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Abstract. This paper presents an approach to automated mechanism design in
the domain of double auctions. We describe a novel parameterizeel spdou-

ble auctions, and then introduce an evolutionary search method thahssar
this space of parameters. The approach evaluates auction mechasiamghe
framework of the TAC Market Design Game and relates the perforenahthe
markets in that game to their constituent parts using reinforcement lgaiin
periments show that the strongest mechanisms we found using thisaapprot

only win the Market Design Game against known, strong opponentsalbat
exhibit desirable economic properties when they run in isolation.

1 Introduction

Auctions play an important role in electronic commerce, hade been used to solve
problems in distributed computing. A major problem to satvéhese fields isGiven a
certain set of restrictions and desired outcomes, how cadeggn a good, if not opti-
mal, auction mechanism; or when the restrictions and gohés,ahow can the current
mechanism be improved to handle the new scenario?

The traditional answer to this question has been in the dom&auction theory
[10]. A mechanism is designed by hand, analyzed theorbticahd then revised as
necessary. The problems with the approach are exactly thasdog any manual pro-
cess — it is slow, error-prone, and restricted to just a halnoffindividuals with the
necessary skills and knowledge. In addition, there areselasf commonly used mech-
anisms, such as the double auctions that we discuss hereh @@ too complex to be
analyzed theoretically, at least for interesting caseg [22

Automated mechanism desigavD) aims to overcome the problems of the manual
process by designing auction mechanisms automatiealip. considers design to be a
search through some space of possible mechanisms. For kexa@tiff [2] and Phelpst
al. [17, 18] explored the use of evolutionary algorithms to myitie different aspects of
the continuous double auction. Around the same time, Cenézd Sandholm [4] were
examining the complexity of building a mechanism that fithghrticular specification.

These different approaches were all problematic. The glgos that Conitzer and
Sandholm considered dealt with exhaustive search, andatigtthe complexity was



exponential. In contrast, the approaches that Cliff and2tet al. pursued were com-
putationally more appealing, but gave no guarantee of ssaed were only searching
tiny sections of the search space for the mechanisms thesjdsyed. As a result, one
might consider the work of Cliff and Phelpsal,, and indeed the work we describe here,
to be what Conitzer and Sandholm [5] call “incremental” meedkm design, where one
starts with an existing mechanism and incrementally afiarts of it, aiming to iterate
towards an optimal mechanism. Similar work, though work tiees a different ap-
proach to searching the space of possible mechanisms haséeied out by [21] and
has been applied to several different mechanism desigrgmnst{19].

The problem with taking the automated approach to mechadisign further is
how to make it scale — though framing it as an incremental ggeds a good way
to look at it, it does not provide much practical guidancewbww to proceed. Our
aim in this paper is to provide more in the way of practicaldguice, showing how it
is possible to build on a previous analysis of the most releeamponents of a com-
plex mechanism in order to set up an automated mechanisgndeiblem, and then
describing one approach to solving this problem.

2 Grey-box AMD

We propose grey-boxamD approach, which emerged from our previous work on the
analyses of theAT games.

2.1 From analyses of CAT gamestowards a grey-box approach

The CcAT game, a.k.a. the Trading Agent Competition Market Designeggawvhich has
run for the last three years, asks entrants to design a nfarkeset of automated traders
which are based on standard algorithms for buying and geitinra double auction,
includingzi-c [9], zIP [3], RE[6], andGD [8]. The game is broken up into a sequence
of days and each day every trader picks a market to trade in, usingrikenselection
strategy that models the situation agwearmed bandit problem [20, Section 2]. Markets
are allowed to charge traders in a variety of ways and areddmsed on the number of
traders they attract (market share), the profits that théserfram traders (profit share),
and the number of successful transactions they brokeivelat the total number of
shouts placed in them (transaction success rate). Fuilsiefahe game can be found
in [1].

We picked thecAT game as the basis of our work for four main reasons. First, the
double auctions that are the focus of the design are a widsglg mechanism. Second,
the competition is run using an open-source software packafjedJCAT which is
a good basis for implementing our ideas. Third, after threary of competition, a
number of specialists have been made available by theioesjtgiving us a library
of mechanisms to test against. Fourth, there have been aemwhpublications that
analyze different aspects of previous entrants, giving ge@ basis from which to
start searching for new mechanisms.

With colleagues we have carried out two previous studiessaf games [12, 14],
which mirror the white-box and black-box analyses fromsafe engineering. [14]



provides a white-box analysis, looking inside each markethanism in order to iden-
tify which components it contains, and relating the perfance of each mechanism
to the operation of its components. [12] provides a black-&alysis, which ignores
the detail of the internal components of each market meshartut provides a much
more extensive analysis of how the markets perform. Theslyses make a good com-
bination for examining the strengths and weaknesses ofajsts. The white-box ap-
proach is capable of relating the internal design of a dyate its performance and
revealing which part of the design may cause vulneralslit®it it requires internal
structure and involves manual examination. The black-fpmpx@ach does not rely upon
the accessibility of the internal design of a strategy. i ba applied to virtually any
strategic game, and is capable of evaluating a design in mmeomg situations. How-
ever, the black-box approach tells us little about what mayehcaused a strategy to
perform poorly and provides little in the way of hints as tewto improve the strategy.
It is desirable to combine these two approaches in orderreftidrom the advantages
of both. Following theGA-based approach to trading strategy acquisition and auctio
mechanism design in [2, 16, 18], we propose what we cgitegi-boxapproach to auto-
mated mechanism design that solves the problem of autcatigtareating a complex
mechanism by searching a structured space of auction canfsrn other words, we
concentrate on the components of the mechanisms as in the-ldw approach, but
take a black-box view of the components, evaluating théécéf/enesses by looking at
their performance against that of their peers.

More specifically, we view a market mechanism as a combinaitfcuction rules,
each as an atomic building block. We consider the probleow can we find a com-
bination of rules that is better than any known combinati@eading to a certain
criterion, based on a pool of existing building blocksRe black-box analysis in [12]
maintains a population of strategies and evolves them gé&arrby generation based
on their fitnesses. Here we intend to follow a similar apphoataintaining a population
of components or building blocks for strategies, assowja¢iach block with @juality
score which reflects the fitnesses of auction mechanisms usiadlhik, exploring the
part of the space of auction mechanisms that involves tmgjldlocks of higher quality,
and keeping the best mechanisms we find.

Having sketched our approach at a high level, we now look taidat how it can
be applied in the context of theaT game.

2.2 A search space of double auctions

The first issues we need to addressahat composite structure is used to represent
auction mechanismsihdwhere can we obtain a pool of building blocks?

Viewing an auction as a structured mechanism is not a new \de@amanet al.
[23] introduced a conceptual, parameterized view of anctiechanisms. Niet al.
[14] extended this framework for auction mechanisms comgeh CAT games and
provided a classification of entries in the figAT competition that was based on it.
The extended framework includes multiple intertwined comgnts, omolicies each
regulating one aspect of a market. We adopt this framewodiude more candidates
for each type of policy and take into consideration paramseteat are used by these
policies.



These policies are either inferred from the literature [1dken from our previous
work [12, 14, 15], or contributed by entrants to thwr competitions. The set of policies
policies, each a building block, form a solid foundationtiee grey-box approach.

Figure 1 illustrates the building blocks as a tree strucwineh we describe after
we review the blocks themselves. Below we describe therdiffetypes of policies
just briefly due to space limitations. An in-depth underdtag of these policies is not
required in understand the grey-box approach, but a fulbrifgson of these policies
can be found in the extended version of this paper [13].

Matching policies, denoted as in Figure 1, define how a market matches shouts
made by traders, includingquilibrium matching(ME), max-volume matchingvv),
andtheta matchindmT). ME clears the market at the equilibrium price, matching asks
(offers to sell) lower than the price with bids (offers to binjgher than the priceviv
maximizes transaction volume by considering also lesspatitive shouts that would
not be matched iME. MT uses a parametdd,c [—1,1], to realize a transaction volume
that is proportional to 0 and those realizedvib andmv.

Quote policies, denoted a® in Figure 1, determine the quotes issued by markets,
including two-sided quotindQT), one-sided quotingQo), andspread-based quoting
(Qs). Typical quotes are ask and bid quotes, which respectspgify the upper bound
for asks and the lower bound for bids that may be placed in tegthdven marketQT
defines the quotes based on information from both the seterand the buyer side,
while QO does so considering only information from a single side.extendsQT to
maintain a higher ask quote and a lower bid quote for use mith

Shout accepting policies, denoted a2 in Figure 1, judge whether a shout made
by a trader should be permitted in the market, includihgays acceptingaAa), never
acceptingAN), quote-beating acceptin@Q), self-beating acceptingns), equilibrium-
beating acceptingAE), average-beating acceptingb), history-based acceptin@gH),
transaction-based acceptin@T), andshout type-based acceptifigyr). AE uses a pa-
rameterw, to specify the size of a sliding window in terms of the numbgtransac-
tions, and a second paramet®@rto relax the restriction on shouts [1%]D is basically
a variant ofAE and uses the standard deviation of transaction prices iglitfiag win-
dow rather thanv to relax the restriction on shoutsH is derived from thesD trading
strategy and accepts only shouts that will be matched wibhadsility no lower than
a specified threshold, € [0, 1]. Ay stochastically allows shouts based merely on their
types, i.e., asks or bids, and uses a paramater|0, 1], to control the chances that
shouts of either type are allowed to place.

Clearing conditions, denoted a< in Figure 1, define when to clear the market
and execute transactions between matched asks and bidsljmgacontinuous clearing
(co), round clearing(CRr), and probabilistic clearing(cpP). CP uses a parametep, €
[0,1], to define a continuum of clearing rules witR andcc being the two ends.

Pricing policies, denoted a® in Figure 1, set transaction prices for matched ask-
bid pairs, includingdiscriminatory k-pricing(pD), uniform k-pricing(Pu), n-pricing
(PN), andside-biased pricingps). BothpD andpu use a prefixed parametére [0, 1],
to control the bias in favor of buyers or sellers, amladjusts an interndt aiming to
obtain a balanced demand and suppiywas introduced in [15] and sets the transaction
price as the average of the lategtairs of matched asks and bids.
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Double Auction

or node where learning occurs;
and node where child blocks are assembled;
leaf node;

represents a set of leaf nodes that have the common parent and take values
evenly distributed between x and y for a parameter.

Fig. 1. The search space of double auctions modeled as a tree, didaustetails in Section 2.



Charging policies, denoted as in Figure 1, determine the charges imposed by
a market, includindixed charging(GF), bait-and-switch chargindGB), and charge-
cutting charging(Gc), learn-or-lure-fast chargingGL). GF imposes fixed charges while
the rest three policies adapt charges over time in differ@ys.GL relies upon two pa-
rametersy andr, to achieve dynamic adjustments. All these charging pesicequire
an initial set of fees on different activities, includingefen registration, fee on infor-
mation, fee on shout, fee on transaction, and fee on profipteéd asf;, f;, fs, f;, and
fp respectively in Figure 1.

2.3 The GREY-Box-AMD algorithm

The tree model of double auctions in Figure 1 illustrates hoviding blocks are se-
lected and assembled level by level. There @nd nodes,or nodes, andeaf nodes

in the tree. Anand node, rounded and filled, combines a set of building blocishe
represented by one of its child nodes, to form a compoundlingjlblock. The root
node, for example, is aand node to assemble policies, one of each type described in
the previous section, to obtain a complete auction mechrarfi® or node, rectangular
and filled, represents the decision making of selecting limgj block from the candi-
dates represented by the child nodes ofdheode based on their quality scores. This
selection occurs not only for those major aspects of an @uctiechanism, i.ev, Q,

A, P, C, andG (at G’s child node of ‘policy’ in fact), but also for minor componts, for
example, a learning component for an adaptive policy (falg Phelpset al’s work

on acquiring a trading strategy [16]), and for determinipgrmal values of parameters

in a policy, like 8 in MT andk in PD. A leaf node represents an atomic block that can
either be for selection at itsr parent node or be further assembled into a bigger block
by itsand parent node. A special type l&faf node in Figure 1 is that with a label in the
format of [x,y]. Such aeaf node is a convenient representation of a sdeaf nodes
that have a common parent — the parent of this spée&ilnode — and take values
evenly distributed betweenandy for the parameter labeled at the parent node.

or nodes contribute to the variety of auction mechanisms isé¢agech space and are
where exploitation and exploration occur. We model eachode as am-armed bandit
learner that chooses among candidate blocks, and use tpkesioftmax method [20,
Section 2.3] to solve this learning problem.

Given a set of building blocksB, and a set of fixed market&M, as targets to
beat, we define the skeleton of the grey-box algorithm in &gl The GReEy-BoxX-
AMD algorithm runs a certain number of stepssii_or_sTEPs in Line 2). At each
step, a single AT game is created (REATE-GAME() in Line 3) and a set of markets are
prepared for the game. This set of markets include all maikétM, a certain number
(vum_or_sampLES in Line 5) of markets sampled from the search space, denated a
SM, and a certain numbergm_or_HoF_saMPLES in Line 11) of markets, denoted as
[EM, chosen from a Hall of Fam&]OF. All these markets are put into the game, which
is run to evaluate the performance of these markets\(®AME (G, FM UEM U SM)
in Line 12).HOTF has a fixed capacitgapaciTy_orF_HoF, and maintains markets that
performed well in games at previous steps in terms of theiragye scores across games
they participatedHOF is empty initially, updated after each game, and returnetién
end as the result of the grey-box process.



GREY-Box-AMD (B,FM)
1 HOF — {}
2 for s« 1t0NUM_OF_STEPS
3 doG « CREATE-GAME()
4  SM«—{}
5 for m« 1to NUM_OF_SAMPLES
6 doM «— CREATE-MARKET()
7 for t «+— 1t0 NUM_OF_POLICYTYPES
8 do B« SELECT(Bt, 1)
9 ADD-BLOCK(M, B)
10 SM «— SMU{M}
11 EM « SELECT(HOF, NUM_OF _HOF_SAMPLES)
12 RUN-GAME (G, FMUEM U SM)
13 for each M in EMUSM
14 do UPDATE-MARKET-SCOREM, SCORE(G,M))

15 if M not in HOF

16 then HOF «— HOFU{M}

17 if capaciTY_0oF_HOF < |HOF|

18 then HOF « HOF — { WORSTFMARKET(HOF)}
19 for each B used byM

20 do UPDATE-BLOCK-SCOREB, SCORE(G,M))

21 return HOF

Fig. 2: The Grey-Box-AMD algorithm.

Each market infSM is constructed based on the tree model in Figure 1. After
an ‘empty’ market mechanisnM, is created (REATE-MARKET() in Line 6), build-
ing blocks can be incorporated inkd (ADD-BLOCK(M,B) in Line 9, whereB € B).
NUM_OF_POLICYTYPES in Line 7 defines the number of different policy types, and
from each group of policies of same type, denote®asvheret specifies the type,

a building block is chosen favl (SELECT(By, 1) in Line 8). For simplicity, this algo-
rithm illustrates only what happens to tbe nodes at the high level, including, Q,
A, C, andp. Markets inEM are chosen fronHHOF in a similar way (&LECT(HOF,
NUM_OF_HOF_SAMPLES) in Line 11).

After a cAT game,G, completes at each step, the game score of each partigjpatin
marketM € SMUEM, SCORKG, M), is recorded and the game-independent score of
M, SCOREM), is updated (BDATE-MARKET-SCOREM, SCORHG, M)) in Line 14).

If M is not currently inHOF and SSOREM) is higher than the lowest score of markets
in HOF, it replaces that corresponding market@®s+MARKET(HOT) in Line 18).

ScoRHG, M) is also used to update the quality score of each buildingdlsed by
M (UPDATE-BLOCK-SCORHB, SCORHG, M)) in Line 20). Both LPDATE-MARKET-
ScoRreEand UPDATE-BLOCK-SCORE calculate respectively game-independent scores
of markets and quality scores of building blocks by avergdeedback SOREG, M)
over time. Because choosing building blocks occurs onlyratodes in the tree, only
child nodes of aror node have quality scores and receive feedback aftatragame.
Initially, quality scores of building blocks are all 0, sattthe probabilities of choosing



them are even. As the exploration proceeds, fitter blockeedtigher and are chosen
more often to construct better mechanisms.

3 Experiments

This section describes the experiments that are carrietbcatquire auction mecha-
nisms using the grey-box approach.

3.1 Experimental setup

We extendediCAT with the parameterized framework of double auctions andhall
individual policies described in Section 2.2. To reducedhimputational cost, we elim-
inated the exploration of charging policies by focusing oechranisms that impose a
charge of 10% on trader profit, which we denotesag;. Analysis of CAT games [12]
and what entries have typically charged in actoat competitions, especially in the
latest two events, suggest that such a charging policy issoreble choice to avoid
losing either intra-marginal or extra-marginal tradengeiEwith this cut-off, the search
space still contains more than2D0,000 different kinds of auction mechanisms, due
to the variety of policies on aspects other than chargingthadcthoices of values for
parameters.

The experiments that we ran to search the space each laste330 At each step,
we sample two auction mechanisms from the space, and asaT gjame to evaluate
them against four fixed, well known, mechanisms plus two raeigms from the Hall
of Fame. To sample auction mechanisms, the softmax exjaoratethod used bgr
nodes starts with a relatively high temperature=(10) so as to explore randomly, then
gradually cools downt scaling down by ®6 (a) each step, and eventually maintain a
temperature1 = 0.5) that guarantees a non-negligible probability of chogsiven the
worst action any time. After all, our goal in the grey-box eggzh is not to converge
quickly to a small set of mechanisms, but to explore the spaderoadly as possible
and avoid being trapped in local optima.

The fixed set of four markets in evegat game includes twaH markets —CHj
and cH, — and twoCDA markets —CDA; and CDA,, — with one of each charging
10% on trader profit, likesFg 1 does, and the other charging 100% on trader profit (de-
noted asGF1 ). The CH and CDA mechanisms are two common double auctions and
have been used in the real world for many years, in financiaketglaces in partic-
ular due to their high allocative efficiency. Earlier expeents we ran, involvingcH
andcbA markets against entries inT competitions, indicate that it is not trivial to
win over these two standard double auctions. Markets wiflereéint charge levels are
included to avoid any sampled mechanisms taking advantdgevase. Based on the
parameterized framework in Section 2.2, ttie andCDA markets can be represented
as follows:

CH / CHR, =ME+ QT+ AQ + CR + PUg_qg5 + GFg.1/ GF10
CDA| / CDAL = ME + QT + AQ + CC + PDy—q5 + GFg.1 / GF10



The Hall of Fame that we maintain during the search containsactive’ members
and a list of ‘inactive’ members. After eadnT game, the two sampled mechanisms
are compared with those active Hall of Famers. If the scoeesafmpled mechanism is
higher than the lowest average score of the active Hall ofdfanthe sampled mecha-
nism is inducted into the Hall of Fame and replaces the cpomding Hall of Famer,
which becomes inactive and ineligible fonT games at later steps (lines 15-18 of the
algorithm above). An inactive Hall of Famer may be reactdat an identical mecha-
nism happens to be sampled from the space again and scohesrttiggh to promote
its average score to surpass the lowest score of active Ha#iroers. In addition, the
softmax method used to choose two Hall of Famers out of thadéwe ones involves
a constantt = 0.3. Since the scores of the Hall of Famers gradually converghe
experiments and the difference between the best and the iWalisof Famers is less
than 25% (see Figure 3b below), this valua @fuarantees that the bias towards the best
Hall of Famers is modest and all Hall of Famers have fairlydsignces to be chosen.

EachcAT game is populated by 120 trading agents, using, zIP, RE, andGD
strategies, a quarter of the traders using each stratedfithidaraders are buyers, half
are sellers. The supply and demand schedules are both dremrafuniform distribu-
tion between 50 and 150. EaciaT game lasts 500 days with ten rounds for each day.
This setup is similar to that of actualAT competitions except for a smaller trader pop-
ulation that helps to reduce computational costs. A 20p-gtey-box experiment takes
around sixteen hours orvaNDOWS PcCthat runs at 2.8GHz and has a 3GB memory. To
obtain reliable results, we ran the grey-box experimemntd@dterations and the results
that are reported in the next section are averaged over iteesgons.

3.2 Experimental results

We carried out four experiments to check whether the greyamproach is successful
in searching for good auction mechanisms.

First, we measured the performance of the generated mechsimidirectly, through
their effect on other mechanisms. Since the four standarletsaparticipate in all the
CAT games, their performance over time reflects the strengtheaf dpponents — they
will do worse as their opponents get better — which in turrefl whether the search
generates increasingly better mechanisms. Figure 3a shaivthe scores of the four
markets (more specifically, the average daily scores of thkets in a game) decrease
over 200 games, especially over the first 100 games, suggektit the mechanisms
we are creating get better as the learning process progresse

Second, we measured the performance of the set of mechawsroseated more
directly. The mechanisms that are active in the Hall of Fatreegiven point represent
the best mechanisms that we know about at that point and fieeiormance tells us
more directly how the best mechanisms evolve over time.rEigb shows the scores of
the ten active Hall of Famers at each step over 200-step*rassn Figure 3a, the first
100 steps sees a clear, increasing trend. Even the scoteswbtst of the ten at the end

4Note that the active Hall of Famers will be different mechanisms atreliffiesteps in the process,
so what we see in the figure is the performance of the best mechanisrksaw of up to the
point we collected the data.
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(a) The four fixed auction mechanisms. (b) The top ten active Hall of Famers.

Fig. 3: Scores of market mechanisms across 200 steps (gamas)gest over 40 runs.

are above 0.35, higher than the highest score of the four fattets from Figure 3a,
and the difference is statistically significant at the 95%fiwence level. Thus we know
that our approach will create mechanisms that outperfoamdstrd mechanisms, though
we should not read too much into this since we trained our neshanisms directly
against them.

Third, a better test of the new mechanisms is to run them agjiiose mechanisms
that we know to be strong in the context@&T games, asking what would have hap-
pened if our Hall of Fame members had been entered into pAorcompetitions and
had run against the carefully hand-coded entries in thosgettions. We chose three
Hall of Famers, which are internally labeledsas . 1, sM88.0, andsM127.1 and can be
represented in the parameterized framework in Sectionf@llaws:

SM7.1 =MV + QO + AHr—04 + CPp_03 *+ PNp—11 + GFo1
SM88.0 = MTg_g4 + QT + AA + CPp_o4 + PUk_07 + GFo1
SM127.1 = MV + QS + AS + CPp_q4 *+ PUx_07 + GFo 1

We ran these three mechanisms against the best recreafiaatoT competitions that
we could achieve given the contents of ttrec agent repository,where competitors
are asked to upload their entries after the competitiontdvere enough entries in the
repository at the time we ran the experiments to create nede facsimiles of the 2007
and 2008 competitions, but there were not enough entri@s fh@ 2009 competition
for us to recreate that year's competition. T¢wer games were set up in a similar way
to the competitions, populated by 500 traders that are g\t between buyers and
sellers and between the four trading strategiez+€, zIP, RE, andGD — and the
private values of sellers or buyers were drawn from a unifdistribution between 50
and 150. For each recreated competition, we ran three games.

Table 1 lists the average cumulative scores of all the mar&etoss their three
games along with the standard deviations of those scorestlifee new mechanisms
we obtained from the grey-box approach beat the actuaksrorcAT 2007 andcAT

Shttp://www.sics.se/tac/showagents.php.



Table 1: The scores of markets @t games including the best mechanisms from the grey-box
approach and entries in priaaT competitions, averaged over threaT games respectively.

Mar ket Score SD Market Score SD
SM7.1 199.4500 5.9715 SM7.1 196.7240 9.2843
SM88.0 191.1083 10.3186 SM88.0 186.9247 4.2184
SM127.1 180.1277 9.0289 SM127.1 183.5887 9.7835
MANX 154.6953 1.3252 jackaroo 177.5913 2.5722
CrocodileAgent 142.0523 9.0867 Mertacor 161.5440 5.8741
TacTex 138.4527 5.8224 MANX 147.3050 15.7718
PSUCAT 133.1347 5.6565 IAMwildCAT 142.9167 8.9581
PersianCat 124.3767 11.2409 PersianCat 139.1553 17.9783
jackaroo 108.8017 8.6851 DOG 130.2197 18.9782
TAMwildCAT" 106.8897 4.4006 MyFuzzy 125.9630 1.9221
Mertacor 89.1707 4.9269 CrocodileAgent” 71.4820 5.8687

PSUCAT" 68.3143 6.7389

(a) AgainstcAT 2007 entries. (b) AgainstcAT 2008 entries.

* TAMwildCAT from CAT 2007, andCrocodileAgent andPSUCAT from CAT 2008 worked
abnormally during the games and tried to impose invalid fees, probablytadaempetition
from the three new, strong opponents. Although we modifiedr to avoid kicking out these
markets on those trading days when they impose invalid fees — wiiiehdoes in an actual
CAT competition — these markets still perform poorly, in contrast to their rarskimghe actual
competitions.

2008 by a comfortable margin in both cases. The fact that wetalee mechanisms
that we generate in one series of games (against the fixechepmand other new
mechanisms) and have them perform well against a sepatatiensechanisms suggests
that the grey-box approach learns robust mechanisms.

In passing, we note that the rankings of the entries fromehesitory do not reflect
those in the actuatAT competitions. This is to be expected since the entries now fa
much stronger opponents and different markets will, in galneespond differently to
this. Excluding the markets that attempt to impose invadiesfand are marked with
“*' we can see that the overall performance of entries in®2008CAT competition is
better than that of those into the 200&T competition when they face the three new,
strong, opponents, reflecting the improvement in the entver time.

Finally, we tested the performance ®47.1, sM88.0, andsM127.1 when they are
run in isolation, applying the same kind of test that auctisechanisms are tradition-
ally subject to. We tested the mechanisms both for alloeafficiency and, following
our work in [15], for the extent to which they trade close tedretical equilibrium as
measured by the coefficient of convergenzeeven when populated by minimally ra-
tional traders. In [15] we investigated a class of doubldiauns, calledNCDAEE, which
can be represented as:

NCDAEE = ME + AEy, 5 + CC + PNp



Table 2: Properties of the best mechanisms from the grey-box exgrasrand the auction mech-
anisms explored in [15]. AINCDAEE mechanisms are configured to have= 4 in their AE
policies anch = 4 in their PN policies.The best result in each column is shaded. Data in the first
four rows are averaged over 1,000 runs and those in the last feavaraged over 100 runs.

ZI-C GD

Market Ea o = o

Mean sb Mean sSD Mean SD Mean sD

CDA 97.464 3.510 13.376 4.351 99.740 1.! 4.360 3.589
NCDAEEs_, 98.336 3.26; 4.219 3.141 9.756 28.873 14.098 1.800
NCDAEEs_;0 98.912 2.605 5.552 2.770 23.344 41.727 7.834 5.648
NCDAEEs_50 98.304 2.562 7.460 3.136 89.128 30.867 4.826 3.487
NCDAEEs_30 97.708 3.136 8.660 3.740 99.736 1.723 4.498 3.502

SM7.1 99.280 1.537 4.325 2.509 58.480 47.983 4.655 4.383
SM88.0 98.320 2.477 11.007 4.2!99.920 0.560 4.387 2.913
SM127.1 97.960 3.225 11.152 4.584 99.520 1.727 4.751 3.153

The advantage ofCDAEE s that it can give significantly lowexr — faster convergence
of transaction prices — and higher allocative efficieri€y) than acbA when populated
respectively by homogeneoas c traders and can perform comparably toma when
populated by homogeneoua® traders.

We replicated these experiments usir@paT and ran additional ones for the three
new mechanisms with similar configurations. The resulthe$é experiments are shown
in Table 28 The best result in each column is shaded. We can see thagimathwith
ZI-C traders andnMss.0 with GD traders give higheE, than the best of the existing
markets respectively, and both of these increases arst&tallly significant at the 95%
level. Both cases also lead to law not the lowest in the column but close to the lowest,
and the differences between them and the lowest are nattitally significant at the
95% level. Thus the grey-box approach can generate mechatiigt perform as well
in the single market case as the best mechanisms from thelite.

4 Conclusions and futurework

This paper describes a practical approach to the automatgdrdof complex mech-
anisms. The approach that we propose breaks a mechanisminlmae set of com-
ponents each of which can be implemented in a number of diffewvays, some of
which are also parameterized. Given a method to evaluaidate mechanisms, the
approach then uses machine learning to explore the spacssibte mechanisms, each
composed from a specific choice of components and param@&teeskey difference

80ur results are slightly different from those in [15], but the pattern afehesults still holds. In
addition, we ran amCDAEE variant © = 30) that was not tested in [15], observing that those
with & < 20 do not perform well when populated by traders.



between our approach and previous approaches to this tésétithe score from the

evaluation is not only used to grade the candidate mechankmalso the components
and parameters, and new mechanisms are generated in a way lti@sed towards

components and parameters with high scores.

The specific case-study that we used to develop our appredbk design of new
double auction mechanisms. Evaluating the candidate mesha using the infrastruc-
ture of the TAC Market Design competition, we showed that weld learn mecha-
nisms that can outperform the standard mechanisms agdinst Vearning took place
and the best entries in past Market Design competitions. [¢¢eshowed that the best
mechanisms we learned could outperform mechanisms froriténature even when
the evaluation did not take place in the context of the Mabxesign game. These re-
sults make us confident that we can generate robust douhl®muecechanisms and,
as a consequence, that the grey-box approach is an effegtpr@ach to automated
mechanism design.

Now that we can learn mechanisms effectively, we plan to attepapproach to
also learn trading strategies, allowing us to co-evolvelmasms and the traders that
operate within them.
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