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Abstract. Many advances in argumentation theory have been made, but the ex-
ponential complexity of argumentation-based reasoning has made it impractical
to apply argumentation theory. In this paper, we propose a binary decision dia-
gram (BDD) approach to argumentation-based reasoning. In the approach, sets of
arguments and defeats are encoded into BDDs so that an argumentation process
can work on a set of arguments and defeats simultaneously in one BDD opera-
tion. As a result, the argumentation can be computed in polynomial number of
BDD operations on the number of input sentences.

1 Introduction

Argumentation provides an elegant approach to nonmonotonic reasoning [15] and de-
cision making [17, 26], and now sees wide use as a mechanism for supporting dialogue
in multiagent systems [32, 33]. As an approach that has its roots in logic — in many
systems of argument, the arguments are constructed using some form of logical in-
ference — the efficiency of reasoning using argumentation isa topic of considerable
interest [13, 16, 25] with a number of negative results that stress the fact that generating
arguments and establishing properties of arguments can be very costly in computational
terms.

In this paper we take a rather different look at the computation of arguments. We
have been investigating the creation of multiagent plans [36–38], especially the con-
struction of plans that take into account the communicationbetween agents [34, 35].
In doing so, we have been using a representation, that of quantified boolean formu-
lae (QBFs) and binary decision diagrams (BDDs), which has been widely adopted in
symbolic planning in non-deterministic domains. It turns out that this representation
provides a way to compute arguments, and given the computational efficiency of plan-
ning based on QBFs and BDDs, it seems that it can provide an efficient way to compute
arguments.We investigate exactly how efficient this approach is in this paper and con-
clude that we can carry out many of the basic operations needed to compute arguments
in a polynomial number of operations.



Note that we are not claiming to be performing general logical inference in poly-
nomical time. As we explain in detail later in the paper, the “polynomial number of
opertions” are operations on the BDD representation, and while this representation in
many cases can be constructed compactly from a set of logicalformulae, there are some
cases in which the size of this representation is exponential in the number of formulae.

2 Background

This section gives the technical background needed by the remainder of the paper, a
description ofquantified boolean formulae, andbinary decision diagrams.

2.1 Qantified boolean formulae

A propositional languageL based on a set of proposition symbolsP with quantifica-
tion can be defined by allowing standard connectives∧,∨,→,¬ and quantifiers∃,∀
over the proposition variables. The resulting language is alogic of quantified boolean
formulae (QBF) [5]. Asymbol renaming operation, which we use below, can be defined
onL, denoted byL[P/P ′], which means that a new language is obtained by substituting
the symbols ofP with the symbols ofP ′ whereP ′ contains the same set of proposi-
tions as that ofP but using different symbol names (notice that|P ′| = |P|). Similarly
for a formulaξ ∈ L, if x is a vector of propositional variables forP, then a variable
renaming operation can be defined byξ[x/x

′] which means that all the appearances
of variablesx = x1x2 . . . xn are substituted byx′ = x′

1x
′
2 . . . x′

n which is a vector
of the corresponding variables or constants inP ′. In QBF, propositional variables can
be universally and existentially quantified: ifφ[x] is a QBF formula with propositional
variable vectorx andxi is one of its variables, the existential quantification ofxi in φ is
defined as∃xiφ[x] = φ[x][xi/FALSE]∨φ[x][xi/TRUE] and the universal quantifi-
cation ofxi in φ is defined as∀xiφ[x] = φ[x][xi/FALSE] ∧ φ[x][xi/TRUE]. Here
FALSE andTRUE are two propositional constants representing “true” and “false”
in the logic. Quantifications over a setX = {x1, x2, . . . , xn} of variables is defined as
sequantial quantifications over each variablesxi in the set:

QXξ = Qxn
Qxn−1

. . . Qx1
ξ

whereQ is either∃ or ∀. The introduction of quantification doesn’t increase the ex-
pressive power of propositional logic but allows us to writeconcise expressions whose
quantification-free versions have exponential sizes [11].

With above language, we can encode sets and relations to manipulate sets of ar-
guments and defeats. Letx be an element of a setX = 2P , x can then be explicitly
encoded by a conjunction composed of all proposition symbols inP in either positive
or negative form

ξ(x) =
∧

pi∈x

pi ∧
∧

pj 6∈x andpj∈P

¬pj

wherepi ∈ x means that the corresponding bitpi is set to beTRUE in the encoding of
x, andpj 6∈ x means that the corresponding bitpj is set to beFALSE in the encoding



Set operator QBF operator

X1 ∩X2 ξ(X1) ∧ ξ(X2)
X1 ∪X2 ξ(X1) ∨ ξ(X2)
X1 \X2 ξ(X1) ∧ ¬ξ(X2)
x ∈ X ξ(x)→ ξ(X)
X1 ⊆ X2 ξ(X1)→ ξ(X2)

Table 1.The mapping between set operators and QBF operators

of x. We denote that a formulaγ can be satisfied in an elementx by x |= γ. Then a set
of elements can be characterized by a formulaγ ∈ L, with the set denoted byX(γ),
whereX(γ) = {x|x |= γ}.4 Two special sets, the empty set∅ and the universal setU ,
are represented byFALSE andTRUE respectively.

With these notions we can have a mapping between the set operations on states and
the boolean operations on formulae as shown in Table 1 whenX1 andX2 are interpreted
as two sets of states.

2.2 Binary decision diagrams

In the above, we have showed the natural connections betweenthe set paradigm and its
implicit representation using QBF formulae. Now we will briefly survey that the QBF
formulae and the operations over them can be represented andefficiently computed
using a data structure called Binary Decision Diagrams (BDD) [5]. In this way, the time
and space complexity for exploring the space of arguments and defeats for acceptable
arguments can be significantly reduced due to the compact representation provided by
BDDs in comparison to explicit search techniques.

A BDD is a rooted directed acyclic graph. The terminal nodes are eitherTRUE
or FALSE. Each non-terminal node is associated with a boolean variable xi, and two
BDDs, called left and right, corresponding to the values of the sub-formula whenxi

is assignFALSE andTRUE respectively. The value of a QBF formula can be de-
termined by traversing the graph from the root to the leaves following the boolean as-
signment given to the variables of the QBF formula. The advantage of using BDDs to
represent QBF formulae is that most basic operations on QBFscan be performed in lin-
ear or quadratic time in terms of the number of nodes used in a BDD representation of
the formulae if a special form of BDD, called Reduced OrderedBinary Decision Dia-
gram (ROBDD) [5], is used. A ROBDD is a compact BDD which uses afixed ordering
over the variables from the root to the leaves in the BDD, merges duplicate subgraphs
into one, and directs all their incoming edges into the merged subgraph. Following the
notation traditionally used in symbolic model checking andAI planning, we will refer
to an ROBDD simply as a BDD.

Let ξ, ξ1, ξ2 be QBF formulae, let the number of nodes used in its BDD repre-
sentation denoted by|| · ||. With this BDD representation, the complexity of a QBF
binary operator〈op〉 (e.g.∧,∨,→) on two formulaeξ1 and ξ2, namelyξ1〈op〉ξ2, is

4 Note thatX(p1 ∧ p2 ∧ . . . ∧ pk) 6= {s} wherex = {p1, p2, . . . , pk}.



QBF/Set operator BDD operator Complexity

¬ξ ¬G(ξ) O(||ξ||)
∃xi(ξ) G(ξxi=0) ∨G(ξxi=1) O(||ξ||2)
∀xi(ξ) G(ξxi=0) ∧G(ξxi=1) O(||ξ||2)
ξ1 ∧ ξ2 G(ξ1) ∧G(ξ2) O(||ξ1|| · ||ξ2||)
ξ1 ∨ ξ2 G(ξ1) ∨G(ξ2) O(||ξ1|| · ||ξ2||)
ξ1 → ξ2 G(ξ1)→ G(ξ2) O(||ξ1|| · ||ξ2||)
|X| Sat-count(G(ξ(X))) O(||ξ(X)||)

Table 2.The mapping between QBF operators and BDD operators.ξ, ξ1, ξ2 are formulae in QBF;
G(ξ), G(ξ1), G(ξ2) are BDD representations for these formulae.

O(||ξ1|| × ||ξ2||), that of negation¬ξ is O(||ξ||) (or O(1) if complement edges are in-
troduced to the BDDs), and that of quantificationQxi

(f [x]), whereQ is either∃ or ∀,
is O(||f ||2) [5, 11] as summarized in Table 2.

The key achievement of using BDDs (and the front end languageof QBFs) to rep-
resent sets and relations is that the complexity of the operations will depend on the
complexity of the BDD representation instead of the size of the sets and relations, and
the complexity of the BDD representation of the sets and relations doesn’t depend on
the size of those sets and relations. Instead, the operations on BDDs are polynomial in
the size of the BDD, and so operations on sets and relations will be polynomial in the
size of their BDD representation rather than exponential intheir size.

3 Set-theoretic argumentation

Having introduced the ideas from QBFs and BDDs, in this section we give an overview
of the argumentation system we will capture using them. The framework we use is
mostly drawn from the work of Amgoud and her colleagues [1, 2]with some slight
modifications. This framework will abstract away the inference procedure by which the
arguments are created and only keep track of the premises thearguments are based on.
In the next section, we will introduce the inference procedure back into the representa-
tion of arguments.

Definition 1. An argument based onΣ ⊆ L is pair (H,h) whereH ⊆ Σ andH 6= ∅
such that

1. H is consistent with respect toL,
2. H ⊢ h,
3. H is minimal (for set inclusion).

H is called the support andh is called the conclusion of the argument.A(Σ) denotes
the set of all arguments which can be constructed fromΣ.

This definition of argument can be understood as a set of constraints on how information
can be clustered as arguments. Condition(1) is to ensure that an argument is coherent.



The coherence of an agent’s information is defined in terms ofthe consistency of the
languageL in which the information is written. Condition(2) can be understood as
insisting that the conclusion of an argument should be supported by a set of information
in the sense of inference in the languageL. Condition(3) can be understood as saying
that no redundant information should appear in an argument.

Definition 2. (H ′, h′) is a subargument of the argument(H,h) iff H ′ ⊆ H.

Definition 3. Let (H1, h1), (H2, h2) be two arguments ofA(Σ).

1. (H1, h1) rebuts(H2, h2) iff h1 ≡ ¬h2.
2. (H1, h1) undercuts(H2, h2) iff ∃h ∈ H2 such thath1 ≡ ¬h.
3. (H1, h1) contradicts(H2, h2) iff (H1, h1) rebuts a subargument of(H2, h2).

The binary relationsrebut, undercut, and contradict gather all pairs of arguments
satisfying conditions (1), (2) and (3) respectively.

Definitions ofrebut, undercut, andcontradict will be given below and we will collec-
tively refer to the relations asdefeat if no distinction is necessary. Following Dung’s
work [15], we have the following component definitions:

Definition 4. Anargumentation frameworkis a pair,Args = 〈A,R〉, whereA is a set
of arguments, andR is the binary relationdefeat over the arguments.

Definition 5. Let 〈A,R〉 be an argumentation framework, andS ⊆ A. An argumentA
is defended byS iff ∀B ∈ A if (B,A) ∈ R then∃C ∈ S such that(C,B) ∈ R.

Definition 6. S ⊆ A. FR(S) = {A ∈ A|A is defended byS with respect toR}.

Now, for a functionF : D → D whereD is the domain and the range of the function,
a fixed point ofF is anx ∈ D such thatx = F (x). When theD is associated with an
orderingP — for example,P can be set inclusion over the power setD of arguments
— x is a least fixpointof F if x is a least element ofD with respect toP andx is a
fixed point.

Definition 7. Let 〈A,R〉 be an argumentation framework. The set of acceptable ar-
guments, denoted byAccF

R, is the least fixpoint of the functionFR with respect to set
inclusion.

The least fixpoint semantics can be viewed as a mathematical translation of the princi-
ple such that an argument survives if it can defend itself andbe defended by a set of
arguments which can also survive all the attacks made upon them.

4 Representing arguments in QBFs and BDDs

We now turn our attention to using QBFs and BDDs to represent the components of an
argumentation system, and then to perform the computationswe need to carry out on
that representation.



We can label each itemfi ∈ Σ with a propositionli. Namely, we will extend the
languageL to contain both the information baseΣ and the labels for these sentences.
Formally, the proposition symbols can be extended to beP = PD ∪ PL wherePD is
the set of proposition symbols for the domain information, andPL is the set of system
proposition symbols labeling the sentences inΣ. Given a finite information baseΣ ⊆
L, |PL(Σ)| = |Σ|, namely each sentencefi ∈ Σ has a corresponding labelli.

For any formulaξ in L based onP = PD ∪ PL, ξD = ∃PL
ξ is the formula with

only domain symbols left, andξL = ∃PD
ξ is the formula with only the label symbols

left.

4.1 Labeling

For representational convenience, we define

SEL(li) = li ∧
∧

j 6=i

¬lj .

A sentencefi of Σ corresponds to a pair〈SEL(li), fi〉 which can be represented by
SEL(li) ∧ fi. Given a set of input informationΣ = {fi} for fi ∈ LD, a labeling table
Λ(Σ) can be expressed as follows

Λ(Σ) = {〈SEL(li), fi〉}

wherefi ∈ Σ andli ∈ PL, and the corresponding QBF representation

ξ(Λ(Σ)) =
∨

fi∈Σ

[SEL(li) ∧ fi]

The aboveΛ(Σ) expression requires2 × |Σ| QBF/BDD operations.5 Given a subset
σ ⊆ Σ,

SEL(σ) =
∧

fi∈σ

(li) ∧
∧

fj 6∈σ

¬lj

4.2 Consistent subsets

Since the support of an argument is a consistent set of propositions, a natural place
to start thinking about argument computation is with the computation of consistent
subsets. The set of all consistent subsets ofΣ is

CONS(Σ) =
∨

σ⊆Σ

[SEL(σ) ∧
∧

fi∈σ

fi] (1)

5 The first condition of using QBF/BDD is to guarantee a way to express the informa-
tion/specification that we need with only polynomial, linear, or even logarithmicnumber of
QBF/BDD operations; the second condition is to guarantee that the size of theinitial, inter-
mediate, and final BDDs corresponding to the information/specification is small enough to fit
into memory. For the second condition, if the size of the BDD explodes we may partition the
expression into conjunctions or disjunctions, and modify the algorithms manipulating these
BDDs correspondingly to try to avoid the explosion. If this still fails, then it means that the
problem cannot be efficiently handled by BDDs. In this case, it usually also means that some
aspect of the information required to solve the problem is simply too complex.



Computing the above expression directly requires an exponential number of QBF/BDD
operations, so we want to find another way to compute it.

Proposition 1. CONS(Σ) can be constructed using2×|Σ|−1 operations as follows

CONS(Σ) =
∧

fi∈Σ

[li → fi]. (2)

Proof. The form of formula 2 follows from

CONS(Σ) =
∧

fi∈Σ

[li → fi]

=
∧

fi∈Σ

[li → (li ∧ fi)]

=
∧

fi∈Σ

[¬li ∨ (li ∧ fi)]

=
∨

σ⊆Σ

[
∧

fj 6∈σ

¬lj ∧
∧

fi∈σ

(li ∧ fi)]

=
∨

σ⊆Σ

[SEL(σ) ∧
∧

fi∈σ

fi]

(li → fi)↔ (li → (li ∧ fi)) follows from:

A→ B ↔ ¬A ∨B

↔ (¬A ∨A) ∧ (¬A ∨B)

↔ ¬A ∨ (A ∧B)

↔ A→ (A ∧B)

2

With the above expression, we can exclude empty consistent subsets by

CONS+(Σ) = CONS(Σ) ∧ (
∨

fi∈Σ

lk)

Because we are only interested in non-empty consistent subsets, from here on we will
meanCONS+(Σ) when we useCONS(Σ). The set of subsets of selected sentences
is

CONS(Σ)L = ∃PD

(

∨

σ∈Σ(SEL(σ) ∧
∧

fi∈σ fi)
)

=
∨

σ∈Σ(SEL(σ) ∧
[

∃PD

(

∧

fi∈σ fi)
)]

=
∨

σ⊆Σ SEL(σ)

As we see, the complexity ofCONSL(Σ) is O(2× |Σ| − 1 + |PD|). Let

CONJ(σ) = SEL(σ) ∧
∧

fi∈σ

fi.



Proposition 2. Given a sentence set selectorσ ⊆ Σ represented bySEL(σ), if the
conjunction of the selected sentences inσ is consistent then it can be expressed as
follows

CONJ(σ) = SEL(σ) ∧ CONS(Σ)
=

∨

σ⊆Σ [SEL(σ) ∧
∧

fi∈σ fi]

Proof. CONS(Σ) is a disjunction of conjunctions of all consistent subsets of Σ.
Among these conjunctions,SEL(σ) only can make the one corresponding to theσ
selection true, which isSEL(σ) ∧

∧

fi∈σ fi, and others false. NamelySEL(σ) ∧
CONS(Σ) = SEL(σ) ∧

∧

fi∈σ fi 2

Similarly, the set of conjunctions of a set of selected sentences can be expressed by:

CONJ({σi}) =
∨

σi

[SEL(σi)] ∧ CONS(Σ)

With this expression, we will be able to filter conbinations of consistent and inconsistent
sets of sentences into consistent sets.

4.3 QBF/BDD representation of arguments

We can extend the languageP further to containP = PL ∪PD ∪PL,C ∪PD,C where
PD,C is a set of renaming symbols ofPD to represent the conclusions of arguments;
PL,C is an optional set of symbols to label an interesting sub-space of conclusions
(the ones we want to compute arguments for). For example, if the sentences inΣ and
their negations are of interest, thenPL,C = 2log|Σ| (we don’t need to label a set of
sentences, instead we just need to label individual setences and their negations so that
we need2log|Σ| symbols). Similarly, we will denotePD by PD,P for premises when
a distinction is needed.

An argument(H,h) in LD can then be represented by formulaξ(H,h) in L

ξ(H,h) = SEL(H) ∧
∧

fi∈H

fi ∧ h[PD,C ]

whereh[PD,C ] means the expressionh is in terms of the symbols ofPD,C .
The set of all arguments that can be constructed fromΣ will be equivalent to

A(Σ) = CONS(Σ)

for the moment by abstracting away the conclusions. Later wewill reintroduce the con-
clusions to the representation during the query for conclusions and the defeat process.

4.4 Arguments for conclusions

We can construct the set of arguments for a set of conclusionsall at once as follows. Let
us assume that, besides the input information baseΣ, we also have a set of conclusions
C that we wish to support.

C = {hk}



with K = log|C| and a set of labeling symbols

PL,C = lC = {l1,C , . . . , lK,C}

and letck be defined aslC = k, namelyck is the encoding of integerk using the
boolean symbols ofPL,C .

The set of arguments forC based onΣ can be represented as

Args(Σ,C)L = ∀x∈PD∪PD,C

∨

hk∈C

∨

σ⊆Σ

[(
∧

fi∈Σ

fi → hk) ∧ SEL(σ) ∧ ck)]

and results in

Args(Σ,C) = Args(Σ,C)L ∧ CONS(Σ) ∧
∨

hk∈C

(ck ∧ hk)

Proposition 3. Args(Σ,C)L can be expressed as

∀x∈PD∪PD,C
CONS(Σ)L ∧

[

∨

hk∈C

(ck)

]

∧





∨

fi∈Σ

(li ∧ ¬fi) ∨
∨

hk∈C

(ck ∧ hk)





using O(2 × |C|) + O(|Σ|) + O(2 × |Σ| + |PD|) + O(|PD ∪ PD,C |) QBF/BDD
operations.

Proof. Start with the first two items above,

CONS(Σ)L ∧

[

∨

hk∈C

(ck)

]

∨

σ⊆Σ

∨

hk∈H

[SEL(σ) ∧ ck]

Conjoining with the remaining two items
[

∨

fi∈Σ (li ∧ ¬fi) ∨
∨

hk∈C (ck ∧ hk)
]

, gives:

∨

σ⊆Σ

∨

hk∈C



SEL(σ) ∧ ck ∧





∨

fi∈Σ

(li ∧ ¬fi) ∨
∨

hk∈C

(ck ∧ hk)









=
∨

σ⊆Σ

∨

hk∈Σ







SEL(σ) ∧ (
∨

fi∈σ

¬fi)



 ∨ (ck ∧ hk)





=
∨

σ⊆Σ

∨

hk∈Σ



SEL(σ) ∧ ck ∧





∧

fi∈σ

(fi)→ (hk)









The first line is derived using
∨

i Ai ∧
∨

j Bj =
∨

i

[

Ai ∧
(

∨

j Bj

)]

. The second line

is derived using

SEL(σ) ∧ (
∨

fi∈Σ

(li ∧ ¬fi)) = SEL(σ) ∧ (
∨

fi∈σ

¬fi)

since:
SEL(σ) ∧ (li ∧ ¬fi) = FALSE

for anyfi 6∈ σ. The second line also employsck ∧
∨

hk∈C(ck ∧ hk) = ck ∧ hk 2



Algorithm 4.1 Computing BDD for set-inclusion⊆
1: Associate with each element infi ∈ Σ two BDD variablesli andl′i.
2: Take the variable orderl1, l′1, l2, l

′
2, ..., ln, l′n (n = |Σ|)

3: for eachli do
4: link li = 1 to l′i
5: link li = 0 to li+1

6: end for
7: for eachl′i 6= l′n do
8: link l′i = 1 to li+1

9: link l′i = 0 to terminal0
10: end for
11: link l′n = 0, to terminal0
12: link l′n = 1, to terminal1

4.5 Minimization of consistent sets with respect to conclusions

In the above,Args(Σ,C) may contain non-minimal arguments. To overcome this, we
need to minimize the arguments inArgs(Σ,C) with respect to their conclusions. Given
a set of argumentsQ ⊆ A and a partial relationB ⊆ A × A (e.g. the set-inclusion⊆
relation on the supports of arguments) onA, the set of minimal arguments inQ with
respect toB is

Min(Q,B) = {A ∈ Q|for all C ∈ Q, (C,A) ∈ B implies(A,C) ∈ B}

By encodingQ with a QBF formulaQ[P] based on a setP of propositional symbols,
and encoding the partial relationB with another QBFB[P,P ′] with the first component
of B based on symbols inP and the second component ofB based on the symbols in
P ′, we can computeMin(Q,B) as fllows

Min(Q,B) = Q ∧ ∀Z [(Q[P/Z]→ (B[P/Z,P ′/P]→ B[P ′/Z])]

whereZ is a temporary set of symbols renamed fromP to hold the intermediate results
during the computation.

The set-inclusion relation between two sets of supportsH1[P] andH2[P
′] can be

implemented as:
ξ(⊆) =

∧

fi∈Σ

[li → l′i].

This requires2×|Σ|QBF/BDD operations to construct. A linear BDD size implemen-
tation of⊆ on the supports ofA is given in Algorithm 4.16.

The set of minimal supports which attack a sentencehk ∈ C can be computed as

Argsmin(Σ, hk) = Min ((Args(Σ,C) ∧ ck)L, ξ(⊆)) .

The set of minimal supports with respect to each each setencein C can be computed as

Argsmin(Σ, hk) =
∨

hk∈C

Argsmin(Σ, hk).

For description convenience, below we will useArgs(Σ,C) for Argsmin(Σ,C).
6 To the best of our knowledge only an exponential implementation exists in theliterature [3].



4.6 A QBF representation of defeat

A defeatdefeat((H,h), (H ′, h′)) can be represented by

ξ(H,h,H ′, h′) = CONJ(H) ∧ SEL(h)[PL,C ] ∧ h[PD,C ]

∧ CONJ(H ′)[P ′
D] ∧ SEL(h′)[P ′

L,C ] ∧ h′[P ′
D,C ]

by extending the languageL[P] to beL[P] ∪ L[P ′]. A defeat relationD = {(Ai, A
′
i)}

can be represented by a single QBF/BDD formula:

ξ(D) =
∨

(Ai,A
′

i
)∈D

[ξ(Ai) ∧ ξ(A′
i)].

Now we need an expression with a polynomial number of operations to generate the
set of all possible defeats fromΣ. To do this, we need to inspect the specific types of
defeats. We start withundercut:

Definition 8. An argument(H1, h1) undercutsanother argument(H2, h2) iff there ex-
ists anf ∈ H2 such thath1 ≡ ¬f .

and this gives us:

Proposition 4. Let C = Σ ∪ {¬fi|fi ∈ Σ}, the set of all possible undercuts can be
constructed as

undercut(Σ) = Args(Σ,C) ∧Args(Σ′, C ′) ∧ (
∨

f ′

i
∈Σ′(c¬fi

∧ li))

wherec¬fi
denotes the encoding of the label that corresponds to¬fi in C.

Proof. Args(Σ,C) andArgs(Σ′, C ′) constructs the arguments forC based onΣ us-
ing two sets of symbols, and the corresponding selection of input sentences and conclu-
sion sentences.(

∨

f ′

i
∈Σ′(c¬fi

∧ li)) builds up the undercut relation between these two
sets of arguments. 2

Note that the setting of the conclusion pointsC = Σ∪{¬fi|fi ∈ Σ} can be changed ac-
cording to any application-dependent argumentation process, for exampleCONS(Σ)
and their negations or other application oriented conclusions and their negations.

Next we considerrebut:

Definition 9. (H1, h1) rebuts (H2, h2) iff h1 ≡ ¬h2.

We can construct therebut relation in the same way asundercut by assuming a set of
interesting conclusion points. However, we can also construct therebut relation in the
following way and leaving the conclusion points open to makethe system more flexible.

Definition 10. Given a setH of sentences, let

S(H) = {s|s |= H}
S(h) = {s|s |= h}

wheres is an assignment toP. H ⊢ h iff S(H) ⊆ S(h).



The definition ofrebut is then:

Definition 11. H1 rebutsH2, if there is someh such thatH1 ⊢ h andH2 ⊢ ¬h.

and we have:

Proposition 5. Given two consistent sets of sentencesH1 and H2, H1 rebutsH2 iff
S(H1) ∩ S(H2) = ∅, namely[CONJ(H1) ∧ CONJ(H2)]↔ FALSE.

Proof. If H1 rebutsH2, then there is ah such thatH1 ⊢ h andH2 ⊢ ¬h. SinceS(h)∩
S(¬h) = ∅, andS(H1) ⊆ S(h) andS(H2) ⊆ S(¬h), thereforeS(H1) ∩ S(H2) = ∅.

If S(H1) ∩ S(H2) = ∅, the rebutting pointh can be constructed as follows. Let
padding = ¬(H1 ∨ H2), and h = H1 ∨ padding. In this way,S(padding) =
U \ (S(H1) ∪ S(H2)), S(h) = S(H1) ∪ S(padding), S(¬h) = U \ (S(H1) ∪
S(padding)) = S(H2). ThereforeS(H1) ⊆ s(h) andS(H2) ⊆ S(¬h), namelyh
is the rebutting point we are looking for such thatH1 ⊢ h andH2 ⊢ ¬h. 2

Actually h can be anything such thatS(H1) ⊆ S(h) ⊆ (S(H1) ∪ S(padding)), so we
have the following corollary.

Corollary 1. Given two sets of sentencesH1 andH2 which rebut each other, the rebut
point h can be obtained by settingS(H1) ⊆ S(h) ⊆ S(H1) ∪ S(padding) where
padding = ¬(H1 ∨H2). The choice ofh = H1 ∨ ¬(H1 ∨H2) which makesH1 and
H2 be the minimal sets of sentences such thatH1 ⊢ h andH2 ⊢ ¬h 2

As a result, the set of all rebuts can be expressed as

rebut(Σ) =
∨

σ⊆Σ,σ′⊆Σ

[CONJ(σ) ∧ CONJ ′(σ′) ∧ ¬ (CONJ(σ)D ∧ CONJ(σ′)D)]

and we have:

Proposition 6. rebut(Σ) can be expressed as

rebut(Σ) = CONS(Σ) ∧ CONS′(Σ) ∧
[

∨

fi∈Σ(li ∧ ¬fi) ∨
∨

fj∈Σ(l′j ∧ ¬fj)
]

using2×O(CONS(Σ)) + 6× |Σ|+ 3 QBF/BDD operations.

Proof.

rebut(Σ)

=
∨

σ⊆Σ,σ′⊆Σ

[CONJ(σ) ∧ CONJ ′(σ′) ∧ ¬ (CONJ(σ)D ∧ CONJ(σ′)D)]

=
∨

σ⊆Σ,σ′⊆Σ

[CONJ(σ) ∧ CONJ ′(σ′) ∧ (¬CONJ(σ)D ∨ ¬CONJ(σ′)D)]

=
∨

σ⊆Σ,σ′⊆Σ



CONJ(σ) ∧ CONJ ′(σ′) ∧





∨

fi∈σ

¬fi ∨
∨

fj∈σ′

¬fj











=
∨

σ⊆Σ,σ′⊆Σ



CONJ(σ) ∧ CONJ ′(σ′) ∧





∨

fi∈σ

(li ∧ ¬fi) ∨
∨

fj∈σ′

(l′j ∧ ¬fj)









= CONS(Σ) ∧ CONS′(Σ) ∧





∨

fi∈Σ

(li ∧ ¬fi) ∨
∨

fj∈Σ

(l′j ∧ ¬fj)





2

Finally we consider the computation of thecontradict relation:

Definition 12. (H1, h1) contradicts(H2, h2) if and only if(H1, h1) rebuts a subargu-
ment of(H2, h2).

The contradict relation can be computed by

contradict(Σ) = ∃Z (rebut(Σ)[P ′/Z] ∧ ξ(⊆)[P/Z])

4.7 Computing fixed points of argumentation

The relationsundercut, rebut andcontradict give us the relationship between individual
arguments, but, as is usual, we are more interested in computing things like which
arguments areacceptable, where such properties are defined as fixed-points.

Definition 13. An argumentH defends another argumentH ′ if there exists another
argumentH ′′ such thatH ′′ defeatsH ′ butH defeatsH ′′.

Thedefend relation can be constructed from thedefeat relation on the set of arguments
as follows:

defend(Σ, defeat) = ∃Z (defeat(Σ)[P ′/Z] ∧ defeat(Σ)[P/Z])

wheredefeat(Σ) is eitherundercut(Σ), rebut(Σ), contradict(Σ), or any disjunction
of the relations (e.g.undercut(Σ) ∨ rebut(Σ)). The composition of two relationsR1

andR2 on the setA of arguments can be computed by

ComposeR(R1, R2) = ∃ZR1[P
′/Z] ∧R2[P/Z].

With these constructs defined, the fixed point of argumentation can be computed using
Algorithm 4.2. In Algorithm 4.2, the closure of a binary relation R onA, is computed
using a method called iterative squaring [7] which is guaranteed to terminate within
O(log|A|) steps. In line3 : OldR ← IPL

∪ defendPL
, the defend relation is first

projected to sentence labeling symbols so that during the computation of the defending
closure only the label of arguments are considered without referring to their internal
structure; the union with the identity relationIPL

=
∧

fi∈Σ(li ↔ l′i) is to keep the
defended arguments in the closure.

Proposition 7. Algorithm 4.2 computes the fixed point of the defend relation, namely
the set of acceptable arguments constructed fromΣ.



Algorithm 4.2 Computing Fixed Point of Argumentation
1: function ComputeF ixedpoint(Σ, defeat) {

(1) Σ: The set of input information
(2) defeat is binary relation onA }

2: defend← defend(Σ, defeat)
3: OldR← IPL

∪ defendPL

4: R← FAIL
5: while (OldR 6= R) do
6: tmpR← R
7: R← ComposeR(OldR, OldR)
8: OldR← tmpR
9: end while

10: Undefeated← CONS(Σ) ∧ ¬ (∃x∈Pdefeat) [P ′/P]
11: Acc← ∃x∈P(Undefeated ∧R)[P ′/P] ∨ Undefeated
12: return Acc end function

Proof. Let step(R) be the maximum length of paths between a pair(A,A′) ∈ R in
the induced graph of the defend relationdefend. Let the startingR in line 3 denoted
by R0 = defend ∪ I. In R0, for every(A,A′) ∈ R, either(A,A′) ∈ defend, namely
A defendsA′ using one step, orA is identical toA′ namelyA defendsA′ using0
step, thereforestep(R0) = 1. Let the consequent content ofR in eachwhile itera-
tion denoted byRi wherei is the number of the iteration. Each time, whenRi+1 ←
ComposeR(Ri, Ri) is applied in line7, Ri+1 will gather all the argument pairs of
the form (A,A′) such thatA defendsA′ using defending steps less or equal than
step(Ri+1) = 2 × step(Ri) steps. Assume thati is the number such thatRi+1 = Ri,
if the iteration continues we will have

Ri+2 = ComposeR(Ri+1, Ri+1) = ComposeR(Ri, Ri) = Ri+1 = Ri

namely for allj ≥ i, Rj = Ri. Theforefore, after thewhile loop terminatesR will
gather all the argument pairs(A,A′) via any number of defending steps. Since the
number of arguments is finite, all the defending paths are of finite length, therefore the
algorithm is guaranteed to terminate. 2

Proposition 8. The complexity of algorithm 4.2 isO(|Σ| ×K2 × |P|) whereK is the
maximum size of the BDDs which appear during the fixed point computing process.

Proof. As the analyzed in the proof of proposition 7, thestep(Ri) = step2(Ri+1). The
maximum possible step ofRis is the number of arguments which is2|Σ|. Therefore the
algorithm is guaranteed to terminate afterm = log22

|Σ| = |Σ| iterations, therefore
the number of iteraction is bounded above byO(|Σ|). In each iteration,CompoeseR
can be computed usingO(1 + |P|) number of BDD operations, each operation is of
complexityO(K2) whereK is the maximum size of BDDs used. Therefore the whole
algorithm is bounded above byO(|Σ|)×O(K2 × |P|). 2



5 Discussion

Proposition 8 shows that we can compute the fixed-point in a polynomial number of
BDD operations. As we mentioned above, this is a long way fromsaying that we can do
general logical inference in polynomial time, rather what we are saying is that while the
complexity of algorithm 4.2 depends on the maximum size of the BDD (K), this doesn’t
depend on the size ofΣ but rather on the complexity of the information contained inΣ.
In the worse case,K can still be exponential in|P|, but in many practical applications
K tends to be small.

Because of this feature of systems built using the QBF/BDD representation, there
has been a lot of work on reducing the size of BDDs. Many successful approaches have
been developed in literature, especially those developed for symbolic model checking
in software and hardware verfication [24], and in non-determinstic AI planning [10].
Examples of techniques for reducing the size of BDDs are early quantification [19],
quantification scheduling [9], transition partitioning [6], iterative squaring [7, 8], fron-
tier simplification [12], input splitting [28, 29], and state setA∗ branching [22, 21, 23]
(a BDD version of theA∗ search heuristic [31]).

Another factor affecting the BDD size greatly is variable ordering. The problem
of finding an optimal variable ordering is NP-complete [4]. Algorithms based on dy-
namic programming [14], heuristics [20], dynamic variablereordering [30] and ma-
chine learning approaches [18] have been proposed for finding a good variable ordering
in reasonable time7.

We are currently working on an implementation of the reasoning mechanism pro-
prosed above with the aim of experimentally clarifying the nature ofK for different
argumentation problems.

6 Conclusions and Future Work

In this paper, we have proposed a symbolic model checking approach to compute ar-
gumentation. The computation only uses a polynomial numberof BDD operations in
terms of the number of sentences in the input and the number ofsymbols used in the
input. A key idea in the approach is to construct the set of consistent arguments all
together using a polynomial number of BDD operations. In thesame way, the defeat
relation among these arguments can also be computed all at once using a polynomial
number of BDD operations. And with the iterative squaring technique, we are able to
compute the fixed point of a set of arguments in polynomial number of BDD operations.

We are currently working on implementing the BDD-based argumentation system
proposed in this paper, with the aim of conducting experiments to classify the nature of
the BDDs constructed for argumentation. This will allow us to determine how effective
this approach will be in general. This in turn may lead us to look for new heuristics
for controlling the size of the BDDs we need to construct to compute arguments. An-
other direction that we are working on is to extend the current method to compute more

7 [18] is also a good source for other references on BDD variable (re-)ordering.



sophisticated and controllable approaches argumentation, such as those based on argu-
mentation schemes [27]. On the way, we will need to develop BDD techniques to effi-
ciently specify application-dependent patterns of arguments (such as those captured by
argument schemes), specify application-dependent patterns of defeats (defeat schemes),
and extend the basic entailment-based reasoning modelled here to specify the necessary
patterns of rule-based procedural reasoning. In combination with our continuing efforts
to use BDD techniqes in multiagent planning and dialogues [34, 36, 38, 39], all these ef-
forts are aimed at our ultimate goal of a practical argumentation-based dialogue model
for multiagent planning.
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