they trade; for buyers this is the price that they can
obtain in a secondary retail market and for sellers this reflects the costs associated
with generating the electricity. Here, as in most work in auction theory, this
value is considered private to individuals—because the traders are always trying
to make a profit themselves (what we are calling “local profit”), sellers are not
willing to reveal how little they might accept for units of electricity and buyers
are not willing to reveal how much they might pay for units of electricity.

Trade in electricity is affected by capacity constraints; every trader has a finite
maximum capacity of electricity that they can generate or purchase for resale.
The generating capacity that each individual buyer, Bi can resell is written as
GCBi

, and the generating capacity that each seller Sj can generate is written as
GCSj

. The market proceeds in rounds of trading. In each round, all the traders

1 In any auction that trades multiple items and so has several traders buying and/or
selling simultaneously, there is a choice to be made about the price at which trades
occur. In uniform price auctions, all trades happen at the same price. In discrimina-
tory price auctions, trades take place at prices which are determined by the values
that the traders have indicated they prefer.



are given the opportunity to bid in a random order. Each trader selects a price
and submits a bid or an ask—in double auction terminiology, buyers make “bids”
and sellers make “asks”, bids are offers to buy at a given price and asks are
offers to sell at a given price—at that price and with a quantity equal to their
generating capacity. Traders may “pass” if they do not wish to submit a bid
or ask. The auctioneer then matches bids and asks, and sets the trade price

at which units of capacity are traded. The market proceeds until a maximum
number of auction rounds is reached.

Traders seek to maximise their own local profit, and clearly this depends on
the price that they buy/sell their capacity for. In particular, the local profit of
an individual buyer, Bi , is calculated as:

ProfitBi
=

NTBi∑

k=1

private valuek − trade pricek

where NTBi
is the number of goods traded by buyer Bi . Similarly, the local

profit of a seller Sj is:

ProfitSj
=

NTSj∑

p=1

trade pricep − private valuep

where NTSj
is the number of goods traded by seller Sj . Thus for both buyers and

sellers, their profit on a given trade is just the difference between the amount
for which they buy or sell and their private value.

In addition to the local profit, we can also define what we call the global

profit, which is the total profit across all the buyers and sellers:

GlobalProfit =

NB∑

i=1

ProfitBi
+

NS∑

j=1

ProfitSj

where NB is the number of buyers and NS is the number of sellers in the market.
It is the job of the market to maximise the global profit. The maximum value
of global profit is where every buyer and seller bids or asks their private value.
This is not typically the same as sellers selling at their private value and buyers
buying at their private value—otherwise the global profit would be zero—since
the auctioneer typically sets the trade price somewhere above the ask price and
below the bid price. If the global profit falls below the maximum, it means that
more profit could be generated if the goods were distributed differently (to buyers
that valued them more highly, for example).

It is possible to measure how well the market as a whole is operating by
calculating how close the profit generated is to the maximum global profit that
is possible. In real life, of course, this cannot be done, since there is no way
of knowing the private values of the participants. However, in a simulation we
know what the private values are, and so can compute local profits, and then
global profit. It is also possible to calculate the theoretical profit TP , which is



Relative Capacity
1/2 1.00 2.00

stdev stdev stdev
Buyer MP -0.13 (0.09) Buyer MP -0.15 (0.09) Buyer MP 0.10 (0.30)
Seller MP 0.55 (0.38) Seller MP 0.38 (0.33) Seller MP -0.10 (0.25)

2
Efficiency 99.81 (0.02) Efficiency 96.30 (0.05) Efficiency 99.88 (0.06)

Relative Buyer MP -0.22 (0.12) Buyer MP -0.13 (0.10) Buyer MP 0.13 (0.33)
Concentration Seller MP 0.80 (0.53) Seller MP 0.28 (0.35) Seller MP -0.10 (0.26)

1
Efficiency 92.13 (0.09) Efficiency 94.59 (0.07) Efficiency 100.00 (0.00)
Buyer MP -0.21 (0.12) Buyer MP -0.14 (0.08) Buyer MP 0.09 (0.24)
Seller MP 0.67 (0.46) Seller MP 0.30 (0.31) Seller MP -0.07 (0.19)

1/2
Efficiency 91.84 (0.09) Efficiency 94.24 (0.07) Efficiency 100.00 (0.00)

Table 1. Market power and efficiency outcomes for the best-fit mre algorithm with
1000 auction rounds and parameter values s(1) = 9.00, r= 0.10, and e = 0.20. Refer to
[22] for a detailed description of the mre parameters: r the recency parameter; e the
experimentation parameter and s(1) the scaling parameter.

just the value of the global profit when all traders bid or ask at their private
values. The usual way to measure how well a market is operating, is to calculate
market efficiency, ME :

ME =
GlobalProfit

TP

expressed as a percentage. There are two parts to the theoretical profit, TPB ,
the theoretical profit made by the buyers, and TPS , that made by the sellers.

Market efficiency, of course, looks at both buyer and seller profits together.
Thus it can obscure asymmetries in the market where, for example, buyers are
making lots of profit at the expense of sellers—when the market is skewed it
is still possible to get high efficiency, but there is obviously something wrong
with the market in terms of fairness. Two other measures, measures of market
power MP , identify how close the buyers and sellers come to sharing the profits
equally. Buyer market power is the difference between the actual profits earned
by the buyers and the profits they would earn were all buyers and sellers trading
at their private values, expressed as a fraction of the theoretical profits available
to the buyers:

BuyerMP =
TPB −

∑NB

i=1
ProfitBi

TPB

Seller market power is definined in similar way:

BuyerMP =
TPS −

∑NS

j=1
ProfitSj

TPS

Clearly market efficiency and market power will depend on a number of factors,
and the ones investigated in [22] are relative concentration (rcon) and relative

capacity (rcap). rcon is the ratio of the number of buyers to the number of
sellers:

rcon =
NS

NB



and rcap is the relative generating capacity of each group:

rcap =

∑NB

i=1
GCBi∑NS

j=1
GCSj

The main results from [22] are summarised in Table 1. Each cell of the table
corresponds to particular values for rcon and rcap. These are obtained for
agents that use a myopic reinforcement learning algorithm (which is a modifica-
tion of the Roth-Erev algorithm [26]) to choose prices at which to trade. Using
this approach each agent chooses to bid or ask at a value other than its private
value, selecting the deviation from the private value by picking one of K possible
“mark-ups”, and the agent then receives a reward directly proportional to the
profits that result from this bid or ask. The agent makes the choice by gener-
ating random numbers according to a probability distribution built up linearly
from the cumulative rewards for each possible action. The modified Roth-Erev
algorithm (mre) has three main parameters: r the recency parameter; e the
experimentation parameter and s(1) the scaling parameter.

Because traders use stochastic strategies, the sensitivity of these outcomes
to particular values of the pseudo-random number generator seed was tested by
running the experiment 100 times with different seeds on each iteration. For each
variable we reproduce the average result, followed (in Table 1) by the standard
deviation in parentheses. These results are significant because they indicate that
there are market biases inherent in the discriminatory-price auction rules. For
example, one would expect that Seller MP should increase as rcap increases,
but this is not what is found by experimentation. Nicolaisen et al. [22] conclude
that the inherent market-structure is responsible for failure of this hypothesis.

This electricity scenario was selected for our research because it focuses on
market power and this seems an appropriate focus for investigating the evolu-
tion of auction rules. As agents evolve successful extra-marginal strategies, their
market power indices will increase. For example, if sellers were able to employ
collusive price-fixing strategies, we should expect to see their market power in-
dices grow. Different auction rules may have differing abilities to counter this
kind of tactic; hence, market power outcomes are an important quantative metric
to consider in assessing auction designs.

4 Co-evolution using Genetic Programming

Having outlined the scenario we are using, we now describe our work with this
scenario. There are five parts to this description. In the first part we detail the
functioning of the auction mechanism. In the second part we explain how we
use genetic programming to evolve traders and auctioneers. In the third and
fourth parts, which include the main results of the paper, we describe two sets
of experiments using this set-up. Finally the fifth part gives some pointers to
our more recent work.



4.1 The market set-up

We can think of the electricity market in its most general form as an iterated
game between three types of agents:

– Sellers

– Buyers

– Auctioneers

Each iteration of the game involves three steps. First the traders, that is the set
of all buyers and sellers, make a move. These moves collectively indicate how
many units of generating capacity they want to trade and at what price they
wish to trade. The auctioneer then moves, matching traders based on the moves
that the traders made previously. Finally the traders either accept or reject the
matches suggested by the auctioneer.

In the first step of the game, sellers have the choice of making one of two
moves—they either issue an ask, ask(units, price), or they pass, pass().
Similarly, buyers have the choice between bidding, bid(units, price), or pass-
ing, pass(). In the second step, Auctioneers have a choice between matching
buyers and sellers (or more accurately the bids and asks issued by buyers and
sellers), match(buyer, seller, price, quantity), or they can pass(). Note
that during an auctioneer’s turn, she can make either multiple match moves or
a single pass move. The key to the operation of the market is the auctioneer’s
job of matching buyers and sellers, based on their current bid and ask moves.
In our work, the matching is carried out using the 4-heap algorithm [32] and
works as follows.

We can represent the current bids and asks in two tables. The bid table
is sorted in descending order, from highest price to lowest. The ask table is
sorted in ascending order, from lowest price to highest. For each good for which
there exists either a bid or an ask, there is an entry in each table, indicating
the trade price and the buyer or seller. The matching process simply matches
corresponding rows in the two tables, until the price in the bid row falls below
the price in the ask row. As an example, consider the following moves for a
market containing three buyers and three sellers:

B0 ask(2, 10)

B1 ask(1, 20)

B2 ask(2, 5)

S0 bid(2, 15)

S1 bid(2, 8)

S2 bid(1, 9)

The matching algorithm then matches the bids that offer above the ask price,
matching the highest bid with the lowest ask to generate the largest surplus.
Note that bids and asks for multiple units are broken down into multiple bids
and asks for single items:



bids asks
B1 20 → 8 S1
B0 10 → 8 S1
B0 10 → 9 S2
B2 5 15 S0
B2 5 15 S0

Here the first three pairs of entries match, the last two do not. The auctioneer’s
response would then be to make all the matches (the auctioneer will only pass
when there are no matches):

match(B1,S1, trade price0, 1)
match(B0,S1, trade price1, 1)
match(B0,S2, trade price2, 1)

Any unmatched bids or asks remain in the market. Part of the auctioneer’s job is
to determine the trade price, and it is evolving the rule for making this decision
that is the overall goal of the experiments we report here.

For the experiments described below, we used our own Java implementa-
tion of the 4-heap algorithm. This software is available under an open-source
license at http://jasa.sourceforge.net/. All price information was encoded
using double-precision floating point variables and all quantity information was
encoded using integers.

4.2 The genetic programming setup

We are trying to evolve agents as players in the market game described above.
To do this, we need to evolve strategies for each type of player, given the types
of moves that each player can make. For a buyer, this is whether to pass in a
given round or to make a bid; and if a bid is made, how many goods to bid for
at what price. For a seller, this is whether to pass in a given round or to put
in an ask; and if an ask is made, how many goods to ask for at what price. For
an auctioneer, this is how to match bids and asks and to determine the trading
prices. For the moment, we are using the 4-heap algorithm, so here we are only
evolving a strategy for determining the trading prices based on the matched ask
and bid prices.

To allow for a variety of trading strategies we consider each game to take place
between seven players—1 auctioneer (A), 3 buyers (B0, B1, B2) and 3 sellers (S0,
S1, S2). Each player is represented by a population of agents—here we use 100
as illustrated in Table 2. To implement the agents, we made use of a Java-based
evolutionary computation system called ecj.2 ecj implements a strongly-typed
gp [21] version of Koza’s [17] original system. For all of the gp experiments in
this paper, the standard Koza parameters were used in combination with the
standard Koza gp operators. The functions given in Tables 3, 4 and 5 were used
as the gp function-set, and the initial populations were generated randomly using
these functions. As is usually the case with gp, individuals are tree structures
composed of these functions.

2 http://www.cs.umd.edu/projects/plus/ec/ecj/



A B0 B1 B2 S0 S1 S2

A0 B0,0 B0,1 B0,2 S0,0 S0,1 S0,2

A1 B1,0 B1,1 B1,2 S1,0 S1,1 S1,2

A2 B2,0 B2,1 B2,2 S2,0 S2,1 S2,2

...
...

...

A99 B99,0 B99,1 B99,2 S99,0 S99,1 S99,2

Table 2. Each player is a population of 100 agents.

We begin with random initial populations, we establish the fitness of each
population, then pick individuals to breed the next generation and repeat. The
fitness of traders is given by their local profit over a number of iterations of the
game, and the fitness of the auctioneer is given by the global profit. Since we are
dealing with 100-strong populations for each player in the game we need to play
a number of rounds of the game for each generation. The algorithm for handling
a single generation is shown in Figure 1 (the rows and columns mentioned there
refer to Table 2), where K determines the number of games played to establish
the fitness of each set of strategies. Once fitness is established, individuals are
selected for breeding using tournament selection [11], with a tournament size of 7.
The crossover operator is applied with a probability of 0.9, and the reproduction
operator is applied with a probability of 0.1, as per standard Koza gp [17].

4.3 Co-evolution of Trading Strategies

In the first experiments we carried out, we evolved separate populations of strate-
gies for each trader in the electricity market scenario, but did not try to evolve
the auctioneer. Instead, the auctioneer used a standard discriminatory price rule
for establishing the trading prices, the aim being to calibrate this work against
the results provided by [22]. Thus the scenario is basically that described in Sec-
tion 3, the only difference being that instead of using the modified Roth-Erev
algorithm to select prices, buyers and sellers select prices by evaluating functions
that were evolved using genetic programming.

randomly shuffle the 100 population members within each column

for i ← 0 to 99 {
for j ← 1 to K {
play one market game

}
calculate the fitness for row i

}
perform reproduction and selection

Fig. 1. The algorithm for establishing the fitness of players in the market game.



Function Arguments Return-
type

Description

+ (+ number number) number Addition
− (− number number) number Subtraction
/ (/ number number) number Division
∗ (∗ number number) number Multiplication
1 none number 1
DoubleERC none number A double precision float-

ing point ephemeral ran-
dom constant in the range
(0..1).

QuoteBidPrice none number The current bid quote
QuoteAskPrice none number The current ask quote

Table 3. gp functions common to all function-sets

Function Arguments Return-
type

Description

< (< number number) boolean Less-than function
= (= number number) boolean Equals function
> (> number number) boolean Greater-than function
True none boolean True
PrivateValue none number The agent’s private valua-

tion for electricity
Nand (Nand boolean boolean) boolean Not-and boolean operator
IfElse (IfElse boolean number number) number Return 2nd argument if

condition is true, other-
wise return 3rd argument.

Table 4. Additional gp functions used in evolving trading strategies

The use of a separate co-evolving population for each trader allowed us to
explore the potential emergence of collusive (in the auction sense) tactics between
self-interested traders; each population attempts to maximise its own profits,
but in certain situations populations may be able to increase their profits by
co-operating with rival populations. This could not be modeled, by, for example,
representing all of the buyers as a single population, since this optimization
problem would not account for self-interested behaviour of individual traders.

Since the trading strategies are evolving, there are times when the function
determining what price to set gives impossible results. Our method for handling
the necessary error correction is as follows—wherever evaluation of this function
resulted in a negative price, or in a division by zero exception, the price was set
to 0 and this was used as the requisite bid or ask.

Initially, we were interested in whether high-efficiency outcomes are sustained
in this experiment. As with the original experiments, high levels of market ef-
ficiency indicate that overall, traders are successfully “discovering” profits that
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Fig. 2. Evolution of mean efficiency for rcon=1 and rcap=1 over 10,000 generations
using a fixed discriminatory-pricing auctioneer, and 6 sub-populations of co-evolving
strategies each of size 100.

are available in the market. We would not necessarily expect to see stability, or
gradual improvement, of each strategy’s individual profits in this co-evolutionary
scenario. However, if overall market efficiency were to decline temporarily, we
would expect the co-evolving strategy set as a whole to adapt and reacquire the
“lost” profits. Thus if strategy sub-populations were to successfully adapt to new
market conditions, we would expect to see mean market efficiency remain stable
at around 100% since mean market efficiency measures the performance of the
different varieties of buyer and seller as a whole.

Figure 2 shows the evolution of the mean market efficiency for each generation
of the experiment in the case rcap=1 and rcon=1 over 10,000 generations.
Note that by generation 2000, the market efficiency has become relatively stable,
though it still fluctuates over a narrow range. The mean of this fluctuating value
is 74.3%. This seems to suggest that the genetic programming approach permits
the evolution of relatively efficient markets.

The use of co-evolution to evolve trading strategies is not new in experimental
economics; for example, see [24]. Our interest in co-evolving strategies was mainly
to verify that the genetic programming approach worked for this scenario, which
it appears to. The work described in this section was also a step towards the use
of co-evolutionary techniques to evolve trading strategies and auction rules—in



Function Arguments Return-
type

Description

AskPrice none number The price of the ask (of-
fer to sell) currently being
matched in the auction

BidPrice none number The price of the bid cur-
rently being matched in
the auction

Table 5. Additional gp functions used in evolving auctioneer pricing rules

other words to evolve mechanisms along with the best way to trade within them.
This is the main focus of our research, and our preliminary work towards doing
this will be the subject of the next section.

4.4 Co-evolution of Auction Pricing Rules

An additional population of auctioneers was introduced into our experiment
giving the seven populations of players described in Section 4.2. These agents
were derived from the auctioneer classes that we implemented for our previous
experiments, but instead of using the standard code to set the clearing price for
a given transaction, they used a function that was evolved using gp. The set of
functions used for the auction pricing rule are those functions in Tables 3 and
5. The space of possible pricing rules thus encompasses, but is not restricted to,
both uniform-price and discriminatory-price versions of the k -double auction3.
Pricing rules which make use of the values AskPrice or BidPrice correspond
to discriminatory-price auctions since AskPrice and BidPrice are the current
prices that the auctioneer is considering as possible matches—the trade price is
thus a function of what the traders have been offering. Pricing rules not making
use of these functions correspond to uniform-price auctions since the trade rules
are independent of what the traders in a particular match have been offering.
Whereas the trading-strategy populations’ fitness is, as in the last experiment,
taken to be proportional to their individual local profits, the fitness for the
auctioneer population is taken to be proportional to the global profits earned in
the market.

Intuitively, the auctioneer population can be thought to be “learning” auction-
pricing rules that maintain market efficiency in the face of co-evolving buying
and selling strategies. Our hypothesis is that in this version of the experiment,
in which there are a small number of traders with fixed private values, the most
robust auction pricing rule is the one that sets the price for electricity at the

3 As described in Section 4.1, it is the job of the auctioneer to choose the price at
which trades take place. Given a matched pair of bid b and ask a, such that a < b,
the auctioneer has to pick a trade price in the interval [a, b]. A k -double auction, k ∈
[0, 1], is a double auction in which the auctioneer sets the trade price at kb+(1−k)a
[29].
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Fig. 3. Evolution of mean efficiency for rcon=1 and rcap=1 over 10,000 generations
using an auctioneer with a gp-evolved pricing rule, and 6 additional populations of
co-evolving strategies.

equilibrium price, regardless of what traders actually bid. We believe that the
auctioneer population should discover this rule—it should discover the equilib-
rium price for the market. It should do this because private values are fixed,
and the auctioneer population has indirect access to meta-information about
the market—market efficiency—that is based on the (in-practice unobservable)
private values. Of course, this pricing rule would not work in practice, because in
practice private values are not from a fixed, predefined set. However, by consid-
ering the hypothesis that the most robust pricing rule is the one that sets prices
at the equilibrium level, we will be able to assess the validity of our underlying
assumption.

Figure 3 shows the evolution of the mean market efficiency for each generation
of this version of the experiment in the case rcap=1 and rcon=1 over 10,000
generations. The graph seems to indicate that the adaptive auctioneers are able
to respond to the changing strategies used by the traders. Again the market
reaches stability relatively quickly, though once again the efficiency fluctuates
across a narrow range—the average of this range is 94.5%.

Table 6 shows the stable pricing function evolved for the auctioneers’ pricing
rule under different market conditions. In all cases the pricing rule is a linear
function of the Bid and Ask Prices and the function only uses either Bid Price



RCAP
1

2
1 2

2 QuoteBidPrice − 0.39 QuoteBidPrice QuoteBidPrice

RCON 1 ≈ QuoteAskPrice ≈ QuoteAskPrice ≈ QuoteAskPrice

1

2
35.47− 35.47AskPrice BidPrice QuoteBidPrice

Table 6. GP-evolved auction pricing rules at generation 1000 for different market
conditions, i.e. different values of RCON and RCAP

Seller 1 QuoteAskPrice
Seller 2 QuoteBidPrice
Seller 3 QuoteBidPrice
Buyer 1 QuoteAskPrice
Buyer 2 QuoteAskPrice
Buyer 3 QuoteBidPrice

Table 7. The set of trading strategies at generation 1000 for RCON = 1, RCAP = 1

or Ask Price4. When the number of buyers and sellers is equal, the pricing rule
is only determined by the Ask Price, suggesting that the sellers control the
market whatever the relative capacity. Table 7 shows the trading strategy-set
for the auction after 1000 generations in the case RCON = RCAP = 1. These
expressions are simplifications of the s-expressions generated by the gp. Most
reduce exactly to the expressions given, but several seem to resist simplification—
these were plotted against QuoteAskPrice and were found to be approximately
equal to it. They are thus given as ≈ QuoteAskPrice.

4.5 Further Experiments

One important issue that arises from the previous experiments concerns the
private values of the traders. The strategies of the traders and, indirectly, the
auctioneers, depend upon the private values of the traders. Thus if private val-
ues are fixed, it is possible for the populations to converge on constant values
which approximate the private values rather than sensible functions. Thus when
deciding on the market clearing price for a buyer with fixed private value of 20,

4 Some of the pricing rules also use QuoteBidPrice or QuoteAskPrice which are the
values made public by the auctioneer to give buyers and sellers an idea of what the
current trading price is. It is the equivalent of the prices displayed on stock exchange
tickerboards.



randomly shuffle the 100 population members within each column

for i ← 0 to 99 {
for j ← 1 to K {
randomly pick private values for row i

for k ← 1 to N {
play one round of the market game

}
}
calculate the fitness for row i

}
perform reproduction and selection

Fig. 4. The revised algorithm for establishing the fitness of players in the market game
(refers to Table 2)

and a seller with fixed private value 10, the traders may learn to bid at the con-
stant values 20 and 10 respectively rather than at a function of QuoteBidPrice,
QuoteAskPrice, or PrivateValue. Similarly, the auctioneer may learn to settle at
15 rather than:

BidPrice + AskPrice

2

The problem is that the rules used by traders and auctioneer are then overfitted
to the specific private values, and will not produce efficient markets when pri-
vate values change. This overfitting seems to be happening in the experiments
reported above, and explains the relatively high efficiencies we obtained.

To reduce this effect we have recently been carrying out experiments in which
we randomly pick private values for the traders for each one of the K games we
play to determine the fitness. In addition, we play N times with each of the
random private values, terming a single auction a “round of the game”, and
a set of N with fixed private values a “game”. Thus the values of N and K

represent the number of rounds to play in a game and the number of games to
play in a generation, respectively. The revised algorithm is given in Figure 4.

Another issue that arises is that it is common for the markets to descend into
bad solutions. In particular, traders can learn to bid below their profit margin,
which, when the auctioneer tries to develop a strategy that gives good profits
despite this, leads to a strategy that prevents the traders evolving to use more
sensible strategies. In other words co-evolution is working to lock the system
into a local optimum and prevent it from reaching a global optimum, just as
described in Section 2. To try to combat this, we have reduced the search space
for all the agents. Traders are restricted to use linear fuctions of their private
values as bids or asks, and auctioneers are restricted to use linear functions of
the ask and bid prices.

With these restrictions and the randomised private values we find that we
can obtain market efficiencies around 86% without having the pricing rules de-
generate into constant values. For example, we find buyer rules like:



if(not(QuoteBidPrice < (PrivateValue * 0.081675285)) {
PrivateValue}

else {
PrivateValue * 0.081675285 }

and the auctioneer uses rules like:

BidPrice − constant

and
AskPrice + constant

Results of these latest experiments are forthcoming.

5 Discussion

In terms of the seven aspects of any application of co-evolution that were raised
in Section 2, we believe that the work described here has provided an adequate
start to dealing with the first four—how to represent individuals, what counts
as fitness, how to carry out reproduction, and how to perform selection. We can
claim this because the choices we have explained above lead to the evolution
of reasonable individuals as evidenced by the high level of market efficiency
obtained in our experiments. However, there is still much work to be done.
Even the results obtained so far have raised some interesting questions, such as
how to interpret the different auction rules that can be evolved for each of the
combinations of rcap and rcon, and how to incorporate market-power metrics
into the fitness function for auction rules. Clearly we also have to address the
final three issues mentioned in Section 2 as well—correct population size, how
to detect and avoid collusion, and how to measure progress.

This latter is a particularly important question since we need to be able
to track the adaptive progress, as opposed to the instantaneous fitness, of the
auctioneers verses the trading strategies. We are currently investigating the pos-
sibility of using CIAO (Current Individual vs. Ancestral Opponents) metrics as
proposed in [6], in order to gain insights into the co-evolutionary dynamics of
these experiments, and using pareto co-evolution [31] in order to ensure that
auction designs are robust in the face of a diverse range of strategies.

Finally we should discuss the relation of our work with that of Cliff [4],
which is the only other work that we are aware of in which the auction mecha-
nism itself evolves. Cliff’s work in this area builds on his Zero-Intelligence-Plus
[3] traders, and first used genetic algorithms to determine the parameters that
control the bidding behaviour of the agents [5]. This work is analagous to our
use of genetic programming to decide how buyers and sellers bid. The next stage
of Cliff’s work, which was undertaken concurrently with, but independently of,
ours was to add an extra parameter into the genetic algorithm representing the
probability with which a buyer or seller is selected to make a Bid or Ask. The
experiment thus explores a continuum between auctions in which only buyers
act, like an English auction, and auctions in which only sellers act. This work,



then, is only concerned with tuning one, admittedly important, parameter rather
than constructing the auction rules from scratch. Furthermore, since Cliff’s work
involves just a single population of chromosomes—which capture the parameters
which determine buyers, sellers and auctioneers—it is an evolutionary but not a
co-evolutionary approach.

6 Summary

In this paper we have reported on the preliminary stages of work aiming to
explore the evolution of economic auction mechanisms. In our initial work, we
have adopted a multi-agent systems test-bed involving auctions in an electricity
marketplace. We first described work in which buyer and seller strategies are
co-evolved using genetic programming. The genetic programming approach was
able to produce reasonably high efficiency outcomes in this case. Next we pre-
sented some of our preliminary work on evolving auction designs using genetic-
programming which again was able to produce relatively high efficiency outcomes
and was able to reach stability quicker than when the buyer and seller strategies
evolved alone. Finally, we discussed a little of the work we have recently un-
dertaken to overcome limitations inherent in these first experiments. We believe
that this is the first attempt to evolve auction mechanisms, and, though far from
complete, makes it possible to frame further research in this area.
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