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Abstract. One of the most widely studied systems of argumentation is the one
described by Dung in a paper from 1995. Unfortunately, this framework does not
allow for joint attacks on arguments, which we argue must be required of any truly
abstract argumentation framework. A few frameworks can be said to allow for
such interactions among arguments, but for various reasons we believe that these
are inadequate for modelling argumentation systems with joint attacks. In this
paper we propose a generalization of the framework of Dung, which allows for
sets of arguments to attack other arguments. We extend the semantics associated
with the original framework to this generalization, and prove that all results in the
paper by Dung have an equivalent in this more abstract framework.

1 Introduction

In the last fifteen years or so, there has been much interest in argumentation systems
within the artificial intelligence community3. This interest spreads across many differ-
ent sub-areas of artificial intelligence. One of these is non-monotonic reasoning [10,
19], which exploits the fact that argumentation systems can handle, and resolve, incon-
sistencies [12, 13] and uses it to develop general descriptions of non-monotonic rea-
soning [8, 18]. This line of work is summarised in [28]. Another area that makes use
of argumentation is reasoning and decision making under uncertainty [5, 16, 17], which
exploits the dependency structure one can infer from arguments in order to correctly
combine evidence. Much of this work is covered in [9]. More recently [23, 26], the
multi-agent systems community has begun to make use of argumentation, using it to
develop a notion of rational interaction [4, 20].

One very influential system of argumentation was that introduced by Dung [11].
This was, for instance, the basis for the work in [8], was the system extended by Am-
goud in [1, 2], and subsequently as the basis for the dialogue systems in [3, 24]. In [11],

3 There were AI researchers who were interested in argumentation before this, for example [6,
7, 14, 21], but this interest was very localized.



Dung presents a very abstract framework for argumentation and a series of semantics
for this framework. He goes on to prove a series of relationships between his framework
and different varieties of formal logics, including a proof that logic programming can
be seen as a special case of his framework. As a last result of the paper he provides a
method for encoding systems of the argumentation framework as logic programs. The
importance of Dung’s results is mainly due to the fact that his framework abstracts away
from details of language and argumentation rules, that the presented semantics therefore
are clear and intuitive, and that relationships among arguments can be analysed in iso-
lation from other (e.g. implicational) relationships. Furthermore, the results can easily
be transferred to any other argumentation framework, by identifying that framework’s
equivalent of an attack. It is this generality, we believe, that has contributed to the pop-
ularity of the work, and we see it as a prime contender for becoming an established
standard for further investigations into the nature of arguments and their interaction.

However, even though Dung tried to abstract away from the underlying language
and structure of arguments, he did not succeed in doing so completely. In fact if his
framework is expected to be able to model all possible kinds of attack, there is an
implicit assumption that the underlying language contains a logical “and” connective.
This hidden assumption arises from that fact that Dung’s attack relation is a simple
binary relation from one argument to another, rather than a relation mapping sets of
arguments to other sets of arguments.

While not explicitly analyzing the fundamental problem of Dung’s framework, some
previous works, most notably the efforts of Verheij, have allowed for sets of attacking
arguments, although mostly as side effects. We do not find these solutions fully satisfy-
ing, and none of them can be said to be conservative generalizations of the framework
of [11], that is a generalization that makes the minimum changes to the Dung frame-
work necessary to allow it to handle sets of attacking arguments. We elaborate further
on this throughout the paper.

In this paper we analyze Dung’s framework, and point out the hidden assumption
on the underlying language. We present a generalization of Dung’s framework, keeping
as close to his ideas as possible, which frees the underlying language from being closed
under some logical “and” connective. We do this by allowing sets of arguments to attack
single arguments, and provide new definitions and proofs mirroring Dung’s results for
this more general framework. We also argue why allowing sets of arguments to attack
other sets of arguments does not provide further flexibility, and provide an automated
encoding of systems of the new framework in Prolog, mirroring Dung’s encoding of his
systems as logic programs.

The paper is organized as follows: In Sect. 2 we present the essentials of Dung’s
framework, and then through examples illustrate how a more general attack relation is
needed for a truly abstract framework. Then, in Sect. 3 we present our generalization of
Dung’s framework, complete with definitions, proofs, and a Prolog encoding method.
Following this, in Sect. 4, we review other works on argumentation systems where sets
of arguments can attack other arguments, and relate them to the approach presented in
this paper. Finally, we conclude on the work presented here. Throughout the paper we
use the term argumentation system, where [11] uses argumentation framework, to de-
note the actual mathematical structures we work with. The term framework we reserve



for denoting the overall approaches to describing and reasoning about the argumenta-
tion systems, such as the one represented by [11] and the ones reviewed in Sect. 4.

2 Dung’s Framework

Dung [11] defines an argumentation system as a pair (A, .), where A is a set of argu-
ments, and . ⊆ A × A is an attack relation. If for two arguments A and B we have
A . B, then we say that A attacks B, and that B is attacked by A. As examples, we
might consider the following as arguments:

E1 “Joe does not like Jack”,
E2 “There is a nail in Jack’s antique coffee table”,
E3 “Joe hammered a nail into Jack’s antique coffee table”,
E4 “Joe plays golf, so Joe has full use of his arms”, and
E5 “Joe has no arms, so Joe cannot use a hammer, so Joe did not hammer a nail into

Jack’s antique coffee table”.

As can be seen it is not required of an argument that it follows the “if X then conclude
Y” pattern for reasoning, or, for that matter, that it represents sound reasoning.

As examples of attacks, we could have that E5.E3, E3.E5, and E4.E5. Intuitively,
and in any common-sense argumentation system, we would expect that A . B if the
validity of the argument A is somehow obstructing B from being valid.

Without loss of generality, we will assume that the arguments are members of some
underlying language L. This assumption is necessary if any kind of meaning is to be
extracted from an argumentation system. For instance, in our example, L would neces-
sarily include the strings represented by E1 to E5.

It seems reasonable that sometimes a number of arguments can interact and con-
stitute a stronger attack on one or more of the other arguments. For instance, the two
arguments E1 and E2 would jointly (but not separately) provide a case for the con-
clusion that Joe has struck a nail into Jack’s antique coffee table, and thus provide a
joint attack on argument E5, which has the opposite conclusion. The principle of syn-
ergy among arguments is not new, and has previously been debated in connection to
“accrual of arguments” (see e.g. [25, 27, 29]). The difference between that discussion
and the issue addressed here is we (and Dung) do not consider arguments as having
a numerical strength, and a set of defeated arguments thus cannot accrue to become
undefeated, unless that set is explictly specified to defeat each argument defeating its
individual members.

Going back to the example, if this synergy is to be modelled under Dung’s limita-
tions, somehow there must be a new argument:

E6: “Joe does not like Jack and there is a nail in Jack’s antique coffee table”,

which attacks E5. If this is taken to be a general solution, it is obviously required that
the underlying language L is closed under some “and”-connective.

Furthermore, what we meant to state was that E1 and E2 jointly attacked E5 and
the solution does not quite suffice: It may turn out that . is defined in such a manner
that one (or both) of E1 and E2 is attacked by another valid argument, while E6 is



not. That would mean that “Joe does not like Jack and there is a nail in Jack’s coffee
table” is a valid argument, whereas, say, “Joe does not like Jack” is not. Clearly this is
nonsense, and in order to ensure that nonsense conclusions cannot arise, . would have
to be restricted accordingly. This muddles the clear distinction between arguments and
attacks, which was the very appeal of Dung’s framework.

These underlying consistency relations between arguments would seemingly be
good candidates for encoding in a logical language (for example E1 ∧ E2 ⇒ E6

and E6 ⇒ E1), and in fact an underlying logical language employing standard negation
could be used to model sets of attacking arguments (i.e. E1 ∧ E2 ⇒ ¬conclusion(E5)
with attack relations ¬conclusion(A) . A for all arguments A), but we chose not
to go this route for a number of reasons. Primarily, it adds a another level of interde-
pendencies between arguments, which makes it hard to survey the effects of one set of
argument on others and calls for more specialized formalisms for analysis than Dung’s.
Moreover, examples of joint undercutting attacks seems to be inherently argumentative
in nature, and only obscurely encoded in an implicative manner. Consider for instance
the following arguments:

F1 “The Bible says that God is all good, so God is all good”,
F2 “The Bible was written by human beings”, and
F3 “Humans beings are not infallible”.

F2 and F3 attacks the validity of F1, but clearly it makes no sense to encode this as F2 ∧
F3 ⇒ ¬conclusion(F1) as the facts that human beings are not to be considered
infallible and that some of them just happened to write the Bible, do not entail that God
is not all good. To capture the intended meaning of the attack, one would have to add an
explicit presumption, like “The Bible can be trusted on all matters” to F1, and allow for
such assumptions to be targets of attacks, which — besides requiring identification of
all such implicit assumptions — can hardly be said to be as elegant as allowing attacks
at the argumentative level4

Having argued for the necessity of allowing a set of arguments to attack another
argument, we now examine settings where an entire set of arguments is attacked by
either a single argument or another set of arguments. Without loss of generality, we
assume that what is needed is an attack

{A1, . . . , An} . {B1, . . . , Bm} ,

such that the validity of all the A-arguments prevents the B-arguments from being valid.
There are two distinct manners in which this can be interpreted:

1. Either the validity of the A-arguments means that each Bi cannot be valid, no matter
the validity of the other B-arguments, or

2. the validity of the A-arguments mean that not all of the B-arguments can be valid
at the same time.

4 Those swayed more by practical considerations than examples should note that the original
motivation for this work was to allow arguments about Bayesian networks, in which sets of
attacking arguments very naturally occur.



[29] refers to these as “collective” and “indeterministic defeat”, respectively — a ter-
minology we adopt in this text.

As an example consider the following twist on the story about Jack, Joe, and the
antique coffee table:

E7 “Jack has been telling lies about Joe to Jill”
E8 “Jack is a rabbit”
E9 “Joe loves all animals”

If E8 is a valid argument, then none of the arguments in the set {E3, E7} can be valid:
E3 because rabbits do not own antique coffee tables, and E7 because rabbits, being
unable to speak, do not lie. This is thus an example of collective defeat. As an example
of indeterministic defeat, E9 attacks the set of arguments {E1, E8} seen as a set: E1

and E8 cannot both be valid arguments if Joe loves all animals. However, both E1 and
E8 can be valid seen as individual arguments, no matter how Joe feels about animals.

We claim that it is never necessary to specify a non-singleton set of arguments as
attacked, as in {A1, . . . , An} . {B1, . . . , Bm}: If collective defeat is taken to heart, the
attack can be reformulated as a series of attacks

{A1, . . . , An} . B1

...
{A1, . . . , An} . Bm .

It is easily seen that the above attacks would imply the attack, which is intended, as the
validity of the A-arguments would ensure that none of the B-arguments are valid.

If instead indeterministic defeat is required, the attack can be reformulated as

{A1, . . . , An, B2, . . . , Bm} . B1 ,

which ensures that in case the A-arguments are valid, then B1 cannot be a valid ar-
gument if the remaining B-arguments are also true, thus preventing the entire set of
B-arguments from being valid at once, if the A-arguments are true. In the example
above, we would state that {E8, E1} attacks E9. Notice that this “trick” is not depen-
dent on the actual structure or language of the arguments, nor require the introduction
of a new dummy argument, as was the case if only single arguments were allowed as
attackers.

In conclusion, we have argued for the insufficiency of Dung’s treatment, when sets
of arguments are taken into account, and that an attack relation that allows for sets
of arguments attacking single arguments is sufficient to capture any kind of relation
between sets of arguments.

3 Argumentation with Attacking Sets of Arguments

In this section we present our generalization of the framework of [11]. In an effort to
ease comparison, we have labelled definitions, lemmas, and theorems with the same
numbers as their counterparts in [11], even if this means that there are holes in the



numbering (e.g. there is no Lemma 2). Furthermore, we have omitted proofs where
the original proofs of [11] suffice. As a result of the tight integration with [11] most
definitions and results have been worded in a nearly identical manner, even if the proofs
are different and the meaning of individual words are different. Those definitions and
results that differ essentially from their counterparts in [11], or which is entirely new,
have been marked with an asterix (*). The rest are identical to those in [11].

Throughout the presentation, it should be clear that the framework presented here
reduces to that of [11] if only singleton sets are allowed as attackers.

Definition 1 (Argumentation System*). An argumentation system is a pair (A, .),
where A is a set of arguments, and . ⊆ (P(A) \ {∅})×A is an attack relation.

We say that a set of arguments S attacks an argument A, if there is S ′ ⊆ S such that
S′ . A. In that case we also say that A is attacked by S. If there is no set S ′′ ( S′ such
that S

′′ attacks A, then we say that S
′ is a minimal attack on A. Obviously, if there

exists a set that attacks an argument A, then there must also exist a minimal attack on
A. If for two sets of arguments S1 and S2, there is an argument A in S2 that is attacked
by S1, then we say that S1 attacks S2, and that S2 is attacked by S1.

Definition 2 (Conflict-free Sets*). A set of arguments S, is said to be conflict-free if it
does not attack itself, i.e. there is no argument A ∈ S, such that S attacks A.

Let S1 and S2 be sets of arguments. If S2 attacks an argument A, and S1 attacks
S2, then we say that S1 is a defense of A from S2, and that S1 defends A from S2.
Obviously, if S3 is a superset of S1, S3 is also a defense of A from S2.

Definition 3 (Acceptable and Admissable Arguments*). An argument A is said to
be acceptable with respect to a set of arguments S, if S defends A from all attacking
sets of arguments in A.

A conflict-free set of arguments S is said to be admissible if each argument in S is
acceptable with respect to S.

Intuitively, an argument A is acceptable with respect to some set S, if anyone believing
in the validity of the arguments in S can defend A against all attacks. If a set of argu-
ments is admissible, it means that anyone believing this set of arguments as valid is not
contradicting himself and can defend his beliefs against all attacks.

Definition 4. An admissible set S is called a preferred extension if there is no admis-
sible set S′ ⊆ A, such that S ( S′.

Building on the intuition from before, taking on a preferred extension as your beliefs
thus means that you would not be able to defend any more arguments without contra-
dicting yourself.

Lemma 1 (Fundamental Lemma). Let S be an admissible set, and A and A′ be ar-
guments that each are acceptable with respect to S, then

1. S′ = S ∪ {A} is admissible, and
2. A′ is acceptable with respect to S′.



Proof. 1) As S is admissible, and A is acceptable with respect to S, it is obvious that
S, and therefore also S′, defends each argument in S′. Thus we only need to prove
that S

′ is conflict-free. Assume not. Then there is an argument B ∈ S
′ and an attack

S′′ ⊆ S′ on B. Since each argument in S′ is defended by S it follows that S attacks
S′′.

As S attacks S′′ it follows that S must attack at least one argument of S ′′. Let C
be this argument. We consider two cases: First C ≡ A and second C 6≡ A. If C ≡ A
then it follows that S attacks A. As A is acceptable with respect to S, S must then
necessarily attack S, which contradicts the assumption that S is conflict-free. Assume
then that C 6≡ A. Then C must be part of S, and consequently S attacks S yielding the
same contradiction with the assumptions.

2) Obvious. ut

Using the Fundamental Lemma the following important result, guaranteeing that an
admissible set can be extended to a preferred extension, can be proven.

Theorem 1. For any argumentation system the set of admissible sets forms a complete
partial order with respect to set inclusion, and for each admissible set S there exists a
preferred extension S′, such that S ⊆ S′.

As the empty set is an admissible set, we have:

Corollary 2. Every argumentation system has at least one preferred extension.

A more aggressive semantics is the stable semantics:

Definition 5 (Stable Semantics). A conflict free set S is a stable extension if S attacks
all arguments in A \ S.

Lemma 3. S is a stable extension iff S = {A | A is not attacked by S}.

Proof. “only if”: Obvious.
“if”: Assume not. Then S is either not conflict-free, or there is an argument in

A \ S not attacked by S. The latter possibility is precluded by the definition of S, so
there must be a set S

′ ⊆ S and an argument A ∈ S such that S
′ attacks A. But then S

also attacks A, which contradicts the definition of S. ut

The general connection between stable and preferred semantics is given by the follow-
ing result:

Lemma 4. Every stable extension is a preferred extension, but not vice versa.

Both preferred and stable semantics are credulous in the sense that they represent beliefs
that include as much as possible. Next, we consider semantics corresponding to more
skeptical points of views. For this we need the notion of a characteristic function, and
some general results on this:

Definition 6 (Characteristic Function). The characteristic function of an argumenta-
tion system is the function F : P(A)→ P(A) defined as

F (S) = {A | A is acceptable wrt. S} .



Next, we state a couple of properties of the characteristic function F . The first result is
not explicitly stated in [11], but included only as part of a proof. We make it explicit
here as it is a property required of F by some proofs that have been left out.

Proposition 1 (*) If S is a conflict-free set, then F (S) is also conflict-free.

Proof. Assume this is not the case, then there is S
′ ⊆ F (S) and A ∈ F (S) such that

S′ attacks A. Since A is acceptable wrt. S, S must attack at least one element B of S ′.
But since B is in F (S) it must be acceptable wrt. S, and S must consequently attack
itself. This contradicts the assumption that S is a conflict-free set. ut

Lemma 5. A conflict-free set S is admissible iff S ⊆ F (S).

Proof. “only if”: All arguments of S are acceptable wrt. S, so S ⊆ F (S).
“if”: As S ⊆ F (S) it follows that all arguments of S are acceptable wrt. S. ut

Lemma 6. F is a monotonic function with respect to set inclusion.

Proof. Follows since adding arguments to a set of arguments cannot cause the set to
attack fewer arguments, and consequently cannot change the status of any of the argu-
ments currently defended into being not defended. ut

Now, we can introduce the most skeptical semantics possible:

Definition 7 (Grounded Extension). The grounded extension of an argumentation
system, is the least fix-point of the corresponding characteristic function.

A grounded extension is thus the set of arguments that are not challenged by any other
arguments, along with the arguments defended by these arguments, those defended by
those, and so on. [11] does not prove that the grounded extension of an argumentation
system is well-defined, but we include a proof here.

Proposition 2 (*) If G1 and G2 are both grounded extensions of an argumentation
system, then G1 = G2.

Proof. Assume not, and let C = G1 ∩ G2. As G1 and G2 are different and also
minimal, it follows that none of them can be the empty set, and hence that F (∅) 6= ∅. As
F (∅) consists of the arguments that are not attacked by any arguments at all, it follows
that these are acceptable wrt. any set. In particular, F (∅) must be a subset of both G1

and G2, so C is non-empty. Furthermore, as Lmm. 6 assures that F is monotonic, it
follows that F (C) must be a subset of both G1 and G2. But then F (C) must be equal
to C, and is thus a fix point of F . As both G1 and G2 were supposed to be minimal
and different, this yields the desired contradiction. ut

As a common class, encompassing all the semantics we have discussed so far, we
introduce complete extensions:

Definition 8 (Complete Extension). An admissible set S is called a complete exten-
sion, if all arguments that are acceptable with respect to S are in S.



A couple of results tie the complete extension semantics to the other semantics we have
discussed:

Lemma 7. A conflict-free set S is a complete extension iff S = F (S).

Theorem 2. Extensions are such that:

1. Each preferred extension is a complete extension, but not vice versa.
2. The grounded extension is the least complete extension with respect to set inclusion.
3. The complete extensions form a complete semi-lattice with respect to set inclusion.

Next, we investigate classifying argumentation systems according to desirable proper-
ties of their corresponding semantics.

Definition 9 (Finitary System*). An argumentation system is said to be finitary if for
each argument A, there is at most a finite amount of minimal attacks on A, and each
minimal attack is by a finite set of arguments.

Lemma 8. For any finitary system, F is ω-continuous.

Proof. Let S1 ⊆ S2 ⊆ · · · be an increasing series of sets of arguments, and S = ∪iSi.
We need to show that F (S) = ∪iF (Si). As adding arguments to a set cannot reduce the
set of arguments attacked by this set, and therefore cannot reduce the set of arguments
that are acceptable with respect to it, we have that F (Si) ⊆ F (S) for each i, and thus
F (S) ⊇ ∪iF (Si).

To see that F (S) ⊆ ∪iF (Si), consider an argument A ∈ F (S), and let T1, . . . , Tn

be the finitely many minimal attacks on A. As S attacks each attack on A, there must
be an argument Bi in each Ti, which is attacked by S. Let Ui ⊆ S be the minimal
attack of Bi. As each minimal attack consists of a finite number of arguments, the set
U = U1 ∪ · · · ∪ Un is finite as well, and thus there must be a j, such that U ⊆ Sj .
Consequently, A must be in F (Sj) and therefore also in ∪iF (Si). ut

Definition 10 (Well-founded System*). An argumentation system is well-founded, if
there exists no infinite sequence of sets S1, S2, . . ., such that Si is a minimal attack on
an argument in Si−1 for all i.

Theorem 3. Every well-founded argumentation system has exactly one complete ex-
tension, which is grounded, preferred, and stable.

Proof. It suffices to prove that the grounded extension G is stable. Assume this is
not the case, and let S = {A | A /∈ G and A is not attacked by G}, which must be
nonempty if the grounded extension is not stable. We prove that each argument A in S

is attacked by a minimal set S
′ such that S ∩ S

′ 6= ∅, and therefore that the system
cannot be well-founded.

Since A is not in G it is not acceptable with respect to G. Therefore there must be
a minimal attack T of A, not itself attacked by G. Since G does not attack A, at least
one element of T must be outside of G. Let T ′ be T \G, which is thus non-empty. As
G does not attack T , it furthermore follows that T ′ must be a subset of S. Thus, T is
the set S′ we were looking for, and the proof is complete. ut



Definition 11 (Coherent and Relatively Grounded System). An argumentation sys-
tem is coherent if all its preferred extensions are stable. A system is relatively grounded
if its grounded extension is the intersection of all its preferred extensions.

Let A1, A2, . . . be a (possible finite) sequence of arguments, where each argument Ai

is part of a minimal attack on Ai−1. Then the arguments {A2i}i≥1 are said to indirectly
attack A1. The arguments {A2i−1}i≥1 are said to indirectly defend A1. If an argument
A is both indirectly attacking and defending an argument B, then A is said to be con-
troversial with respect to B, or simply controversial.

Definition 12 (Uncontrovertial and Limited Controversial System). An argumenta-
tion system is uncontroversial if none of its arguments are controversial. An argumen-
tation system, for which there exists no infinite sequence of arguments A1, A2, . . ., such
that for all i, Ai is controversial with respect to Ai−1, is said to be limited controversial.

Obviously, a controversial argumentation system is also limited controversial.

Lemma 9. In every limited controversial argumentation system there exists a nonempty
complete extension.

Proof. We construct the nonempty complete extension C. Since a nonempty grounded
extension would suffice, we assume that it is empty. Since the system is limited contro-
versial, every sequence of arguments, where Ai is controversial with respect to Ai−1,
must have a last element, B. It follows that there is no argument that is controversial
with respect to B. We define E0 to be {B}, and Ei to be Ei−1 ∪Di, where Di is a
minimal set that defends Ei−1 from A\Ei−1, for all i ≥ 1. As the grounded extension
is empty, each argument is attacked by some other argument, and therefore each Di is
guaranteed to exist.

We then prove by induction that, for each i ≥ 0, Ei is conflict-free and each argu-
ment in Ei indirectly defends B.

The hypothesis trivially holds true for i = 0. We assume it to be true for i − 1 and
show that it also must be true for i: From the induction hypothesis we know that Ei−1

consists of arguments that indirectly defends B. As each argument in Di participates
in attacking an argument, which participates in an attack on an argument in Ei−1, each
of these must also indirectly defend B, and consequently this is true of all arguments in
Ei. Assume then that Ei is not conflict-free. Then there is a set of arguments S ⊆ Ei,
that attack an argument B ∈ Ei. But then the arguments in S are attacking an indirect
defender of B, and thus are indirect attackers of B. This mean that the arguments in S

are controversial with respect to B, violating the assumptions of the lemma. Thus, the
induction hypothesis is proved.

Next, let E = ∪iEi. We prove that this set is admissible, and then let C be the
least complete extension containing E. We know such an extension exists as by Thm. 1
a preferred extension containing E must exists, and from Thm. 2 that extension must
be a complete extension. To see that E is admissible, first let C ∈ E be an argument.
There must be some i, such that C ∈ Ei, and therefore a defense of C must be in Di,
and consequently in Ei+1. But then that defense is also in E, and hence C must be
acceptable with respect to E. To see that E is conflict-free assume that it contains C
and S, such that S attacks C. As each argument of S must be an element of some set



Ei, it follows that each of these indirectly defend B. But as C also indirectly defends B,
each element of S must indirectly attack B also, and is thus controversial with respect
to B. But this violates the assumption that no argument is controversial with respect to
B, and there can therefore be no such S and C. ut

Lemma 10. For any uncontroversial system, with an argument A that is neither a mem-
ber of the grounded extension nor attacked by it,

1. there exists a complete extension containing A, and
2. there exists a complete extension that attacks A.

Proof. 1) Similar to the proof in [11].
2) Proof by construction. Since A is not part of the grounded extension G, nor

attacked by it, it is attacked by some minimal set of arguments S, such that S 6⊆ G and
G does not attack S. As the system is uncontroversial, it is impossible for any member
of S to participate in a minimal attack on S, so the set S is conflict-free. Following a
process similar to the one in the proof of Lmm. 9, substituting S for {B}, we can build a
series of conflict-free sets that consists of arguments that indirectly attack A. Extending
the union of these sets to a complete extension provides the sought extension. ut

Theorem 4. Every limited controversial system is coherent, and every uncontroversial
system is also relatively grounded.

Corollary 11. Every limited controversial argumentation system possesses at least one
stable extension.

This ends our derivation of results mirroring those in [11]. [11] furthermore provides
a series of results, showing how some formalisms are special cases of his framework.
As Dung’s framework itself is a special case of our framework, it follows that these
frameworks are also special cases of our framework.

[11] ends with a procedure that turns any finitary argumentation system, as defined
in [11], into a logic program, and thereby provides a tractable means for computing
grounded extensions of such systems. As our framework is more general, it does not
allow for Dung’s procedure to be used directly. Instead we provide the following pro-
cedure for finitary systems: Given a finitary argumentation system (A, .), we define a
Prolog encoding of this system as the clauses

{attacks([S], A)← | S . A} ,

where [S] is a Prolog list declaration containing the arguments in S.
Furthermore, a general interpreter for a Prolog encoding of a finitary argumentation

system, is defined as:

{acceptable(X)← ¬defeated(X);

defeated(X)← attacks(Y, X), acc(Y );

acc(X |Y )← acceptable(X), acc(Y );

acc(X)← acceptable(X); } .



4 Related Work

While not explicitly analyzing the problem of Dung’s framework addressed here, nor
trying to generalize it in a conservative manner, some previous works have allowed
for sets of attacking arguments, although mainly as side effects. First and foremost,
[29, Chapter 5] provided a framework, CumulA, with a very general attack relation,
which allows sets of arguments to attack other sets. However, the framework is focused
on modelling the actual dialectic process of argumentation, rather than investigating
the essentials of justified and acceptable arguments, and perhaps as a consequence of
this, the semantics presented by Verheij is neither as clear as Dung’s nor does it allow
for simple comparisons with other formalisms. Furthermore, there are some flaws in
Verheij’s treatment, which effectively leave CumulA with no well-founded semantics.
Specifically, three requirements on allowed extensions turn out to prevent seemingly
sensible systems from being analysed, and the semantics associated with an attack on
sets of arguments is context dependent. For more on these problems see [22].

Later, Verheij has developed two additional frameworks that allow for sets of at-
tacking arguments, namely Argue!, described in [30], and the formal logical framework
of DefLog, described in [32] and implemented in [31]. Even though these frameworks
builds on ideas from CumulA, they avoid the problems associated with that framework.
However, the two frameworks have other short-comings that make us prefer a conserva-
tive generalization of Dung’s framework: Argue! employs only a step-based procedural
semantics, and thus lacks the analytical tools, theoretic results, and scope of [11]. De-
fLog, on the other hand, is well-investigated, but lacks a skeptical semantics, and allows
sets of attacking arguments only as a rather contrived encoding. For instance, the attack
{A, B} . C would be encoded as

A ; (B ; ×(C)),

where ; denotes primitive implication, and×(·) denotes defeat of its argument. There
are two two problems with this encoding, one technical and one aesthetic. The first
is that systems involving infinite sets of attacking arguments cannot be analysed. The
second that the symmetry of the set of attackers is broken. Consider for instance the
case where A is “X weighs less than 80 kg”, B is “X is taller than 180 cms”, and C is
“X is obese”; here encoding the fact that A and B together defeat C as “X weighs less
than 80 kg” implies that “X is taller than 180 cms, so X is not obese” seems to us to be
inelegant, and the larger the set of attackers, the larger the inelegance.

The power of encoding sets of attacking arguments wielded by DefLog is due to its
expressive language, which is closed under both an implicative operator and an negative
operator. Some other argumentation frameworks that are based on formal languages
employing similar operators also have implicit methods for encoding attacks by sets of
arguments. Most notable is the framework presented in [33], which allows for any sets
of sentences to attack each other by encoding rules that from each of them lead to a
contradiction. Undercutting attacks are, however, not expressible without assumptions
on the underlying language. [8] and [15] present frameworks based on similar ideas.
However, all of these fail to abstract from the structure of arguments and as a result do
not clearly distinguish between arguments and their interactions, unlike the frameworks



of [11] and this paper. Moreover, the approach of encoding attacks in a logical language
restrains sets of attackers to be finite.

5 Conclusions

In this paper we have started exploring formal abstract argumentation systems where
synergy can arise between arguments. We believe that we have argued convincingly
for the need for such systems, and have examined some of the semantics that can be
associated with them. We have tried to do this in the most general fashion possible,
by taking outset in the abstract frameworks of [11], and creating a new formalization
that allows for sets of arguments to jointly attack other arguments. As we argued in
Sect. 2 this degree of freedom ensures that all kinds of attacks between arguments can
be modelled faithfully.
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PhD thesis, Université Paul Sabatier, Toulouse, July 1999.

2. L. Amgoud and C. Cayrol. On the acceptability of arguments in preference-based argu-
mentation framework. In Proceedings of the 14th Conference on Uncertainty in Artificial
Intelligence, pages 1–7, 1998.

3. L. Amgoud, N. Maudet, and S. Parsons. Modelling dialogues using argumentation. In
E. Durfee, editor, Proceedings of the Fourth International Conference on Multi-Agent Sys-
tems, pages 31–38, Boston, MA, USA, 2000. IEEE Press.

4. L. Amgoud, N. Maudet, and S. Parsons. An argumentation-based semantics for agent com-
munication languages. In Proceedings of the Fifteenth European Conference on Artificial
Intelligence, 2002.

5. S. Benferhat, D. Dubois, and H. Prade. Argumentative inference in uncertain and incon-
sistent knowledge bases. In Proceedings of the 9th Conference on Uncertainty in Artificial
Intelligence, pages 411–419, San Mateo, CA, 1993. Morgan Kaufmann.

6. L. Birnbaum. Argument molecules: a functional representation of argument structure. In
Proceedings of the 2nd National Conference on Artificial Intelligence, pages 63–65, Los
Altos, CA, 1982. William Kaufmann.

7. L. Birnbaum, M. Flowers, and R. McGuire. Towards an AI model of argumentation. In
Proceedings of the 1st National Conference on Artificial Intelligence, pages 313–315, Los
Altos, CA, 1980. William Kaufmann.

8. A. Bondarenko, P. M. Dung, R. A. Kowalski, and F. Toni. An abstract argumentation-
theoretic approach to default reasoning. Artificial Intelligence, 93:63–101, 1997.

9. D. V. Carbogim, D. Robertson, and J. Lee. Argument-based applications to knowledge en-
gineering. The Knowledge Engineering Review, 15(2), 2000.

10. C. Cayrol. On the relation between argumentation and non-monotonic coeherence-based en-
tailment. In Proceedings of the 14th International Joint Conference on Artificial Intelligence,
pages 1443–1448, San Mateo, CA, 1995. Morgan Kaufmann.



11. P. M. Dung. On the acceptability of arguments and its fundamental role in nonmonotonic
reasoning, logic programming and n-person games. Artificial Intelligence, 77(2):321–358,
1995.

12. M. Elvang-Gøransson and A. Hunter. Argumentative logics: reasoning with classically in-
consistent information. Data and Knowledge Engineering, 16:125–145, 1995.

13. M. Elvang-Gøransson, P. Krause, and J. Fox. Dialectic reasoning with inconsistent informa-
tion. In Proceedings of the 9th Conference on Uncertainty in Artificial Intelligence, pages
114–121, San Mateo, CA, 1993. Morgan Kaufmann.

14. M. Flowers, R. McGuire, and L. Birnbaum. Adversary arguments and the logic of personal
attacks. In W. G. Lehnert and M. H. Ringle, editors, Strategies for natural language process-
ing, pages 275–294. Lawrence Erblaum Associates, Hillsdale, New Jersey, 1982.

15. A. J. Garcia and G. R. Simari. Defeasible logic programming an argumentative approach.
Theory and Practice of Logic Programming, 4(1):95–138, 2004.

16. J. Kohlas. Symbolic evidence, arguments, supports and valuation networks. In M. Clarke,
R. Kruse, and S. Moral, editors, Symbolic and Quantitative Approaches to Reasoning and
Uncertainty, pages 186–198. Springer Verlag, Berlin, Germany, 1993.

17. P. Krause, S. Ambler, M. Elvang-Gøransson, and J. Fox. A logic of argumentation for rea-
soning under uncertainty. Computational Intelligence, 11:113–131, 1995.

18. F. Lin. An argument-based approach to non-monotonic reasoning. Computational Intelli-
gence, 9:254–267, 1993.

19. R. Loui. Defeat among arguments: a system of defeasible inference. Computational Intelli-
gence, 3:100–106, 1987.

20. P. McBurney. Rational Interaction. PhD thesis, Department of Computer Science, University
of Liverpool, 2002.

21. R. McGuire, L. Birnbaum, and M. Flowers. Opportunistic processing in arguments. In
Proceedings of the 7th International Joint Conference on Artificial Intelligence, pages 58–
60, Menlo Park, CA, 1981. American Association for Artificial Intelligence.

22. S. H. Nielsen and S. Parsons. Note on the short-comings of CumulA.
http://www.cs.aau.dk/˜holbech/cumulanote.ps.

23. S. Parsons, C. Sierra, and N. R. Jennings. Agents that reason and negotiate by arguing.
Journal of Logic and Computation, 8(3):261—292, 1998.

24. S. Parsons, M. Wooldridge, and L. Amgoud. Properties and complexity of formal inter-agent
dialogues. Journal of Logic and Computation, 13(3):347–376, 2003.

25. John L. Pollock. Cognitive Carpentry: A Blueprint for How to Build a Person. MIT Press,
1995.

26. H. Prakken. Relating protocols for dynamic dispute with logics for defeasible argumentation.
Synthese, 127:187–219, 2001.

27. H. Prakken. A study of accrual of arguments, with applications to evidential reasoning. In
Proceedings of the Tenth International Conference on Artificial Intelligence and Law, pages
85–94. ACM, 2005.

28. H. Prakken and G. Vreeswijk. Logics for defeasible argumentation. In D. Gabbay, editor,
Handbook of Philosophical Logic. Kluwer Academic Publishers, Dordrecht, The Nether-
lands, 2000.

29. B. Verheij. Rules, Reasons, Arguments. Formal studies of argumentation and defeat. PhD
thesis, Universiteit Maastricht, 1996.

30. B. Verheij. Argue! - an implemented system for computer-mediated defeasible argumen-
tation. In H. La Poutr and H.J. van den Herik, editors, Proceedings of the Tenth Nether-
lands/Belgium Conference on Artificial Intelligence, pages 57–66. CWI, Amsterdam, 1998.

31. B. Verheij. Artificial argument assistants for defeasible argumentation. Artificial Intelligence,
150(1–2):291–324, 2003.



32. B. Verheij. Deflog: on the logical interpretation of prima facie justified assumptions. Journal
of Logic and Computation, 13(3):319–346, 2003.

33. G. A. W. Vreeswijk. Abstract argumentation systems. Artificial Intelligence, 90(1):225–279,
1997.


