
On the Benefits of Argumentation-derived
Evidence in Learning Policies

Chukwuemeka David Emele1, Timothy J. Norman1,
Frank Guerin1, and Simon Parsons2

1 University of Aberdeen, Aberdeen, AB24 3UE, UK
{c.emele, t.j.norman, f.guerin}@abdn.ac.uk

2 Brooklyn College, City University of New York, 11210 NY, USA
parsons@sci.brooklyn.cuny.edu

Abstract. An important and non-trivial factor for effectively develop-
ing and resourcing plans in a collaborative context is an understanding of
the policy and resource availability constraints under which others oper-
ate. We present an efficient approach for identifying, learning and model-
ing the policies of others during collaborative problem solving activities.
The mechanisms presented in this paper will enable agents to build more
effective argumentation strategies by keeping track of who might have,
and be willing to provide the resources required for the enactment of a
plan. We argue that agents can improve their argumentation strategies
by building accurate models of others’ policies regarding resource use,
information provision, etc. In a set of experiments, we demonstrate the
utility of this novel combination of techniques through empirical eval-
uation, in which we demonstrate that more accurate models of others’
policies (or norms) can be developed more rapidly using various forms
of evidence from argumentation-based dialogue.
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I.2.11 [Distributed Artificial Intelligence]: Multi-agent Systems
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1 Introduction

Distributed problem solving activities often require the formation of a team of
collaborating agents. In such scenarios agents often operate under constraints
placed on them by the organisations or interests that they represent. When
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these constraints are part of the standard operating procedures of the agents
or the organisations in question, we refer to them as policies (also known as
norms). Members of the team agree to collaborate and perform joint activities
in a mutually acceptable fashion. Often, agents in the team represent different
organisations, and so there are different organisational constraints imposed
on them. Even within a single organisation, team members often represent
sub-organisations with different procedures and constraints. Examples of such
constraints are those due to policies that guide the behaviour of representatives
of organisations. Furthermore, team members may possess individual interests
and goals that they seek to satisfy, which are not necessarily shared with other
members of the team. These individual motivations largely determine the way
in which members carry-out tasks assigned to them during joint activities.

In this paper, we focus on policy and resource availability constraints, and
define policies as explicit prohibitions that members of the team are required
to adhere to. Policy constraints may be team-wide or individual. We focus on
individual policies. These policies are often private to that individual member
or subset of the team, and are not necessarily shared with other members of
the team. In order to develop effective plans, an understanding of the policy
and resource availability constraints of other members in the team is beneficial.
However, tracking and reasoning about such information is non-trivial.

Our conjecture is that machine learning techniques may be employed to
aid decision making in this regard. Although this is not a new claim [7], it
is novel to combine it with evidence derived from argumentation-based di-
alogue, which we call argumentation-derived evidence (ADE). We present a
system where agents learn from dialogue by automatically extracting useful
information (evidence) from the dialogue and using these to model the poli-
cies of others in order to adapt their behaviour in the future. We describe an
experimental framework and present results of our evaluation in a resource pro-
visioning scenario [5], which show empirically (1) that evidence derived from
argumentation-based dialogue can indeed be effectively exploited to learn bet-
ter (more complete and correct) models of the policy constraints that other
agents operate within; and (2) that through the use of appropriate machine
learning techniques more accurate and stable models of others’ policies can be
derived more rapidly than with simple memorisation of past experiences.

For example, consider the following snippet of dialogue that may occur
between two agents i and j collaborating to hang a picture [11].

Example 1: Example 2:

i: Can I have a screw-driver? i: Can I have a screw-driver?
j: What do you want to use it for? j: What do you want to use it for?
i: To hang a picture. i: To hang a picture.
j: No. j: I can provide you with a hammer instead.

i: I accept a hammer.

Following from the interaction in example 1, there is very little that we
can learn from the encounter. It is unclear why agent j said no to agent
i’s request. It could be that there exists some policy X that forbids agent
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j from providing the screw-driver to agent i or it could be that the screw-
driver is not available at the moment. On the other hand, suppose we have
an argumentation framework that allows agents to suggest alternatives as in
example 2 or ask for and receive explanations as in examples 3 and 4, then
agent i can, potentially, gather more evidence regarding the provision of the
resources involved.

Example 3: Example 4:

i: Can I have a screw-driver? i: Can I have a screw-driver?
j: What do you want to use it for? j: What do you want to use it for?
i: To hang a picture. i: To hang a picture.
j: No. j: No.
i: Why? i: Why?
j: I’m not permitted to release the screw-driver. j: Screw-driver is not available.

Considering examples 3 and 4, it is worth noting that without the addi-
tional evidence, obtained by the information-seeking dialogue, the two cases
are indistinguishable. This means that the agent will effectively be guessing
which class these cases fall into. The additional evidence allows the agent to
learn the right classification for each of the cases. It should be noted here that
although in example 3, we now have a statement that the resource is not to
be provided for policy reasons, the question remains: what are the important
characteristics of the prevailing circumstances that characterise this policy?

In a domain where there are underlying constraints that could yield similar
results, standard machine learning techniques will have limited efficacy. Using
argumentation to gather additional evidence could improve the accuracy of
the information learned about the policies of others. We claim that significant
improvements can be achieved because argumentation can help clarify reasons
behind decisions made by the provider.

In the research presented in this paper, we intend to validate the follow-
ing hypotheses: (1) Allowing agents to exchange arguments during practical
dialogue (like negotiation) will mean that the proportion of correct policies
learned during interaction will increase faster than when there is no exchange
of arguments. (2) Through the use of appropriate machine learning techniques
more accurate and stable models of others’ policies can be derived more rapidly
than with simple memorisation of past experiences.

The remainder of this paper is organised as follows: In section 2 we briefly
describe argumentation-based dialogue and introduce the protocol employed.
Learning policies is discussed in section 3 and section 4 describes our simulation
environment. Experimental results are reported in section 5. Section 6 discusses
related work and future direction, and the paper concludes in section 7.

2 Argumentation-based Dialogue

In this section we present the argumentation-based negotiation protocol which
will be used in guiding the negotiation process, and for obtaining additional
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evidence from the interaction. This protocol uses information-seeking dialogue
[17] to probe for additional evidence.

2.1 The Negotiation Protocol

The negotiation for resources takes place in a turn-taking fashion, where the
seeker agent sends a request for resource to a provider agent. Figure 1 captures
the negotiation protocol in a AUML-like interaction diagram (www.fipa.org).
If the provider agent has the requested resource in its resource pool and it is
in a usable state then it checks whether there is any policy constraint that
forbids it from providing the resource to the seeker or not. If the provider
agent needs more information from the seeker in order to make a decision,
the provider agent would ask for more information to be provided. This is the
information gathering stage. The information gathering cycle will continue
until the provider has acquired enough information (necessary to make the
decision), or the seeker refuses to provide more information and the negotiation
ends.

Fig. 1. The negotiation protocol.

The provider agent releases the resource to the seeker agent if there is no
policy that prohibits the provider agent from doing so. Otherwise, the provider
agent offers an alternative resource (if there are no policies that forbid that
line of action and the alternative resource is available). When an alternative
resource is suggested by the provider agent, the seeker agent evaluates it. If it
is acceptable, the seeker agent accepts it and the negotiation ends. Otherwise,
the seeker agent refuses the alternative (in principle, this cycle may be repeated
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until an alternative is accepted or the negotiation ends). However, for simplicity
and brevity, only one suggest-refuse cycle is permitted per request.

From a learning point of view, the suggestion of alternative resources is a
positive evidence that the provider agent does not have any policy that forbids
the provision of the alternative resource to the seeker. In addition, it provides
an evidence that the alternative resource is also available. This extra evidence,
we anticipate, may help to improve the performance of the learner in predicting
the policy constraints of the provider agents in future encounters.

If there is a policy constraint that forbids the provision of the resource, or
the resource is not available then the provider agent will refuse to provide the
resource to the seeker agent. From the seeker ’s perspective, the refusal could
be as a result of policy constraint or because the resource is not available.
In order to disambiguate which of these constraints are responsible for the
refusal, the seeker agent switches to argumentation based dialogue. The seeker
agent asks for explanations for the refusal so as to gather further evidence
and thereby identify the underlying constraints. The provider agent, therefore,
responds with some explanations and the negotiation ends. Three categories of
explanations are possible in this framework: (1) Policy constraints (2) Resource
not available (3) Won’t tell you. These pieces of evidence will be explored in
the following section.

2.2 Argumentation-derived Evidence

Following the argumentation-based negotiation protocol described earlier, the
agents could ask for more information (with respect to a request or the response
to a request), which indicates what constraints others may be operating within.
For instance, let us assume that a provider agent has a policy that forbids it
from providing a screw-driver to any seeker agent that intends to use it for
hanging a picture. Then, whenever a screw-driver is requested the provider
agent will probe for more information to ascertain that the purpose the seeker
intends to use the screw-driver for is not hanging a picture. This extra evidence
could be useful. Similarly, whenever a seeker agent’s request is refused then
the seeker agent will ask for explanations/justifications for the refusal. These
additional evidence are beneficial, and we expect them to improve the quality
of the models of other agents that can be inferred in future encounters.

Figure 2 shows two simple examples of the kind of dialogue that
may occur between two agents, i and j. For the purpose of the example,
we use need(R, P, L, D) to denote that the seeker agent intends to
use the resource R for purpose P at location L on day D. Note that
although this is presented as a dialogue between two agents, in reality
the initiator (agent i, the agent that wishes to resource its plan) may
engage in multiple instances of this dialogue with other agents.

3 Learning Policies

In this section we discuss the machine learning techniques that we have
explored for learning policies through argumentation-derived evidence.
These techniques include decision tree learning (C4.5), instance-based
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Example A
i: request(i, j, screw-driver)
j: ask-infor(j, i, need(screw-driver, P, L, D))
i: provide-infor(i, j, need(screw-driver, P=x, L=y, D=z))
j: refuse(j, i, screw-driver)
i: why(i, j, refuse(screw-driver))
j: inform(j, i, screw-driver, reason(policy-constraints))

Example B
i: request(i, j, nail)
j: refuse(j, i, nail)
i: why(i, j, refuse(nail))
j: inform(j, i, nail, reason(wont-tell-you))
i: request(i, j, table)
j: agree(j, i, table)

Fig. 2. Dialogue snippets between agents i and j

learning (k-Nearest Neighbours, abbreviated as k-NN) and rule-based
learning (Sequential Covering, abbreviated as SC).

Our technique does not attempt to replace machine learning nor com-
pete with existing techniques. Rather, we seek ways to combine argumen-
tation analysis with already existing machine learning techniques with
a view to improving the performance of agents at predicting the pol-
icy constraints of others. We anticipate that this could enable them to
build more effective argumentation strategies. In other words, we argue
that evidence derived from argumentation-based dialogue can indeed be
effectively exploited to learn better (more complete and correct) mod-
els of the policy constraints that other agents operate within. Also, we
claim that through the use of appropriate machine learning techniques
more accurate and stable models of others’ policies can be derived more
rapidly than with simple memorisation of past experiences. In future en-
counters, the seeker agent attempts to predict the policies of the provider
agent based on the model it has built.

3.1 Decision Tree Learning (C4.5)

C4.5 [13] builds decision trees from a set of training data, using the
concept of information entropy [8] (beyond the scope of this paper).
Generally, the training data is a set S = s1, s2, ..., sn of already classified
samples. Each sample si = x1, x2, ..., xm is a vector where x1, x2, ..., xm

represent attributes of the sample. The training data is augmented with
a vector C = c1, c2, ..., cn where c1, c2, ..., cn represent the class to which
each sample belongs.

Integrating this algorithm into our system with the intention of learn-
ing policies is appropriate since the algorithm supports concept learning
and policies can be conceived as concepts/features of an agent. Agent
policies are represented as a vector of attributes (e.g. resource, purpose,



On the Benefits of Argumentation-derived Evidence in Learning Policies 7

location, etc.) and these attributes are communicated back and forth
during negotiation. The C4.5 algorithm is then used to classify each set
of attributes (policy instance) into a class. There are two classes: grant
and deny. Grant means that the provider agent will possibly provide the
resource that is requested while deny implies that the provider agent
will potentially refuse. The leaf nodes of a decision tree hold the class
labels of the instances while the non-leaf nodes hold the test attributes.
In order to classify a test instance, the C4.5 algorithm searches from the
root node by examining the value of test attributes until a leaf node is
reached and the label of that node becomes the class of the test instance.

The problem with this algorithm is that it is not incremental, which
means all the training examples should exist before learning. To overcome
this problem, the system keeps track of the provider agent’s responses.
After a number of interactions, the decision tree is rebuilt. Without
doubt, there is a computational drawback involved in periodically re-
constructing the decision tree. However, in practice, we have evaluated
C4.5 to be fast and the reconstruction cost to be small. Our approach is
similar to the incremental induction of decision trees proposed in [16].

The C4.5 algorithm has three base cases.
– All the samples in the list belong to the same class. When this hap-

pens, it simply creates a leaf node for the decision tree saying to
choose that class.

– None of the features provide any information gain. In this case, C4.5
creates a decision node higher up the tree using the expected value
of the class.

– Instance of previously-unseen class encountered. Again, C4.5 creates
a decision node higher up the tree using the expected value.

Algorithm 1. The C4.5 algorithm

1: Check for base cases
2: For each attribute D,

Find the normalised information gain from
splitting on D

3: Let D best be the attribute with the highest
normalised information gain

4: Create a decision node that splits on D best
5: Recurse on the sublists obtained by splitting on

D best, and add those nodes as children of the node

Fig. 3. The C4.5 algorithm.

3.2 Instance-based Learning (k-NN)

The k-nearest neighbours algorithm (k-NN) [3] is a type of instance-
based learning, or lazy learning, where the function is only approximated
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locally and all computation is deferred until classification. The univer-
sal set of all the policies an agent may be operating within could be
conceived as a feature space (or a grid) and the various policy instances
represent points on the grid. Using k-NN, a policy instance is classified by
a majority vote of its neighbours, with the policy instance being assigned
to the class most common amongst its k nearest neighbours, where k is
a positive integer, typically small. The k-NN algorithm is incremental,
which means all the training examples need not exist at the beginning
of the learning process. This is a good feature because the policy model
could be updated as new knowledge is learned.

The k-nearest neighbour algorithm is sensitive to the local structure
of the data and this, interestingly, makes k-NN a good candidate for
learning policies because slight changes in the variables/attributes of a
policy could trigger different action. For example:

Policy1: You are permitted to release resource R to team member X if his
affiliation is O and R is to be deployed at location L for purpose P on day 1.

Policy2: You are prohibited from releasing resource R to team member X if
his affiliation is O and R is to be deployed at location L for purpose P on day 2.

In order to identify neighbours, the policy instances are represented by
position vectors in a multidimensional feature space. In this approach, new
policy instances are classified based on the closest training examples in the
feature space. A policy instance is assigned to the class c if it is the most
frequent class label among the k nearest training samples. It is usual to use the
Euclidean distance, though other distance measures, such as the Manhattan
distance, Hamming distance could in principle be used instead. The training
phase of the algorithm consists only of storing the feature vectors and class
labels of the training samples. In the actual classification phase, the test sample
is represented as a vector in the feature space. Distances from the new vector
to all stored vectors are computed and k closest samples are selected.

A major drawback to using this technique to classify a new vector to a
class is that the classes with the more frequent examples tend to dominate
the prediction of the new vector, as they tend to come up in the k nearest
neighbours when the neighbours are computed due to their large number. The
distance-weighted k-NN algorithm, which weights the contribution of each of
the k neighbours according to their distance to the new vector, uses distance
weights to minimise the bias caused by the imbalance in the training examples
by giving greater weight to closer neighbours. In our work, the weight of a
neighbour is computed as the inverse of its distance from the new vector.

3.3 Rule-based Learning (Sequential Covering)

Since policies guide the way entities within a community (or domain) act by
providing rules for their behaviour it makes sense to learn policies as rules.
Sequential covering algorithm [8, 2] is a rule-based learning technique, which
constructs rules by sequentially covering the examples. The sequential covering
algorithm, SC for short, is a method that induces one rule at a time (by
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selecting attribute-value pairs that satisfy the rule), removes the data covered
by the rule and then iterates the process. SC generates rules for each class
by looking at the training data and adding rules that completely describe all
tuples in that class. For each class value, rule antecedents are initially empty
sets, augmented gradually for covering as many examples as possible. Figure
4 outlines the sequential covering algorithm in pseudo-code.

Algorithm 2. The Sequential Covering Algorithm

1: Input the training data (D) and the classes (C)
2: For each class c ∈ C
3: Initialise E to the instance set
4: Repeat
5: Create a rule R with an empty left-hand

side (LHS) that predicts class c:
6: Repeat
7: For each (Attribute, V alue) pair found in E
8: Consider adding the condition

Attribute = V alue to the LHS of R
9: Find Attribute = V alue that maximises p/t
10: (break ties by choosing the condition with

the largest p)
11: Add Attribute = V alue to R
12: Until R is perfect (or no more attributes to use)
13: Remove the instances covered by R from E
14: Until E contains no more instances that belong to c

Fig. 4. The Sequential Covering Algorithm.

In this study we used three different machine learning mechanisms: De-
cision tree learning, Instance-based learning and Rule-based learning. These
three mechanisms represent very different classes of machine learning algo-
rithms. The rationale for exploring a range of learning techniques is to demon-
strate the utility of argumentation-derived evidence regardless of the machine
learning technique employed. Thus, we hypothesize that the use of evidence
acquired through argumentation significantly improves the performance of ma-
chine learning in the development and refinement of models of other agents.
Also, we claim that through the use of appropriate machine learning techniques
more accurate and stable models of others’ policies can be derived more rapidly
than with simple memorisation of past experiences.

4 Simulation Environment

To test our hypotheses, we developed a simulation environment that combines
mechanisms for agents to engage in argumentative dialogue and to learn from
dialogical encounters with other agents. For the purpose of resourcing plans,
agents may act as resource seekers, which collaborate and communicate with
potential providers to perform joint actions. The enactment of both seeker and



10 Emele et al.

provider roles are governed by individual policies that regulate their actions.
A seeker agent requires resources in order to carry out some assigned tasks.
The seeker agent generates requests in accordance with its policies and nego-
tiates with the provider agents based on these constraints. On the other hand,
provider agents have access to certain resources and may have policies that
govern the provision of such resources to other members of the team.

Although agents may have prior assumptions about the policies that con-
strain the activities of others, these models are often incomplete and may be
inaccurate. Provider agents do not have an unlimited pool of resources and so
some resources may be temporarily unavailable. By a resource being available
we mean that it is not committed to another task (or agent) at the time re-
quested and the resource is in a usable state. Both seeker and provider agents
have access to the team-wide policies but not the individual policies of oth-
ers. Agents in this domain play the role of a seeker or a provider in different
interactions.

Fig. 5. Architecture of the framework for learning policies in team-based activities
using dialogue.

4.1 Architecture

Figure 5 depicts our architecture. Each agent has two main layers, the com-
munication layer and the reasoning layer. The communication layer embodies
the dialogue controller, which handles all communication with other agents
in the domain. The dialogue controller sends/receives messages to/from other
agents, and the reasoning layer reasons over the dialogue. If an agent is playing
the role of a seeker agent then the dialogue controller sends out the request
for resources. On the other hand, if the agent is a provider agent then the
dialogue controller receives a request and passes it on to the reasoning layer.
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The reasoning layer consists of two modules: the reasoner and the learner.
Upon receiving a message (e.g. a request), the reasoner evaluates the message
and determines the response of the agent. In most cases, the reasoner looks
up policy constraints from the knowledge-base and generates the appropriate
response for the agent. Policy and non-policy constraints are stored in the
constraints knowledge-base. Whenever the agent observes a new pattern of
behaviour the agent uses this experience as evidence for learning, and updates
the model of the other agent accordingly. The learner uses standard machine
learning techniques to learn policies based on the perceived actions of other
agents. The learning techniques are discussed in Section 3.

The knowledge store in Figure 5 acts as a repository where an agent stores
the constraints it has learned by interacting with other agents in the domain.
The information includes the features that an agent requires in order to make
a decision about providing a resource or not. For example, following from [11],
a provider agent B may need to know what the purpose for requesting a screw-
driver is before deciding whether to release the screw-driver or not. The seeker
agent stores such information about agent B in the knowledge store. Also, the
decision of B after the purpose has been revealed will also be learned for future
interactions.

To achieve this, we have developed a simple dialogue game3 involving seeker
agents and provider agents operating under different constraints. The players
take turns and the game starts with an agent, i, sending a request to another
agent, j, for the use of some resources needed to fulfill a plan. The other agent
(j) responds with an agree or refuse based on the prevailing context, e.g. policy
constraints. The requesting agent could ask for explanations and reasons for
an action, and so on until the game ends.

4.2 Implementation

We implemented a simulation environment for agent support in team-based
problem solving and integrated our learning and argumentation mechanisms
into the framework. The policies are encoded as rules in a rule engine [6].
The application programming interface in Weka [18] was used to integrate
standard machine learning algorithms into the framework. We note that, al-
though these three learning algorithms were used, the framework is config-
ured such that other machine learning algorithms can be plugged in. As dis-
cussed in the previous section, we evaluated the performance of a decision tree
learner (C4.5), an Instance based learner (k-Nearest Neighbour algorithm)
and a rule based learner (Sequential Covering) in learning policies through
argumentation-derived evidence.

The simulation environment allows us to generate multiple providers with
randomised policies, seeker agents with randomised initial models of the poli-
cies of providers in the simulation and randomised problems for the seeker
to solve (that is, random resource requirements). The seeker predicts (based
on the model of the provider) whether the provider has a policy that for-
bids/permits the provision of such resource in that context. The seeker re-
quests the required resource from the provider agent and the provider uses a

3 Dialogue games have proven extremely useful for modeling various forms of reasoning
in many domains [1].
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simple decision function (See Figure 6) to decide whether to grant or deny the
request.

If the decision of the provider agent deviates from the predictions of the
seeker agent then the seeker agent seeks additional evidence (through dialogue)
to disambiguate whether the deviation was as a result of policy or resource
availability constraints. The dialogue follows the protocol specified in Figure 1,
and at the end of the interaction the outcome is learned by the seeker and the
model of the provider is updated accordingly. This adaptive learning process
serves to improve the quality of the models of the other agents that can be
inferred from their observable actions in future interactions.

Assume seeker A requests resource R from provider P

IF ( is−available(R) ∧ NOT (forbid(release(R, A)) )

THEN agree( release(R, A))

ELSE refuse( release(R, A))

Fig. 6. Provider agents’ pseudo decision function

5 Experiments and Results

In a series of experiments, we show how learning techniques and ar-
gumentation can support agents engaging in collaborative activities, in-
crease their predictive accuracy, avoid unnecessary policy conflicts, hence
improve their performance. The experiments show that agents can effec-
tively and rapidly increase their predictive accuracy of the learned model
through the use of dialogue.

The scenario adopted in this research involves a team of five software
agents (one seeker and four provider agents) collaborating to complete
a joint activity in a region over a period of three days. The region is di-
vided into five locations. There are five resource types, and five purposes
that a resource could be used to fulfill. A task involves the seeker agent
identifying resource needs for a plan and collaborating with the provider
agents to see how that plan can be resourced.

Argumentation-derived evidence (ADE) was incorporated into the
learning process of the three machine learning techniques (C4.5, k-NN,
and SC) described earlier, and their performances in learning the policy
constraints of others were evaluated. A simple lookup table (hereafter
called, LT) was used as a control condition and it serves as a structure
for simple memorisation of outcomes from past encounters.

5.1 Results

This section presents the results of the experiments carried out to val-
idate this work. Experiments were conducted with seeker agents ini-
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Table 1. Average percentage of policies classified correctly and standard deviation

XXXXXXXXXApproach
Tasks

1000 2000 3000 4000 5000 6000

LT-ADE 65.1±6.5 70.3±10.3 75.6±6.7 78.1±10.2 79.3±8.3 81.3±10.1

LT+ADE 66.3±6.0 79.3±9.3 83.6±8.2 81.7±11.2 81.4±7.8 84.7±9.1

C4.5-ADE 58.3±15.1 69.2±16.6 75.1±12.0 82.1±12.3 85.3±8.9 88.2±8.2

C4.5+ADE 60.3±14.4 75.0±12.6 83.6±6.5 89.9±5.2 93.0±3.4 95.6±5.1

k-NN-ADE 65.2±9.8 71.0±7.8 75.3±5.3 80.7±3.8 81.0±4.1 82.0±3.8

k-NN+ADE 71.1±9.0 85.9±7.3 92.0±4.6 96.8±3.1 97.3±3.6 98.4±1.7

SC-ADE 66.7±8.2 71.7±6.0 78.7±8.4 84.3±6.5 87.4±6.0 90.6±5.3

SC+ADE 67.7±7.7 87.1±6.4 94.1±4.2 96.6±4.1 97.5±2.6 99.2±1.0

tialised with random models of the policies of provider agents. 100 runs
were conducted for each case, and tasks were randomly created during
each run from 375 possible configurations.

Table 1 illustrates the effectiveness of identifying and learning policies
through argumentation-derived evidence using the three machine learn-
ing techniques described earlier, and the control condition (lookup table).
It shows the average percentage of policies classified correctly and the
standard deviations for each of the approaches, namely: Lookup Table
without the aid of argumentation-derived evidence (LT-ADE), Lookup
Table enhanced with argumentation-derived evidence (LT+ADE), C4.5-
ADE, C4.5+ADE, k-NN-ADE, k-NN+ADE, SC-ADE, and SC+ADE.
In each case, the model of others’ policies is recomputed after each set of
1000 tasks. For all three machine learning techniques considered, the per-
centage of policies predicted correctly as a result of exploiting evidence
derived from argumentation was consistently and significantly higher
than those predicted without such evidence. Figure 7 gives a graphi-
cal illustration of the effectiveness of learning policies with the aid of
argumentation-derived evidence using rule-based learning technique, for
instance. After 3000 tasks, the accuracy of the approach with additional
evidence had risen above 94% while the configuration without additional
evidence was approaching 79%. It is easy to see that the experiments
where additional evidence was combined with machine learning signifi-
cantly and consistently outperformed those without additional evidence.
These results show that the exchange of arguments during practical dia-
logue enabled agents to learn and build more accurate models of others’
policies much faster than scenarios where there was no exchange of ar-
guments.

Figure 8 captures the effectiveness of the three machine learning tech-
niques described earlier, and a simple memorisation technique (a lookup
table) in learning policies. The result shows that both instance-based
learning (k-NN+ADE) and rule-based learning (SC+ADE) constantly
and consistently outperform the control condition (LT+ADE) through-
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Fig. 7. Graph showing the effectiveness of allowing the exchange of arguments in learn-
ing policies.

out the experiment. It is interesting to see that, with relatively small
training set, the control condition performed better than the decision
tree learner (C4.5+ADE). This is, we believe, because the model built
by the decision tree learner overfit the data. The tree was pruned after
each set of 1000 tasks and after 3000 tasks the accuracy of the C4.5+ADE
model rose to about 83% to tie with the control condition and from then
the decision tree learner performed better than the control condition.
The performance of the control condition dropped to about 81% after
4000 tasks. After 6000 tasks the accuracy of the decision tree learner had
risen above 95% while that of the control condition was just over 84%.

Tests of statistical significance were applied to the results. The stan-
dard deviations of the results were analysed and the trend line plotted.
(See Figure 9). Using linear regression, the analysis of variance (ANOVA)
shows that as the number of tasks increases, each of the three machine
learning techniques (with or without argumentation-derived evidence)
consistently converges with a 95% confidence interval. Furthermore, for
all the pairwise comparisons, the scenarios where argumentation-derived
evidence was combined with machine learning techniques consistently
yielded higher rates of convergence (p < 0.02) than those without ad-
ditional evidence. Specifically, the decision tree learner enhanced with
argumentation-derived evidence (C4.5+ADE) converges (y = 15.3944−
0.0022x) with a F value of 15.66 and significance p = 0.0167. The k-
NN+ADE converges (y = 9.7983 − 0.0014x) with a F value of 38.58
and significance p = 0.0034, and the SC+ADE (y = 8.819 − 0.0013x)
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converges with a F value of 136.45 and significance p = 0.0003. On the
other hand, with a significance p = 0.3957, there is no statistical signif-
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icance as to whether LT+ADE converges or not. These results confirm
our hypotheses.

6 Discussion and Related Work

The research presented in this paper represents the first model for using
evidence derived from argumentation to learn underlying social char-
acteristics (e.g. policies/norms) of others. There is, however, some prior
research in combining machine learning and argumentation, and in using
argument structures for machine learning. In that research, Možina et
al. [9] propose a novel induction-based machine learning mechanism us-
ing argumentation. The work implemented an argument-based extension
of CN2 rule learning (ABCN2) and showed that ABCN2 out-performed
CN2 in most tasks. However, the framework developed in that research
will struggle to disambiguate between constraints that may produce sim-
ilar outcome/effect, which is the main issue we are addressing in our
work. Also, the authors assume that the agent knows and has access
to the arguments required to improve the prediction accuracy, but we
argue that it is not always the case. As a result, we employ information-
seeking dialogue to tease out evidence that could be used to improve
performance.

In related research, Rovatsos et al. [14] use hierarchical reinforcement
learning in modifying symbolic constructs (interaction frames) that regu-
late agent conversation patterns, and argue that their approach could im-
prove an agent’s conversation strategy. In our work, we used information-
seeking dialogue to obtain evidence from the interaction and learned the
entire sequence as against a segment (frame) of the interaction [14]. We
have demonstrated the effectiveness of using argumentation-derived ev-
idence to learn underlying social characteristics (e.g. policies) without
assuming that those underlying features are public knowledge.

In recent research, Sycara et al. [15] investigate agent support for
human teams in which software agents aid the decision making of team
members during collaborative planning. One area of support that was
identified as important in this context is guidance in making policy-
compliant decisions. This prior research focuses on giving guidance to
humans regarding their own policies. An important and open question,
however, is how can agents support human decision makers in develop-
ing models of others’ policies and using these in guiding the decision
maker? Our work is aimed at bridging this gap (a preliminary version
was presented in [4]). We employ a novel combination of techniques in
identifying, learning and building accurate models of others’ policies,
with a view to exploiting these in supporting human decision making.

In our future work, we plan to develop strategies for advising human
decision makers on how a plan may be resourced and who to talk to
on the basis of policy and resource availability constraints learned [10].
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Parsons et al. [12] investigated the properties of argumentation-based
dialogues and examined how different classes of protocols can have dif-
ferent outcomes. Furthermore, we plan to explore ideas from this work
to see which class of protocol will yield the “best” result in this kind
of task. We are hoping that some of these ideas will drive the work on
developing strategies for choosing who to talk to.

7 Conclusions

In this paper, we have presented a technique that combines machine
learning and argumentation for learning policies in a team of collab-
orating agents engaging in joint activities. We believe, to the best of
our knowledge, that this is the first study into learning models of other
agents using argumentation-derived evidence. The results of our empir-
ical investigations show that evidence derived from argumentation can
have a statistically significant positive impact on identifying, learning
and modeling others’ policies during collaborative activities. The results
also demonstrate that through the use of appropriate machine learning
techniques more accurate and stable models of others’ policies can be de-
rived more rapidly than with simple memorisation of past experiences.
Accurate policy models can inform strategies for advising human deci-
sion makers on how a plan may be resourced and who to talk to [15], and
may aid in the development of more effective strategies for agents [10].
Our results demonstrate that significant improvements can be achieved
by combining machine learning techniques with argumentation-derived
evidence. Having shown that accurate models of others’ policies could
be learned through argumentation-derived evidence, we conjecture that
one could, in principle, learn accurate models of other agents’ properties
(e.g. priorities, preferences, and so on).
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