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Abstract. Many advances in argumentation theory have been made, but the ex-
ponential complexity of argumentation-based reasoning has made adtigad

to apply argumentation theory. In this paper, we propose a binary dedl&e

gram (BDD) approach to argumentation-based reasoning. In theagprsets of
arguments and defeats are encoded into BDDs so that an argumentatiesg

can work on a set of arguments and defeats simultaneously in one BBXa-op
tion. As a result, the argumentation can be computed in polynomial nunfiber o
BDD operations on the number of input sentences.

1 Introduction

Argumentation provides an elegant approach to nonmonoteisoning [15] and de-
cision making [17, 26], and now sees wide use as a mechanissafiporting dialogue
in multiagent systems [32, 33]. As an approach that has dtsnm logic — in many
systems of argument, the arguments are constructed using &orm of logical in-
ference — the efficiency of reasoning using argumentaticntigpic of considerable
interest [13, 16, 25] with a number of negative results thrass the fact that generating
arguments and establishing properties of arguments caerpeostly in computational
terms.

In this paper we take a rather different look at the compaomatif arguments. We
have been investigating the creation of multiagent plas-38], especially the con-
struction of plans that take into account the communicatietween agents [34, 35].
In doing so, we have been using a representation, that oftifjedrboolean formu-
lae (QBFs) and binary decision diagrams (BDDs), which hanheidely adopted in
symbolic planning in non-deterministic domains. It turng that this representation
provides a way to compute arguments, and given the compoédtefficiency of plan-
ning based on QBFs and BDDs, it seems that it can provide aeeffiway to compute
arguments.We investigate exactly how efficient this apgnda in this paper and con-
clude that we can carry out many of the basic operations eedsompute arguments
in a polynomial number of operations.



Note that we are not claiming to be performing general |dgitf@rence in poly-
nomical time. As we explain in detail later in the paper, tpelynomial number of
opertions” are operations on the BDD representation, antbwlihis representation in
many cases can be constructed compactly from a set of Idgicallae, there are some
cases in which the size of this representation is exporiéntihe number of formulae.

2 Background

This section gives the technical background needed by thairgler of the paper, a
description ofquantified boolean formulaandbinary decision diagrams

2.1 Qantified boolean formulae

A propositional languag€ based on a set of proposition symb®swith quantifica-
tion can be defined by allowing standard connectixes, —, - and quantifiersd, vV
over the proposition variables. The resulting languagel@ge of quantified boolean
formulae (QBF) [5]. Asymbol renaming operatigmhich we use below, can be defined
on L, denoted byC[P/P’], which means that a new language is obtained by substituting
the symbols ofP with the symbols ofP’ whereP’ contains the same set of proposi-
tions as that of® but using different symbol names (notice thgt| = |P|). Similarly

for a formulag € L, if x is a vector of propositional variables f@t, then a variable
renaming operation can be defined {y:/x'] which means that all the appearances
of variablesx = x,25 ...z, are substituted by’ = z}z) ...z, which is a vector
of the corresponding variables or constant®inIn QBF, propositional variables can
be universally and existentially quantifiedyifz] is a QBF formula with propositional
variable vectotr andx; is one of its variables, the existential quantification:pin ¢ is
defined asiz;¢[x| = ¢[x]|[z;/FALSE]V ¢[x][z;/T RU E] and the universal quantifi-
cation ofz; in ¢ is defined a¥z;¢[x] = ¢[x][x;/FALSE] A ¢|x][z;/TRUE]. Here
FALSE andTRUFE are two propositional constants representing “true” ards¥”

in the logic. Quantifications over a s&t = {z1,x2, ..., z, } Of variables is defined as
sequantial quantifications over each variablem the set:

QX§ = anQa:n,1 Qang

where @ is either3 or V. The introduction of quantification doesn’t increase the ex
pressive power of propositional logic but allows us to watecise expressions whose
quantification-free versions have exponential sizes [11].

With above language, we can encode sets and relations tqpulat@ sets of ar-
guments and defeats. Letbe an element of a seéf = 27, 2 can then be explicitly
encoded by a conjunction composed of all proposition symlgP in either positive

or negative form
§@) = N\ pin A “p;
pi€T pjéx andpjep

wherep; € z means that the corresponding bjtis set to bél" RU E in the encoding of
x, andp; ¢ x means that the corresponding bijtis set to beF" ALSE in the encoding



Set operator QBF operator

X1 NXo g(Xl)/\g(Xz)
X1 UX>o &(X1) VE(X2)
X1\ X §(X1) A =€(X2)
reX £(x) — &(X)
X1 CXo §(X1) — £(X2)

Table 1. The mapping between set operators and QBF operators

of . We denote that a formukacan be satisfied in an elemenby « |~ ~. Then a set
of elements can be characterized by a formula £, with the set denoted by (vy),
whereX (y) = {z|z & ~}.* Two special sets, the empty geand the universal seét,
are represented bW ALSFE andT RU E respectively.

With these notions we can have a mapping between the setigpsran states and
the boolean operations on formulae as shown in Table 1 iiheand X, are interpreted
as two sets of states.

2.2 Binary decision diagrams

In the above, we have showed the natural connections betiveeset paradigm and its
implicit representation using QBF formulae. Now we willddty survey that the QBF
formulae and the operations over them can be representedfficiéntly computed
using a data structure called Binary Decision Diagrams (B[BDP In this way, the time
and space complexity for exploring the space of argumerddafeats for acceptable
arguments can be significantly reduced due to the compaeiseptation provided by
BDDs in comparison to explicit search techniques.

A BDD is a rooted directed acyclic graph. The terminal nodeseitherT’ RU E
or FALSE. Each non-terminal node is associated with a boolean \tariaband two
BDDs, called left and right, corresponding to the valueshef sub-formula when;
is assignFALSE andT RU E respectively. The value of a QBF formula can be de-
termined by traversing the graph from the root to the leagleviing the boolean as-
signment given to the variables of the QBF formula. The athga of using BDDs to
represent QBF formulae is that most basic operations on @8ifrbe performed in lin-
ear or quadratic time in terms of the number of nodes used D@ Bpresentation of
the formulae if a special form of BDD, called Reduced OrdeBéthry Decision Dia-
gram (ROBDD) [5], is used. A ROBDD is a compact BDD which usésed ordering
over the variables from the root to the leaves in the BDD, m&duplicate subgraphs
into one, and directs all their incoming edges into the méggeébgraph. Following the
notation traditionally used in symbolic model checking #iglanning, we will refer
to an ROBDD simply as a BDD.

Let £, &1,& be QBF formulae, let the number of nodes used in its BDD repre-
sentation denoted bl - ||. With this BDD representation, the complexity of a QBF
binary operatorop) (e.g. A, V,—) on two formulaeg; and¢&,, namely; (op)&s, is

* Note thatX (p1 Ap2 A ... Apk) # {s} wherez = {p1,p2,...,px}.



QBF/Set operator BDD operator Complexity

—£ ~G(¢) o(lell)
Fzi(8) G(&xi=0) V G(&wi=1) O(lIEl)

Vi (€) G(Ezi=0) N G(€wi=1) O(lll1*)
SWARS G(&61) NG(&2) O(|I&1]1 - 11€211)
SRR G(&1) vV G(&2) O(ll&] - 11€211)
&1 — & G(&1) — G(&2) O(ll&]] - ll€211)
X1 Sat-count(G(§(X))) O(llgx)1h

Table 2. The mapping between QBF operators and BDD operagogs, &2 are formulae in QBF;
G(£),G(&1),G(&2) are BDD representations for these formulae.

O(]|&1]] x ||&2]]), that of negation-¢ is O(]|¢]|) (or O(1) if complement edges are in-
troduced to the BDDs), and that of quantification, (f[x]), whereQ is either3 orV,
is O(||f]?) [5,11] as summarized in Table 2.

The key achievement of using BDDs (and the front end lango&@BFs) to rep-
resent sets and relations is that the complexity of the dipasawill depend on the
complexity of the BDD representation instead of the sizehefgets and relations, and
the complexity of the BDD representation of the sets andio#la doesn’'t depend on
the size of those sets and relations. Instead, the opesatioBDDs are polynomial in
the size of the BDD, and so operations on sets and relatidhbevpolynomial in the
size of their BDD representation rather than exponentigiéir size.

3 Set-theoretic argumentation

Having introduced the ideas from QBFs and BDDs, in this sectie give an overview
of the argumentation system we will capture using them. Theéwork we use is
mostly drawn from the work of Amgoud and her colleagues [wRh some slight
modifications. This framework will abstract away the infeze procedure by which the
arguments are created and only keep track of the premisesghements are based on.
In the next section, we will introduce the inference progechack into the representa-
tion of arguments.

Definition 1. An argument based ob C L is pair (H,h) whereH C X andH # ()
such that

1. H is consistent with respect 0,
2. Ht h,
3. H is minimal (for set inclusion).

H is called the support andl is called the conclusion of the argumest(X') denotes
the set of all arguments which can be constructed ffom

This definition of argument can be understood as a set of @ntst on how information
can be clustered as arguments. Conditibnis to ensure that an argument is coherent.



The coherence of an agent’s information is defined in ternmtb@fconsistency of the
languagel in which the information is written. Conditiof2) can be understood as
insisting that the conclusion of an argument should be stipgdy a set of information
in the sense of inference in the languageCondition(3) can be understood as saying
that no redundant information should appear in an argument.

Definition 2. (H', k') is a subargument of the argumdi{, h) iff H' C H.
Definition 3. Let(Hq, hy), (Ho, he) be two arguments ofl(X).

1. (f[l7 hl) rebUtS(HQ, hg) iff hi1 = —hs.
2. (Hy, hy) undercuty Ho, ho) iff 3h € H, such thath; = —h.
3. (Hi, hy) contradicts(Ho, ho) iff (Hy, h1) rebuts a subargument 05, hs).

The binary relationsrebut, undercut, and contradict gather all pairs of arguments
satisfying conditions (1), (2) and (3) respectively.

Definitions ofrebut, undercut, andcontradict will be given below and we will collec-
tively refer to the relations adefeat if no distinction is necessary. Following Dung’s
work [15], we have the following component definitions:

Definition 4. Anargumentation framewoiik a pair, Args = (A, R}, whereA is a set
of arguments, an® is the binary relatiordefeat over the arguments.

Definition 5. Let (A, R) be an argumentation framework, aisdC .A. An argument4
is defended by iff VB € Aif (B, A) € Rthen3C € S suchthat(C, B) € R.

Definition 6. S C A. Fr(S) = {A € A|A is defended by with respect taR }.

Now, for a functionF' : D — D whereD is the domain and the range of the function,
a fixed point ofF' is anz € D such thate = F'(z). When theD is associated with an
orderingP — for example,P can be set inclusion over the power g2bf arguments
— z is aleast fixpointof F' if z is a least element ab with respect toP andzx is a
fixed point.

Definition 7. Let (A, R) be an argumentation framework. The set of acceptable ar-
guments, denoted bycck, is the least fixpoint of the functiaRz with respect to set
inclusion.

The least fixpoint semantics can be viewed as a mathematiredlation of the princi-
ple such that an argument survives if it can defend itselfl@mdiefended by a set of
arguments which can also survive all the attacks made ugn.th

4 Representing arguments in QBFs and BDDs

We now turn our attention to using QBFs and BDDs to representdbmponents of an
argumentation system, and then to perform the computatienseed to carry out on
that representation.



We can label each iterfi € X with a propositiorn/;. Namely, we will extend the
language’ to contain both the information bage and the labels for these sentences.
Formally, the proposition symbols can be extended t®be Pp U P wherePp is
the set of proposition symbols for the domain informatiamd &, is the set of system
proposition symbols labeling the sentenceginGiven a finite information basg' C
L, |Pr(X)| = | X|, namely each sentenge € X' has a corresponding labig!

For any formul& in £ based orP = Pp U Py, {p = Ip, € is the formula with
only domain symbols left, angl, = 3p,¢ is the formula with only the label symbols
left.

4.1 Labeling

For representational convenience, we define

SEL(L;) =1 A \ ;.
j#i
A sentencef; of X' corresponds to a paiiSEL(l;), f;) which can be represented by

SEL(l;) A f;. Given a set of input informatio® = { f;} for f; € Lp, a labeling table
A(X) can be expressed as follows

A(X) ={(SEL(L;), fi)}
wheref; € X andl; € Py, and the corresponding QBF representation

SA®) = \/ [SEL() A £

fiex

The aboved (X)) expression requirez x |X| QBF/BDD operations® Given a subset

oCX,
SEL(o) = N\ L)~ N\ I
fi€o fi¢o

4.2 Consistent subsets

Since the support of an argument is a consistent set of pitapes a natural place
to start thinking about argument computation is with the potation of consistent
subsets. The set of all consistent subsets' @

CONS(%) = \/ [SEL(o)rn )\ fi] (1)

oCxY fi€o

5 The first condition of using QBF/BDD is to guarantee a way to express thrniaf
tion/specification that we need with only polynomial, linear, or even logarithmiober of
QBF/BDD operations; the second condition is to guarantee that the size wiitiag inter-
mediate, and final BDDs corresponding to the information/specificatiomadl @nough to fit
into memory. For the second condition, if the size of the BDD explodes wepadition the
expression into conjunctions or disjunctions, and modify the algorithmspulating these
BDDs correspondingly to try to avoid the explosion. If this still fails, then iamethat the
problem cannot be efficiently handled by BDDs. In this case, it usualtyralsans that some
aspect of the information required to solve the problem is simply too complex



Computing the above expression directly requires an exgi@@umber of QBF/BDD
operations, so we want to find another way to compute it.

Proposition 1. CON S(X) can be constructed usirigx | X'| — 1 operations as follows
CONS(E)= N [l — fi]. 2)
fiex

Proof. The form of formula 2 follows from

CONS(2)= N\ [l — ]

fiex

= N\ lli— WA f)]
fiex

= /\ [ﬁli V (lZ A fz)]
fiex

= VINA “Ln NG )
oCX fi¢o fi€o

= \/ SEL@) A A\ £
oCxY fi€o

(li = fi) < (L = (I; A f;)) follows from:

A— B~ -AVEB
— (nAV A) A (-AV B)
— AV (ANAB)
—~ A — (AN B)

With the above expression, we can exclude empty consisiésess by

CONST(X)=CONS(Z)A(\/ W)
fiex
Because we are only interested in hon-empty consistenetsyldsom here on we will

meanCON St (X)) when we us€€ONS(XY). The set of subsets of selected sentences
is

CONS(Z)1 = Fpy (Voes(SEL(@) A g )
=Voes(SEL@) A [Bry (Agco 1)]
= \/agx SEL(o)
As we see, the complexity (FON S (X) isO(2 x | X| — 1+ |Pp|). Let
CONJ(o) = SEL(o) A )\ fi.

fi€o



Proposition 2. Given a sentence set selectorC X represented bys EL(o), if the
conjunction of the selected sentencessiiis consistent then it can be expressed as
follows
CONJ(o)= SEL(oc) NCONS(X)
= VUQE[SEL(U) N /\fiea fil

Proof. CONS(X) is a disjunction of conjunctions of all consistent subsetso
Among these conjunction§§EL(c) only can make the one corresponding to the
selection true, which iISEL(c) A /\;,c, fi, and others false. NamelyEL(o) A
CONS(X) = SEL(0) A N\j,ep i O

Similarly, the set of conjunctions of a set of selected sar#e can be expressed by:

CONJ({o:}) = \/[SEL(0:)] NCONS(%)

o

With this expression, we will be able to filter conbinatiolisonsistent and inconsistent
sets of sentences into consistent sets.

4.3 QBF/BDD representation of arguments

We can extend the languagefurther to contair® = Pr, UPp U P ¢ UPp,c where
Pp,c is a set of renaming symbols &fp to represent the conclusions of arguments;
Pr.c is an optional set of symbols to label an interesting sulzespd conclusions
(the ones we want to compute arguments for). For examplbeisentences iy and
their negations are of interest, thét - = 2log|X| (we don't need to label a set of
sentences, instead we just need to label individual sesesmue their negations so that
we neelog| | symbols). Similarly, we will denot®p by Pp p for premises when
a distinction is needed.

An argument H, k) in Lp can then be represented by formg(df, ) in £

§(H h) = SEL(H)A \ fi Ah[Ppc]
fi€eH

whereh[Pp ¢| means the expressidnis in terms of the symbols dPp .
The set of all arguments that can be constructed ffomiill be equivalent to

A(Z) = CONS(5)

for the moment by abstracting away the conclusions. Latewrileeintroduce the con-
clusions to the representation during the query for commhssand the defeat process.

4.4 Arguments for conclusions

We can construct the set of arguments for a set of conclusibasonce as follows. Let
us assume that, besides the input information Basge also have a set of conclusions
C that we wish to support.

C = {hy}



with K = log|C| and a set of labeling symbols

Prc=lc={lic,....lxc}

and letc, be defined agc = k, namelyc; is the encoding of integek using the
boolean symbols oP;, c.
The set of arguments f@r' based or¥' can be represented as

Args(X,C)p =Vaerours ¢ \/ \/ [( /\ fi = hi) NSEL(0) A cg)]
hECOCE fi€S
and results in
Args(X,C) = Args(X,C)p, ACONS(X) A \/ (ck A hy)
heC

Proposition 3. Args(X, C), can be expressed as

\ Ga=fi)v ) (exAhi)

Vaeppupp.o CONS(E) L A l \ (ck)] A
fiex hreC

hreC

usingO(2 x |C]) + O(|X|) + O(2 x |X| + |Pp|) + O(|Pp U Pp,c|) QBF/BDD
operations.

Proof. Start with the first two items above,

CONS(%)L A [ \/ (ck)l \/ 'V [SEL(0) Aci]

hreC oCY hicH

Conjoining with the remaining two iten{s\/fiex (Lin=fi)V Vi, eo (ex A hk)} , gives:

vV V [SEL(G)/\ck./\<\/ Lin=fyv \/ (ck/\hk))]

oCX¥ hpeC fieX hpeC

— \/ \/ (SEL(U)/\(\/ ﬂfi)) \/(Ck/\hk)]
L fi€o

=\ V |SEL(o)Ackn (/\ (fi) — (hk))]

fi€o

The first line is derived usiny/; A; A V/; B; =V, [Ai A (\/j Bj)}. The second line
is derived using
SEL(o) A (\/ (i n—fi)) = SEL(a) A (\/ —fi)
fiex fi€o
since:
SEL(0) A (I A—f;) = FALSE
forany f; ¢ o. The second line also employs A\ \/,, co(ck A hg) = ¢ A by o



Algorithm 4.1 Computing BDD for set-inclusioa

1: Associate with each element fin € X two BDD variabled; andl;.
. Take the variable ordér, 11, 12,15, ..., ., I, (n = | X))
: for eachl; do
linkl; =1tol}
link l; =0to l¢+1
end for
. for eachl} # 1], do
link lfb =1t0l;i+1
link I} = 0 to terminal0
: end for
11: link I, = 0, to terminal0
12: linkl], = 1, to terminall

COXNDUHWN

4.5 Minimization of consistent sets with respect to conclushs

In the above Args(X, C') may contain non-minimal arguments. To overcome this, we
need to minimize the argumentsdngs(X, C) with respect to their conclusions. Given
a set of argument§ C A and a partial relatiol? C A x A (e.g. the set-inclusiom
relation on the supports of arguments) dnthe set of minimal arguments ©® with
respect taB is

Min(Q,B) ={A e Q|forallC € @, (C, A) € Bimplies(A,C) € B}

By encoding® with a QBF formulaQ[P] based on a se&® of propositional symbols,
and encoding the partial relatidhwith another QBRB[P, P’] with the first component
of B based on symbols i® and the second component Bfbased on the symbols in
P’, we can computd/in(Q, B) as fllows

Min(Q, B) = Q AVz[(Q[P/Z] — (B[P/Z,P'/P] — B[P'/Z])]

whereZ is a temporary set of symbols renamed fréhnto hold the intermediate results
during the computation.

The set-inclusion relation between two sets of suppHitEP] and H>[P’] can be
implemented as:

€9 = A Li—1)
fiex
This require? x | X'| QBF/BDD operations to construct. A linear BDD size implemen
tation of C on the supports ol is given in Algorithm 4.15.
The set of minimal supports which attack a sentence C can be computed as
ArgSmin (X, hy) = Min ((Args(X,C) Aeg)r,€(Q)) .
The set of minimal supports with respect to each each seteri¢cean be computed as
Args’rm'n(zv hk) = \/ ATQSmin(Z, hk)
hreC

For description convenience, below we will udegs(X, C) for Argsm (X, C).

8 To the best of our knowledge only an exponential implementation exists litereture [3].



4.6 A QBF representation of defeat
A defeatdefeat((H, h), (H',h')) can be represented by
E(H,h,H',1') = CONJ(H) A SEL(h)[Pr.c] A h[Pp.c]
ANCONJ(H')[Pp] A SEL(W)[PL.c] AN [Pp.cl
by extending the languag&{P] to beL[P] U L[P’]. A defeat relationD = {(A4;, A})}
can be represented by a single QBF/BDD formula:
D)=\ EA) AEAD).
(Ai,A;)ED

Now we need an expression with a polynomial number of opmratio generate the
set of all possible defeats frotd. To do this, we need to inspect the specific types of
defeats. We start withndercut:

Definition 8. An argument H, h;) undercutanother argumentHs, h,) iff there ex-
ists anf € H, such thath, = —f.

and this gives us:

Proposition 4. LetC = X U {—f;|f; € X'}, the set of all possible undercuts can be
constructed as

undercut(X) = Args(X,C) A Args(Z',C") A (V pres(c-p, Ali))
wherec-;, denotes the encoding of the label that correspondsftan C.

Proof. Args(X,C) and Args(X’, C") constructs the arguments f6tbased on' us-

ing two sets of symbols, and the corresponding selectionmftisentences and conclu-
sion sentences) ;. s, (c-y; A l;)) builds up the undercut relation between these two
sets of arguments. 0

Note that the setting of the conclusion poifits= YU{—f;|f; € X'} can be changed ac-
cording to any application-dependent argumentation msder example®ONS(X)
and their negations or other application oriented conchssand their negations.

Next we considerebut:

Definition 9. (}117 hl) rebus (HQ, hg) iff hy = —ho.

We can construct theebut relation in the same way asidercut by assuming a set of
interesting conclusion points. However, we can also canstherebut relation in the
following way and leaving the conclusion points open to mtaleesystem more flexible.

Definition 10. Given a sef{ of sentences, let

S(H) = {s|s = H}
S(h) = {sls = h}

wheres is an assignment t®. H + hiff S(H) C S(h).



The definition ofrebut is then:
Definition 11. H; rebutsH,, if there is somé such thatH; + h and Hy - —h.
and we have:

Proposition 5. Given two consistent sets of sentenéfsand H,, H; rebuts H, iff
S(Hy) N S(Hz2) =0, namely[CONJ(H,) N\CONJ(H3)] « FALSE.

Proof. If H; rebutsHs, then there is & such thatd, - h andH, - —h. SinceS(h) N
S(=h) =0,andS(H,;) C S(h) andS(H>) C S(—h), thereforeS(H,) N S(Hz) = 0.

If S(H1) N S(Hy) = 0, the rebutting point can be constructed as follows. Let
padding = —(Hy V Hs), andh = H; V padding. In this way, S(padding) =
U\ (S(H)) U S(Hy)), S(h) = S(Hy) U S(padding), S(=h) = U\ (S(Hy) U
S(padding)) = S(Hs). ThereforeS(H;) C s(h) and S(Hz) C S(—h), namelyh
is the rebutting point we are looking for such ti#&t - h and Hy F —h. O

Actually » can be anything such that(H,) C S(h) C (S(H1) U S(padding)), So we
have the following corollary.

Corollary 1. Given two sets of sentencHs and H, which rebut each other, the rebut
point i can be obtained by settin§(H,) C S(h) C S(H1) U S(padding) where
padding = —(Hy V Hj). The choice oh = H; vV —(H; V Hj) which maked?; and
H, be the minimal sets of sentences such fiiat- » and H, - —h O

As a result, the set of all rebuts can be expressed as
rebut(X) =
\/  [CONJ(o) ACONJ'(¢') A= (CONJ(o)p ACONJ(o")p)]

oCY,0'CY

and we have:
Proposition 6. rebut(X') can be expressed as

rebut(%) = CONS(X) A CONS'(5) A [\/ rresliA=f)VV sl A= fj)]
using2 x O(CONS(X)) + 6 x | X| + 3 QBF/BDD operations.
Proof.

rebut(X)

= \/ [CONJ(o) A\CONJ'(¢') A= (CONJ(c)p ACONJ(c")p)]

= [CONJ(g) ACONJ'(¢") A (=CONJ(c)p V ~CONJ(c")p)]

CONJ(o) NCONJ' (") A (\/ -fiv\/ ﬁfj)

fi€o fjea’




\V CONJ(c) N\CONJ'(¢') A ( \ Gin=f)v \/ @A ﬁfj))

cCX,0/'CY fi€o fi€o’

CONS(Z)NCONS' ()N |\ tin-fi)v \/ I A=f))
fiex [EeZ

Finally we consider the computation of thentradict relation:

Definition 12. (H;, h1) contradicts(Has, hs) if and only if(H1, hy) rebuts a subargu-
ment of(Hy, hs).

The contradict relation can be computed by

contradict(X) = 3z (rebut(X)[P'/Z] A E(C)[P/Z])

4.7 Computing fixed points of argumentation

The relationsindercut, rebut andcontradict give us the relationship between individual
arguments, but, as is usual, we are more interested in camgpiltings like which
arguments aracceptablewhere such properties are defined as fixed-points.

Definition 13. An argumentH defends another argumeit’ if there exists another
argumentH” such thatd"” defeatsH’ but H defeatsH” .

Thedefend relation can be constructed from tliefeat relation on the set of arguments
as follows:

defend (X, defeat) = 3z (defeat(X) [P’/ Z] A defeat(X)[P/Z])

wheredefeat(Y) is eitherundercut(X), rebut(X), contradict(X), or any disjunction
of the relations (e.gundercut(X) V rebut(X')). The composition of two relation®;
and R, on the set4 of arguments can be computed by

ComposeR(Ry, Ry) = 3zR1[P'/Z] A R2[P/Z].

With these constructs defined, the fixed point of argumesmatan be computed using
Algorithm 4.2. In Algorithm 4.2, the closure of a binary reta R on A4, is computed
using a method called iterative squaring [7] which is gutrad to terminate within
O(log|A|) steps. In line3 : OldR «— Ip, U defendp,, the defend relation is first
projected to sentence labeling symbols so that during thgpatation of the defending
closure only the label of arguments are considered withefariing to their internal
structure; the union with the identity relatidip, = A\, c(l; < ) is to keep the
defended arguments in the closure.

Proposition 7. Algorithm 4.2 computes the fixed point of the defend relatiamely
the set of acceptable arguments constructed ffom



Algorithm 4.2 Computing Fixed Point of Argumentation
1: function ComputeFizedpoint(X, defeat) {
(1) X: The set of input information
(2) defeat is binary relation onA }
. defend «— defend(X, defeat)
OldR «— Ip, Udefendp,
R« FAIL
: while (OldR # R) do
tmpR — R
R — ComposeR(OldR, OldR)
OldR +— tmpR
. end while
: Undefeated «— CONS(X) A = (3zcpdefeat) [P’/ P]
11: Acc < Tzep(Undefeated A R)[P'/P] V Unde feated
12: return Acc end function

COONDUAWN

Proof. Let step(R) be the maximum length of paths between a gairA’) € R in
the induced graph of the defend relatidefend. Let the startingR in line 3 denoted
by Ry = defend U I. In Ry, for every(A, A’) € R, either(A, A’) € defend, namely

A defendsA’ using one step, oA is identical to A’ namely A defendsA’ using 0
step, thereforetep(Ry) = 1. Let the consequent content &f in eachwhile itera-
tion denoted byR; where: is the number of the iteration. Each time, wh&p, ; «
ComposeR(R;, R;) is applied in line7, R;, will gather all the argument pairs of
the form (A, A’) such thatA defendsA’ using defending steps less or equal than
step(R;41) = 2 x step(R;) steps. Assume thatis the number such th#t, ., = R;,

if the iteration continues we will have

Riy2 = ComposeR(Riy1, Riy1) = ComposeR(R;, R;) = Riy1 = R;

namely for allj > ¢, R; = R;. Theforefore, after thevhile loop terminatesk will
gather all the argument paifsi, A’) via any number of defending steps. Since the
number of arguments is finite, all the defending paths arengéflength, therefore the
algorithm is guaranteed to terminate. a

Proposition 8. The complexity of algorithm 4.2 8(|X| x K2 x |P|) whereK is the
maximum size of the BDDs which appear during the fixed poimipeing process.

Proof. As the analyzed in the proof of proposition 7, #tep(R;) = step?(R;11). The
maximum possible step dt;s is the number of arguments whicleis’|. Therefore the
algorithm is guaranteed to terminate after= log,2/>~| = |¥| iterations, therefore
the number of iteraction is bounded above®{X|). In each iterationCompoeseR
can be computed usin@(1 + |P|) number of BDD operations, each operation is of
complexityO(K?) whereK is the maximum size of BDDs used. Therefore the whole
algorithm is bounded above I6y(|X|) x O(K? x |P|). |



5 Discussion

Proposition 8 shows that we can compute the fixed-point inlgnpmial number of
BDD operations. As we mentioned above, this is a long way fsaging that we can do
general logical inference in polynomial time, rather whatave saying is that while the
complexity of algorithm 4.2 depends on the maximum size@®BBD (K), this doesn’t
depend on the size &f but rather on the complexity of the information contained’in
In the worse casdy can still be exponential ifiP|, but in many practical applications
K tends to be small.

Because of this feature of systems built using the QBF/BDOasentation, there
has been a lot of work on reducing the size of BDDs. Many sisfakapproaches have
been developed in literature, especially those developedyimbolic model checking
in software and hardware verfication [24], and in non-deiestic Al planning [10].
Examples of techniques for reducing the size of BDDs arey eprantification [19],
quantification scheduling [9], transition partitioning,[@erative squaring [7, 8], fron-
tier simplification [12], input splitting [28, 29], and stasetA* branching [22, 21, 23]
(a BDD version of thed* search heuristic [31]).

Another factor affecting the BDD size greatly is variablelening. The problem
of finding an optimal variable ordering is NP-complete [4]gérithms based on dy-
namic programming [14], heuristics [20], dynamic variatd®rdering [30] and ma-
chine learning approaches [18] have been proposed for §radgood variable ordering
in reasonable time

We are currently working on an implementation of the reasgpmnechanism pro-
prosed above with the aim of experimentally clarifying tregune of K for different
argumentation problems.

6 Conclusions and Future Work

In this paper, we have proposed a symbolic model checkingoapp to compute ar-
gumentation. The computation only uses a polynomial nurob&DD operations in
terms of the number of sentences in the input and the numbgrmolbols used in the
input. A key idea in the approach is to construct the set okmbent arguments all
together using a polynomial number of BDD operations. Indhme way, the defeat
relation among these arguments can also be computed altatusing a polynomial
number of BDD operations. And with the iterative squarinchtgque, we are able to
compute the fixed point of a set of arguments in polynomial inemnof BDD operations.
We are currently working on implementing the BDD-based argntation system
proposed in this paper, with the aim of conducting expertmenclassify the nature of
the BDDs constructed for argumentation. This will allow agletermine how effective
this approach will be in general. This in turn may lead us wklfor new heuristics
for controlling the size of the BDDs we need to construct tmpate arguments. An-
other direction that we are working on is to extend the cumagthod to compute more

7118] is also a good source for other references on BDD variablofdering.



sophisticated and controllable approaches argumentatimh as those based on argu-
mentation schemes [27]. On the way, we will need to developB&hniques to effi-
ciently specify application-dependent patterns of argusiésuch as those captured by
argument schemes), specify application-dependent pattédefeats (defeat schemes),
and extend the basic entailment-based reasoning modelteddspecify the necessary
patterns of rule-based procedural reasoning. In comlinatith our continuing efforts
to use BDD techniges in multiagent planning and dialogués38, 38, 39], all these ef-
forts are aimed at our ultimate goal of a practical argurmtentsbased dialogue model
for multiagent planning.
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